1
|
Anderson MA, Squair JW, Gautier M, Hutson TH, Kathe C, Barraud Q, Bloch J, Courtine G. Natural and targeted circuit reorganization after spinal cord injury. Nat Neurosci 2022; 25:1584-1596. [PMID: 36396975 DOI: 10.1038/s41593-022-01196-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/05/2022] [Indexed: 11/18/2022]
Abstract
A spinal cord injury disrupts communication between the brain and the circuits in the spinal cord that regulate neurological functions. The consequences are permanent paralysis, loss of sensation and debilitating dysautonomia. However, the majority of circuits located above and below the injury remain anatomically intact, and these circuits can reorganize naturally to improve function. In addition, various neuromodulation therapies have tapped into these processes to further augment recovery. Emerging research is illuminating the requirements to reconstitute damaged circuits. Here, we summarize these natural and targeted reorganizations of circuits after a spinal cord injury. We also advocate for new concepts of reorganizing circuits informed by multi-omic single-cell atlases of recovery from injury. These atlases will uncover the molecular logic that governs the selection of 'recovery-organizing' neuronal subpopulations, and are poised to herald a new era in spinal cord medicine.
Collapse
Affiliation(s)
- Mark A Anderson
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.,Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland.,Wyss Center for Bio and Neuroengineering, Geneva, Switzerland
| | - Jordan W Squair
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.,Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Matthieu Gautier
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.,Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Thomas H Hutson
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.,Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland.,Wyss Center for Bio and Neuroengineering, Geneva, Switzerland
| | - Claudia Kathe
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.,Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Quentin Barraud
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.,Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Jocelyne Bloch
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.,Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Grégoire Courtine
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland. .,Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland. .,Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland.
| |
Collapse
|
2
|
Graham RD, Sankarasubramanian V, Lempka SF. Dorsal Root Ganglion Stimulation for Chronic Pain: Hypothesized Mechanisms of Action. THE JOURNAL OF PAIN 2022; 23:196-211. [PMID: 34425252 PMCID: PMC8943693 DOI: 10.1016/j.jpain.2021.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/28/2021] [Accepted: 07/20/2021] [Indexed: 02/03/2023]
Abstract
Dorsal root ganglion stimulation (DRGS) is a neuromodulation therapy for chronic pain that is refractory to conventional medical management. Currently, the mechanisms of action of DRGS-induced pain relief are unknown, precluding both our understanding of why DRGS fails to provide pain relief to some patients and the design of neurostimulation technologies that directly target these mechanisms to maximize pain relief in all patients. Due to the heterogeneity of sensory neurons in the dorsal root ganglion (DRG), the analgesic mechanisms could be attributed to the modulation of one or many cell types within the DRG and the numerous brain regions that process sensory information. Here, we summarize the leading hypotheses of the mechanisms of DRGS-induced analgesia, and propose areas of future study that will be vital to improving the clinical implementation of DRGS. PERSPECTIVE: This article synthesizes the evidence supporting the current hypotheses of the mechanisms of action of DRGS for chronic pain and suggests avenues for future interdisciplinary research which will be critical to fully elucidate the analgesic mechanisms of the therapy.
Collapse
Affiliation(s)
- Robert D. Graham
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States
| | - Vishwanath Sankarasubramanian
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States
| | - Scott F. Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States,Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109, United States,Corresponding author: Scott F. Lempka, PhD, Department of Biomedical Engineering, University of Michigan, 2800 Plymouth Road, NCRC 14-184, Ann Arbor, MI 48109-2800,
| |
Collapse
|
3
|
Cracchiolo M, Ottaviani MM, Panarese A, Strauss I, Vallone F, Mazzoni A, Micera S. Bioelectronic medicine for the autonomic nervous system: clinical applications and perspectives. J Neural Eng 2021; 18. [PMID: 33592597 DOI: 10.1088/1741-2552/abe6b9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/16/2021] [Indexed: 12/11/2022]
Abstract
Bioelectronic medicine (BM) is an emerging new approach for developing novel neuromodulation therapies for pathologies that have been previously treated with pharmacological approaches. In this review, we will focus on the neuromodulation of autonomic nervous system (ANS) activity with implantable devices, a field of BM that has already demonstrated the ability to treat a variety of conditions, from inflammation to metabolic and cognitive disorders. Recent discoveries about immune responses to ANS stimulation are the laying foundation for a new field holding great potential for medical advancement and therapies and involving an increasing number of research groups around the world, with funding from international public agencies and private investors. Here, we summarize the current achievements and future perspectives for clinical applications of neural decoding and stimulation of the ANS. First, we present the main clinical results achieved so far by different BM approaches and discuss the challenges encountered in fully exploiting the potential of neuromodulatory strategies. Then, we present current preclinical studies aimed at overcoming the present limitations by looking for optimal anatomical targets, developing novel neural interface technology, and conceiving more efficient signal processing strategies. Finally, we explore the prospects for translating these advancements into clinical practice.
Collapse
Affiliation(s)
- Marina Cracchiolo
- The BioRobotics Institute and Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Matteo Maria Ottaviani
- The BioRobotics Institute and Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Alessandro Panarese
- The BioRobotics Institute and Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Ivo Strauss
- The BioRobotics Institute and Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Fabio Vallone
- The BioRobotics Institute and Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Alberto Mazzoni
- The BioRobotics Institute and Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Silvestro Micera
- The BioRobotics Institute and Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Bertarelli Foundation Chair in Translational NeuroEngineering, Centre for Neuroprosthetics and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
4
|
Lubba CH, Ouyang A, Jones NS, Bruns TM, Schultz S. Bladder pressure encoding by sacral dorsal root ganglion fibres: implications for decoding. J Neural Eng 2020; 18. [PMID: 33202396 DOI: 10.1088/1741-2552/abcb14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/17/2020] [Indexed: 11/11/2022]
Abstract
OBJECTIVE We aim at characterising the encoding of bladder pressure (intravesical pressure) by a population of sensory fibres. This research is motivated by the possibility to restore bladder function in elderly patients or after spinal cord injury using implanted devices, so called bioelectronic medicines. For these devices, nerve-based estimation of intravesical pressure can enable a personalized and on-demand stimulation paradigm, which has promise of being more effective and efficient. In this context, a better understanding of the encoding strategies employed by the body might in the future be exploited by informed decoding algorithms that enable a precise and robust bladder-pressure estimation. APPROACH To this end, we apply information theory to microelectrode-array recordings from the cat sacral dorsal root ganglion while filling the bladder, conduct surrogate data studies to augment the data we have, and finally decode pressure in a simple informed approach. MAIN RESULTS We find an encoding scheme by different main bladder neuron types that we divide into three response types (slow tonic, phasic, and derivative fibres). We show that an encoding by different bladder neuron types, each represented by multiple cells, offers reliability through within-type redundancy and high information rates through semi-independence of different types. Our subsequent decoding study shows a more robust decoding from mean responses of homogeneous cell pools. SIGNIFICANCE We have here, for the first time, established a link between an information theoretic analysis of the encoding of intravesical pressure by a population of sensory neurons to an informed decoding paradigm. We show that even a simple adapted decoder can exploit the redundancy in the population to be more robust against cell loss. This work thus paves the way towards principled encoding studies in the periphery and towards a new generation of informed peripheral nerve decoders for bioelectronic medicines.
Collapse
Affiliation(s)
- Carl Henning Lubba
- Bioengineering, Imperial College London, Royal School of Mines, Exhibition Road, London, SW7 2AZ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Aileen Ouyang
- Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan, UNITED STATES
| | - Nick S Jones
- Department of Mathematics, Imperial College London, London, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Tim M Bruns
- Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan, UNITED STATES
| | - Simon Schultz
- Imperial College London, London, SW7 2AZ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
5
|
Piech DK, Johnson BC, Shen K, Ghanbari MM, Li KY, Neely RM, Kay JE, Carmena JM, Maharbiz MM, Muller R. A wireless millimetre-scale implantable neural stimulator with ultrasonically powered bidirectional communication. Nat Biomed Eng 2020; 4:207-222. [PMID: 32076132 DOI: 10.1038/s41551-020-0518-9] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/14/2020] [Indexed: 01/06/2023]
Abstract
Clinically approved neural stimulators are limited by battery requirements, as well as by their large size compared with the stimulation targets. Here, we describe a wireless, leadless and battery-free implantable neural stimulator that is 1.7 mm3 and that incorporates a piezoceramic transducer, an energy-storage capacitor and an integrated circuit. An ultrasonic link and a hand-held external transceiver provide the stimulator with power and bidirectional communication. The stimulation protocols were wirelessly encoded on the fly, reducing power consumption and on-chip memory, and enabling protocol complexity with a high temporal resolution and low-latency feedback. Uplink data indicating whether stimulation occurs are encoded by the stimulator through backscatter modulation and are demodulated at the external transceiver. When embedded in ex vivo porcine tissue, the integrated circuit efficiently harvested ultrasonic power, decoded downlink data for the stimulation parameters and generated current-controlled stimulation pulses. When cuff-mounted and acutely implanted onto the sciatic nerve of anaesthetized rats, the device conferred repeatable stimulation across a range of physiological responses. The miniaturized neural stimulator may facilitate closed-loop neurostimulation for therapeutic interventions.
Collapse
Affiliation(s)
- David K Piech
- The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA, USA.,The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA
| | - Benjamin C Johnson
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA.,Department of Electrical Engineering and Computer Engineering, Boise State University, Boise, ID, USA
| | - Konlin Shen
- The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA, USA.,The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA
| | - M Meraj Ghanbari
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
| | - Ka Yiu Li
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
| | - Ryan M Neely
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Joshua E Kay
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
| | - Jose M Carmena
- The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA, USA. .,The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA. .,Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA. .,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| | - Michel M Maharbiz
- The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA, USA. .,The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA. .,Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA. .,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Rikky Muller
- The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA, USA. .,The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA. .,Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
6
|
Sperry ZJ, Graham RD, Peck-Dimit N, Lempka SF, Bruns TM. Spatial models of cell distribution in human lumbar dorsal root ganglia. J Comp Neurol 2020; 528:1644-1659. [PMID: 31872433 DOI: 10.1002/cne.24848] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/15/2022]
Abstract
Dorsal root ganglia (DRG), which contain the somata of primary sensory neurons, have increasingly been considered as novel targets for clinical neural interfaces, both for neuroprosthetic and pain applications. Effective use of either neural recording or stimulation technologies requires an appropriate spatial position relative to the target neural element, whether axon or cell body. However, the internal three-dimensional spatial organization of human DRG neural fibers and somata has not been quantitatively described. In this study, we analyzed 202 cross-sectional images across the length of 31 human L4 and L5 DRG from 10 donors. We used a custom semi-automated graphical user interface to identify the locations of neural elements in the images and normalize the output to a consistent spatial reference for direct comparison by spinal level. By applying a recursive partitioning algorithm, we found that the highest density of cell bodies at both spinal levels could be found in the inner 85% of DRG length, the outer-most 25-30% radially, and the dorsal-most 69-76%. While axonal density was fairly homogeneous across the DRG length, there was a distinct low density region in the outer 7-11% radially. These findings are consistent with previous qualitative reports of neural distribution in DRG. The quantitative measurements we provide will enable improved targeting of future neural interface technologies and DRG-focused pharmaceutical therapies, and provide a rigorous anatomical description of the bridge between the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Zachariah J Sperry
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan
| | - Robert D Graham
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan
| | - Nicholas Peck-Dimit
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan
| | - Scott F Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan.,Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| | - Tim M Bruns
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
7
|
Rodrigues F, Ribeiro JF, Anacleto PA, Fouchard A, David O, Sarro PM, Mendes PM. Fabrication and characterization of polyimide-based 'smooth' titanium nitride microelectrode arrays for neural stimulation and recording. J Neural Eng 2019; 17:016010. [PMID: 31614339 DOI: 10.1088/1741-2552/ab4dbb] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE As electrodes are required to interact with sub-millimeter neural structures, innovative microfabrication processes are required to enable fabrication of microdevices involved in such stimulation and/or recording. This requires the development of highly integrated and miniaturized systems, comprising die-integration-compatible technology and flexible microelectrodes. To elicit selective stimulation and recordings of sub-neural structures, such microfabrication process flow can beneficiate from the integration of titanium nitride (TiN) microelectrodes onto a polyimide substrate. Finally, assembling onto cuffs is required, as well as electrode characterization. APPROACH Flexible TiN microelectrode array integration and miniaturization was achieved through microfabrication technology based on microelectromechanical systems (MEMS) and complementary metal-oxide semiconductor processing techniques and materials. They are highly reproducible processes, granting extreme control over the feature size and shape, as well as enabling the integration of on-chip electronics. This design is intended to enhance the integration of future electronic modules, with high gains on device miniaturization. MAIN RESULTS (a) Fabrication of two electrode designs, (1) 2 mm long array with 14 TiN square-shaped microelectrodes (80 × 80 µm2), and (2) an electrode array with 2 mm × 80 µm contacts. The average impedances at 1 kHz were 59 and 5.5 kΩ, respectively, for the smaller and larger contacts. Both designs were patterned on a flexible substrate and directly interconnected with a silicon chip. (b) Integration of flexible microelectrode array onto a cuff electrode designed for acute stimulation of the sub-millimeter nerves. (c) The TiN electrodes exhibited capacitive charge transfer, a water window of -0.6 V to 0.8 V, and a maximum charge injection capacity of 154 ± 16 µC cm-2. SIGNIFICANCE We present the concept, fabrication and characterization of composite and flexible cuff electrodes, compatible with post-processing and MEMS packaging technologies, which allow for compact integration with control, readout and RF electronics. The fabricated TiN microelectrodes were electrochemically characterized and exhibited a comparable performance to other state-of-the-art electrodes for neural stimulation and recording. Therefore, the presented TiN-on-polyimide microelectrodes, released from silicon wafers, are a promising solution for neural interfaces targeted at sub-millimeter nerves, which may benefit from future upgrades with die-electronic modules.
Collapse
Affiliation(s)
- F Rodrigues
- CMEMS-UMinho, University of Minho, Braga, Portugal. Electronics Components, Technology, and Materials Lab, Else Kooi Laboratory, Delft University of Technology, Delft, The Netherlands. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | |
Collapse
|
8
|
Ouyang Z, Sperry ZJ, Barrera ND, Bruns TM. Real-Time Bladder Pressure Estimation for Closed-Loop Control in a Detrusor Overactivity Model. IEEE Trans Neural Syst Rehabil Eng 2019; 27:1209-1216. [PMID: 31021771 DOI: 10.1109/tnsre.2019.2912374] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Overactive bladder (OAB) patients suffer from a frequent urge to urinate, which can lead to a poor quality of life. Current neurostimulation therapy uses open-loop electrical stimulation to alleviate symptoms. Continuous stimulation facilitates habituation of neural pathways and consumes battery power. Sensory feedback-based closed-loop stimulation may offer greater clinical benefit by driving bladder relaxation only when bladder contractions are detected, leading to increased bladder capacity. Effective delivery of such sensory feedback, particularly in real-time, is necessary to accomplish this goal. We implemented a Kalman filter-based model to estimate bladder pressure in real-time using unsorted neural recordings from sacral-level dorsal root ganglia, achieving a 0.88 ± 0.16 correlation coefficient fit across 35 normal and simulated OAB bladder fills in five experiments. We also demonstrated closed-loop neuromodulation using the estimated pressure to trigger pudendal nerve stimulation, which increased bladder capacity by 40% in two trials. An offline analysis indicated that unsorted neural signals had a similar stability over time as compared to sorted single units, which would require a higher computational load. We believe this paper demonstrates the utility of decoding bladder pressure from neural activity for closed-loop control; however, real-time validation during behavioral studies is necessary prior to clinical translation.
Collapse
|
9
|
Horn CC, Ardell JL, Fisher LE. Electroceutical Targeting of the Autonomic Nervous System. Physiology (Bethesda) 2019; 34:150-162. [PMID: 30724129 PMCID: PMC6586833 DOI: 10.1152/physiol.00030.2018] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/16/2018] [Accepted: 11/05/2018] [Indexed: 12/20/2022] Open
Abstract
Autonomic nerves are attractive targets for medical therapies using electroceutical devices because of the potential for selective control and few side effects. These devices use novel materials, electrode configurations, stimulation patterns, and closed-loop control to treat heart failure, hypertension, gastrointestinal and bladder diseases, obesity/diabetes, and inflammatory disorders. Critical to progress is a mechanistic understanding of multi-level controls of target organs, disease adaptation, and impact of neuromodulation to restore organ function.
Collapse
Affiliation(s)
- Charles C Horn
- Biobehavioral Oncology Program, UPMC Hillman Cancer Center , Pittsburgh, Pennsylvania
- Department of Medicine, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
- Center for Neuroscience, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Jeffrey L Ardell
- University of California- Los Angeles (UCLA) Cardiac Arrhythmia Center, Los Angeles, California
- UCLA Neurocardiology Research Program of Excellence, David Geffen School of Medicine , Los Angeles, California
| | - Lee E Fisher
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
10
|
Excitatory and inhibitory effects of stimulation of sacral dorsal root ganglion on bladder reflex in cats. Int Urol Nephrol 2018; 50:2179-2186. [DOI: 10.1007/s11255-018-2004-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/04/2018] [Indexed: 01/23/2023]
|
11
|
Peh WYX, Raczkowska MN, Teh Y, Alam M, Thakor NV, Yen SC. Closed-loop stimulation of the pelvic nerve for optimal micturition. J Neural Eng 2018; 15:066009. [PMID: 30181427 DOI: 10.1088/1741-2552/aadee9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Neural stimulation to restore bladder function has traditionally relied on open-loop approaches that used pre-set parameters, which do not adapt to suboptimal outcomes. The goal of this study was to examine the effectiveness of a novel closed-loop stimulation paradigm for improving micturition or bladder voiding. APPROACH We compared the voiding efficiency obtained with this closed-loop framework against open-loop stimulation paradigms in anesthetized rats. The bladder pressures that preceded voiding, and the minimum current amplitudes for stimulating the pelvic nerves to evoke bladder contractions, were first calibrated for each animal. An automated closed-loop system was used to initiate voiding upon bladder fullness, adapt the stimulation current by using real-time bladder pressure changes to classify voiding outcomes, and halt stimulation when the bladder had been emptied or when the safe stimulation limit was reached. MAIN RESULTS In vivo testing demonstrated that the closed-loop system achieved high voiding efficiency or VE (75.7% ± 3.07%, mean ± standard error of the mean) and outperformed open-loop systems with either conserved number of stimulation epochs (63.2% ± 4.90% VE) or conserved charge injected (32.0% ± 1.70% VE). Post-hoc analyses suggest that the classification algorithm can be further improved with data from additional closed-loop experiments. SIGNIFICANCE This novel approach may be applied to an implantable device for treating underactive bladder (<60% VE), especially in cases where under- or over-stimulation of the nerve is a concern.
Collapse
Affiliation(s)
- Wendy Yen Xian Peh
- Singapore Institute for Neurotechnology, National University of Singapore, 28 Medical Drive, #05-02, Singapore 117456, Singapore
| | | | | | | | | | | |
Collapse
|
12
|
Wang Z, Liao L, Deng H, li X, Chen G, Liao X. The different roles of opioid receptors in the inhibitory effects induced by sacral dorsal root ganglion stimulation on nociceptive and nonnociceptive conditions in cats. Neurourol Urodyn 2018; 37:2462-2469. [DOI: 10.1002/nau.23724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/09/2018] [Indexed: 01/23/2023]
Affiliation(s)
- Zhaoxia Wang
- Department of Urology, China Rehabilitation Research Centre; Rehabilitation School of Capital Medical University; Beijing China
- Center of Neural Injury and Repair; Beijing Institute for Brain Disorders; Beijing China
- Beijing Key Laboratory of Neural Injury and Rehabilitation; Beijing China
| | - Limin Liao
- Department of Urology, China Rehabilitation Research Centre; Rehabilitation School of Capital Medical University; Beijing China
- Center of Neural Injury and Repair; Beijing Institute for Brain Disorders; Beijing China
- Beijing Key Laboratory of Neural Injury and Rehabilitation; Beijing China
| | - Han Deng
- Department of Urology, China Rehabilitation Research Centre; Rehabilitation School of Capital Medical University; Beijing China
- Center of Neural Injury and Repair; Beijing Institute for Brain Disorders; Beijing China
- Beijing Key Laboratory of Neural Injury and Rehabilitation; Beijing China
| | - Xing li
- Department of Urology, China Rehabilitation Research Centre; Rehabilitation School of Capital Medical University; Beijing China
- Center of Neural Injury and Repair; Beijing Institute for Brain Disorders; Beijing China
- Beijing Key Laboratory of Neural Injury and Rehabilitation; Beijing China
| | - Guoqing Chen
- Department of Urology, China Rehabilitation Research Centre; Rehabilitation School of Capital Medical University; Beijing China
- Center of Neural Injury and Repair; Beijing Institute for Brain Disorders; Beijing China
- Beijing Key Laboratory of Neural Injury and Rehabilitation; Beijing China
| | - Xiwen Liao
- School of Public Health; Yale University; New Haven Connecticut
| |
Collapse
|
13
|
Peh WYX, Mogan R, Thow XY, Chua SM, Rusly A, Thakor NV, Yen SC. Novel Neurostimulation of Autonomic Pelvic Nerves Overcomes Bladder-Sphincter Dyssynergia. Front Neurosci 2018; 12:186. [PMID: 29618971 PMCID: PMC5871706 DOI: 10.3389/fnins.2018.00186] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/06/2018] [Indexed: 12/25/2022] Open
Abstract
The disruption of coordination between smooth muscle contraction in the bladder and the relaxation of the external urethral sphincter (EUS) striated muscle is a common issue in dysfunctional bladders. It is a significant challenge to overcome for neuromodulation approaches to restore bladder control. Bladder-sphincter dyssynergia leads to undesirably high bladder pressures, and poor voiding outcomes, which can pose life-threatening secondary complications. Mixed pelvic nerves are potential peripheral targets for stimulation to treat dysfunctional bladders, but typical electrical stimulation of pelvic nerves activates both the parasympathetic efferent pathway to excite the bladder, as well as the sensory afferent pathway that causes unwanted sphincter contractions. Thus, a novel pelvic nerve stimulation paradigm is required. In anesthetized female rats, we combined a low frequency (10 Hz) stimulation to evoke bladder contraction, and a more proximal 20 kHz stimulation of the pelvic nerve to block afferent activation, in order to produce micturition with reduced bladder-sphincter dyssynergia. Increasing the phase width of low frequency stimulation from 150 to 300 μs alone was able to improve voiding outcome significantly. However, low frequency stimulation of pelvic nerves alone evoked short latency (19.9–20.5 ms) dyssynergic EUS responses, which were abolished with a non-reversible proximal central pelvic nerve cut. We demonstrated that a proximal 20 kHz stimulation of pelvic nerves generated brief onset effects at lower current amplitudes, and was able to either partially or fully block the short latency EUS responses depending on the ratio of the blocking to stimulation current. Our results indicate that ratios >10 increased the efficacy of blocking EUS contractions. Importantly, we also demonstrated for the first time that this combined low and high frequency stimulation approach produced graded control of the bladder, while reversibly blocking afferent signals that elicited dyssynergic EUS contractions, thus improving voiding by 40.5 ± 12.3%. Our findings support advancing pelvic nerves as a suitable neuromodulation target for treating bladder dysfunction, and demonstrate the feasibility of an alternative method to non-reversible nerve transection and sub-optimal intermittent stimulation methods to reduce dyssynergia.
Collapse
Affiliation(s)
- Wendy Yen Xian Peh
- Singapore Institute for Neurotechnology, National University of Singapore, Singapore, Singapore
| | - Roshini Mogan
- Singapore Institute for Neurotechnology, National University of Singapore, Singapore, Singapore
| | - Xin Yuan Thow
- Singapore Institute for Neurotechnology, National University of Singapore, Singapore, Singapore
| | - Soo Min Chua
- Singapore Institute for Neurotechnology, National University of Singapore, Singapore, Singapore
| | - Astrid Rusly
- Singapore Institute for Neurotechnology, National University of Singapore, Singapore, Singapore
| | - Nitish V Thakor
- Singapore Institute for Neurotechnology, National University of Singapore, Singapore, Singapore.,Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.,Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.,Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Shih-Cheng Yen
- Singapore Institute for Neurotechnology, National University of Singapore, Singapore, Singapore.,Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
14
|
Sperry ZJ, Na K, Parizi SS, Chiel HJ, Seymour J, Yoon E, Bruns TM. Flexible microelectrode array for interfacing with the surface of neural ganglia. J Neural Eng 2018. [PMID: 29521279 DOI: 10.1088/1741-2552/aab55f] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE The dorsal root ganglia (DRG) are promising nerve structures for sensory neural interfaces because they provide centralized access to primary afferent cell bodies and spinal reflex circuitry. In order to harness this potential, new electrode technologies are needed which take advantage of the unique properties of DRG, specifically the high density of neural cell bodies at the dorsal surface. Here we report initial in vivo results from the development of a flexible non-penetrating polyimide electrode array interfacing with the surface of ganglia. APPROACH Multiple layouts of a 64-channel iridium electrode (420 µm2) array were tested, with pitch as small as 25 µm. The buccal ganglia of invertebrate sea slug Aplysia californica were used to develop handling and recording techniques with ganglionic surface electrode arrays (GSEAs). We also demonstrated the GSEA's capability to record single- and multi-unit activity from feline lumbosacral DRG related to a variety of sensory inputs, including cutaneous brushing, joint flexion, and bladder pressure. MAIN RESULTS We recorded action potentials from a variety of Aplysia neurons activated by nerve stimulation, and units were observed firing simultaneously on closely spaced electrode sites. We also recorded single- and multi-unit activity associated with sensory inputs from feline DRG. We utilized spatial oversampling of action potentials on closely-spaced electrode sites to estimate the location of neural sources at between 25 µm and 107 µm below the DRG surface. We also used the high spatial sampling to demonstrate a possible spatial sensory map of one feline's DRG. We obtained activation of sensory fibers with low-amplitude stimulation through individual or groups of GSEA electrode sites. SIGNIFICANCE Overall, the GSEA has been shown to provide a variety of information types from ganglia neurons and to have significant potential as a tool for neural mapping and interfacing.
Collapse
Affiliation(s)
- Zachariah J Sperry
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America. Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States of America
| | | | | | | | | | | | | |
Collapse
|
15
|
Ross SE, Ouyang Z, Rajagopalan S, Bruns TM. Evaluation of Decoding Algorithms for Estimating Bladder Pressure from Dorsal Root Ganglia Neural Recordings. Ann Biomed Eng 2018; 46:233-246. [PMID: 29181722 PMCID: PMC5771828 DOI: 10.1007/s10439-017-1966-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 11/21/2017] [Indexed: 12/30/2022]
Abstract
A closed-loop device for bladder control may offer greater clinical benefit compared to current open-loop stimulation devices. Previous studies have demonstrated the feasibility of using single-unit recordings from sacral-level dorsal root ganglia (DRG) for decoding bladder pressure. Automatic online sorting, to differentiate single units, can be computationally heavy and unreliable, in contrast to simple multi-unit thresholded activity. In this study, the feasibility of using DRG multi-unit recordings to decode bladder pressure was examined. A broad range of feature selection methods and three algorithms (multivariate linear regression, basic Kalman filter, and a nonlinear autoregressive moving average model) were used to create training models and provide validation fits to bladder pressure for data collected in seven anesthetized feline experiments. A non-linear autoregressive moving average (NARMA) model with regularization provided the most accurate bladder pressure estimate, based on normalized root-mean-squared error, NRMSE, (17 ± 7%). A basic Kalman filter yielded the highest similarity to the bladder pressure with an average correlation coefficient, CC, of 0.81 ± 0.13. The best algorithm set (based on NRMSE) was further evaluated on data obtained from a chronic feline experiment. Testing results yielded a NRMSE and CC of 10.7% and 0.61, respectively from a model that was trained on data recorded 2 weeks prior. From offline analysis, implementation of NARMA in a closed-loop scheme for detecting bladder contractions would provide a robust control signal. Ultimate integration of closed-loop algorithms in bladder neuroprostheses will require evaluations of parameter and signal stability over time.
Collapse
Affiliation(s)
- Shani E Ross
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Bioengineering Department, George Mason University, Fairfax, VA, USA
| | - Zhonghua Ouyang
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Sai Rajagopalan
- School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Tim M Bruns
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- , NCRC B10-A169, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
16
|
Wang Z, Liao L, Deng H, Li X, Chen G. The inhibitory effect of sacral dorsal root ganglion stimulation on nociceptive and nonnociceptive bladder reflexes in cats. World J Urol 2018; 36:829-836. [DOI: 10.1007/s00345-018-2198-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/19/2018] [Indexed: 01/23/2023] Open
|
17
|
Quantitative models of feline lumbosacral dorsal root ganglia neuronal cell density. J Neurosci Methods 2017; 290:116-124. [PMID: 28739165 DOI: 10.1016/j.jneumeth.2017.07.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND Dorsal root ganglia (DRG) are spinal root components that contain the cell bodies of converging primary sensory neurons. DRG are becoming a therapeutic target for electrical neural interfaces. Our purpose was to establish methods for quantifying the non-random nature and distribution of neuronal cell bodies within DRG. NEW METHOD We identified neuronal cell body locations in 26 feline lumbosacral DRG cross-section histological images and used computational tools to quantify spatial trends. We first analyzed spatial randomness using the nearest-neighbor distance method. Next we overlaid a 6×6 grid, modeling neuronal cellular density in each grid square and comparing regions statistically. Finally we transformed DRG onto a polar map and calculated neuronal cellular density in annular sectors. We used a recursive partition model to determine regions of high and low density, and validated the model statistically. RESULTS We found that the arrangement of neuronal cell bodies at the widest point of DRG is distinctly non-random with concentration in particular regions. The grid model suggested a radial trend in density, with increasing density toward the outside of the DRG. The polar transformation model showed that the highest neuronal cellular density is in the outer 23.9% radially and the dorsal ±61.4° angularly. COMPARISON WITH EXISTING METHODS To our knowledge, DRG neuronal cell distribution has not been previously quantified. CONCLUSIONS These results confirm and expand quantitatively on the existing understanding of DRG anatomy. Our methods can be useful for analyzing the distribution of cellular components of other neural structures or expanding to three-dimensional models.
Collapse
|
18
|
Using the Native Afferent Nervous System to Sense Bladder Fullness: State of the Art. CURRENT BLADDER DYSFUNCTION REPORTS 2017; 11:346-349. [PMID: 28496558 DOI: 10.1007/s11884-016-0391-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The regulation of micturition involves complex neurophysiologic pathways, and its understanding has grown immensely over the past decade. Alternative approaches and applied technologies in the treatment of bladder dysfunction have minimized the complications that result from neurogenic bladder. The use of natural bladder mechanoreceptors and electroneneurographic (ENG) signal recordings from afferent nerves to chronically monitor bladder volume is a promising concept, but the technology to accomplish this has proven to be a great biomedical engineering challenge. The focus of this paper will be to describe the current state of ENG signal recording as a method to detect bladder fullness.
Collapse
|
19
|
Khurram A, Ross SE, Sperry ZJ, Ouyang A, Stephan C, Jiman AA, Bruns TM. Chronic monitoring of lower urinary tract activity via a sacral dorsal root ganglia interface. J Neural Eng 2017; 14:036027. [PMID: 28322213 DOI: 10.1088/1741-2552/aa6801] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Our goal is to develop an interface that integrates chronic monitoring of lower urinary tract (LUT) activity with stimulation of peripheral pathways. APPROACH Penetrating microelectrodes were implanted in sacral dorsal root ganglia (DRG) of adult male felines. Peripheral electrodes were placed on or in the pudendal nerve, bladder neck and near the external urethral sphincter. Supra-pubic bladder catheters were implanted for saline infusion and pressure monitoring. Electrode and catheter leads were enclosed in an external housing on the back. Neural signals from microelectrodes and bladder pressure of sedated or awake-behaving felines were recorded under various test conditions in weekly sessions. Electrodes were also stimulated to drive activity. MAIN RESULTS LUT single- and multi-unit activity was recorded for 4-11 weeks in four felines. As many as 18 unique bladder pressure single-units were identified in each experiment. Some channels consistently recorded bladder afferent activity for up to 41 d, and we tracked individual single-units for up to 23 d continuously. Distension-evoked and stimulation-driven (DRG and pudendal) bladder emptying was observed, during which LUT sensory activity was recorded. SIGNIFICANCE This chronic implant animal model allows for behavioral studies of LUT neurophysiology and will allow for continued development of a closed-loop neuroprosthesis for bladder control.
Collapse
Affiliation(s)
- Abeer Khurram
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI, United States of America. Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States of America
| | | | | | | | | | | | | |
Collapse
|
20
|
Powell CR. Conditional Electrical Stimulation in Animal and Human Models for Neurogenic Bladder: Working Toward a Neuroprosthesis. CURRENT BLADDER DYSFUNCTION REPORTS 2016; 11:379-385. [PMID: 27920880 PMCID: PMC5134915 DOI: 10.1007/s11884-016-0388-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Sacral neuromodulation has had a tremendous impact on the treatment of urinary incontinence and lower urinary tract symptoms for patients with neurologic conditions. This stimulation does not use real-time data from the body or input from the patient. Incorporating this is the goal of those pursuing a neuroprosthesis to enhance bladder function for these patients. Investigators have demonstrated the effectiveness of conditional (also called closed-loop) feedback in animal models as well as limited human studies. Dorsal genital nerve, pudendal nerve, S3 afferent nerve roots, S1 and S2 ganglia have all been used as targets for stimulation. Most of these have also been used as sources of afferent nerve information using sophisticated nerve electrode arrays and filtering algorithms to detect significant bladder events and even to estimate the fullness of the bladder. There are problems with afferent nerve sensing, however. Some of these include sensor migration and low signal to noise ratios. Implantable pressure sensors have also been investigated that have their own unique challenges, such as erosion and sensor drift. As technology improves, an intelligent neuroprosthesis with the ability to sense significant bladder events and stimulate as needed will evolve.
Collapse
Affiliation(s)
- C R Powell
- Indiana University School of Medicine, Department of Urology, 535 Barnhill Dr., Suite 420, Indianapolis, IN 46202, USA,
| |
Collapse
|
21
|
Ross SE, Sperry ZJ, Mahar CM, Bruns TM. Hysteretic behavior of bladder afferent neurons in response to changes in bladder pressure. BMC Neurosci 2016; 17:57. [PMID: 27520434 PMCID: PMC4983075 DOI: 10.1186/s12868-016-0292-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 08/01/2016] [Indexed: 01/16/2023] Open
Abstract
Background Mechanosensitive afferents innervating the bladder increase their firing rate as the bladder fills and pressure rises. However, the relationship between afferent firing rates and intravesical pressure is not a simple linear one. Firing rate responses to pressure can differ depending on prior activity, demonstrating hysteresis in the system. Though this hysteresis has been commented on in published literature, it has not been quantified. Results Sixty-six bladder afferents recorded from sacral dorsal root ganglia in five alpha-chloralose anesthetized felines were identified based on their characteristic responses to pressure (correlation coefficient ≥ 0.2) during saline infusion (2 ml/min). For saline infusion trials, we calculated a maximum hysteresis ratio between the firing rate difference at each pressure and the overall firing rate range (or Hmax) of 0.86 ± 0.09 (mean ± standard deviation) and mean hysteresis ratio (or Hmean) of 0.52 ± 0.13 (n = 46 afferents). For isovolumetric trials in two experiments (n = 33 afferents) Hmax was 0.72 ± 0.14 and Hmean was 0.40 ± 0.14. Conclusions A comprehensive state model that integrates these hysteresis parameters to determine the bladder state may improve upon existing neuroprostheses for bladder control.
Collapse
Affiliation(s)
- Shani E Ross
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.,, NCRC-B20-104W, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Zachariah J Sperry
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.,, NCRC-B20-111WD, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Colin M Mahar
- Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.,, NCRC-B20-111WD, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Tim M Bruns
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA. .,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA. .,, NCRC-B10-A169, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
| |
Collapse
|