1
|
Aizawa N, Natsuya H, Fujita T. Changes of the Urothelial Barrier System in the Cyclophosphamide-Induced Cystitis in Rats by Using a Newly Established "Inside-Out" Urinary Bladder Preparation. Low Urin Tract Symptoms 2024; 16:e12538. [PMID: 39537131 DOI: 10.1111/luts.12538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES The study was aimed to establish the "inside-out" preparation with the urothelium and investigate the changes in urothelial permeability of the cyclophosphamide (CYP)-induced cystitis model in rats. METHODS In female rats with or without CYP injection, the isolated whole bladder was utilized as an "inside-out" preparation with the urothelium, which was created by reversing the bladder from a top portion. The preparation was fixed in the organ bath, and instilled with a Krebs solution (0.5 mL) through the bladder neck. After it was kept under an isovolumetric condition, high K+ (KCl: 50 mM) or acetylcholine (ACh: 10 μM) was added into the organ bath. RESULTS In the normal bladder, the intravesical pressure of the inside-out preparation with the urothelium did not change with the addition of KCl or ACh. Contrarily, in the CYP-injected bladder 24 or 48 h after injection of CYP, the intravesical pressure of the inside-out preparation increased with the addition of KCl or ACh. Histological examinations showed a denuded and/or cracked surface of the urothelial layer, and the intensity of uroplakin III staining of the urothelial layer decreased in the CYP-injected rats. CONCLUSIONS The study demonstrated the bladder urothelium has robust barrier mechanisms for preventing the absorption of water (urine) under the normal condition. However, these barrier mechanisms were disrupted in the CYP-induced cystitis, suggesting that water and urine insults can be permeabilized into the urinary bladder, specifically to the smooth muscle layer.
Collapse
Affiliation(s)
- Naoki Aizawa
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Hiroki Natsuya
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Tochigi, Japan
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tomoe Fujita
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| |
Collapse
|
2
|
Zhou PB, Sun HT, Bao M. Comparative Analysis of the Efficacy of Spinal Cord Stimulation and Traditional Debridement Care in the Treatment of Ischemic Diabetic Foot Ulcers: A Retrospective Cohort Study. Neurosurgery 2024; 95:313-321. [PMID: 38334381 PMCID: PMC11219160 DOI: 10.1227/neu.0000000000002866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/26/2023] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Spinal cord stimulation (SCS) is an effective treatment for diabetic peripheral neuropathy. The purpose of this study was to investigate the effectiveness of SCS in the treatment of ischemic diabetic foot ulcers. METHODS In this retrospective study, the SCS group comprised 102 patients with ischemic diabetic foot who were treated with SCS for foot ulcers and nonhealing wounds due to severe lower limb ischemia. The traditional debridement care (TDC) group comprised 104 patients with ischemic diabetic foot who received only TDC. Strict screening criteria were applied. The assignment of patients to either group depended solely on their willingness to be treated with SCS. Secondary end points were transcutaneous partial pressure of oxygen (PtcO 2 ), ankle-brachial index (ABI), and color Doppler of the lower limb arteries in the feet at 6 months and 12 months after treatment. The primary end point was the amputation. RESULTS The dorsal foot PtcO 2 and ABI of the patients in the SCS group were significantly improved at 6 months and 12 months postoperation ( P < .05). The therapeutic efficacy was significantly better than that of the TDC group over the same period of time ( P < .05). The degree of vasodilation of the lower limb arteries (ie, femoral, popliteal, posterior tibial, and dorsalis pedis arteries) on color Doppler was higher in the SCS group than in the TDC group ( P < .05). The odds ratios for total amputation at 6 and 12 months postoperatively in the SCS group were 0.45 (95% CI, 0.19-1.08) and 0.17 (95% CI, 0.08-0.37), respectively, compared with the TDC group. CONCLUSION SCS improved symptoms of lower limb ischemia in ischemic diabetic feet and reduced the rate of toe amputation by increasing PtcO 2 , ABI, and arterial vasodilation in the lower limbs.
Collapse
Affiliation(s)
- Peng-Bo Zhou
- The First School of Clinical Medical, Lanzhou University, Lanzhou, Gansu, People's Republic of China
- Tianjin Key Laboratory of Neurotrauma Repair, Characteristic Medical Center of People's Armed Police Forces, Tianjin, People's Republic of China
| | - Hong-Tao Sun
- The First School of Clinical Medical, Lanzhou University, Lanzhou, Gansu, People's Republic of China
- Tianjin Key Laboratory of Neurotrauma Repair, Characteristic Medical Center of People's Armed Police Forces, Tianjin, People's Republic of China
| | - Min Bao
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
3
|
Herrity AN, Aslan SC, Mesbah S, Siu R, Kalvakuri K, Ugiliweneza B, Mohamed A, Hubscher CH, Harkema SJ. Targeting bladder function with network-specific epidural stimulation after chronic spinal cord injury. Sci Rep 2022; 12:11179. [PMID: 35778466 PMCID: PMC9249897 DOI: 10.1038/s41598-022-15315-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022] Open
Abstract
Profound dysfunctional reorganization of spinal networks and extensive loss of functional continuity after spinal cord injury (SCI) has not precluded individuals from achieving coordinated voluntary activity and gaining multi-systemic autonomic control. Bladder function is enhanced by approaches, such as spinal cord epidural stimulation (scES) that modulates and strengthens spared circuitry, even in cases of clinically complete SCI. It is unknown whether scES parameters specifically configured for modulating the activity of the lower urinary tract (LUT) could improve both bladder storage and emptying. Functional bladder mapping studies, conducted during filling cystometry, identified specific scES parameters that improved bladder compliance, while maintaining stable blood pressure, and enabled the initiation of voiding in seven individuals with motor complete SCI. Using high-resolution magnetic resonance imaging and finite element modeling, specific neuroanatomical structures responsible for modulating bladder function were identified and plotted as heat maps. Data from this pilot clinical trial indicate that scES neuromodulation that targets bladder compliance reduces incidences of urinary incontinence and provides a means for mitigating autonomic dysreflexia associated with bladder distention. The ability to initiate voiding with targeted scES is a key step towards regaining volitional control of LUT function, advancing the application and adaptability of scES for autonomic function.
Collapse
Affiliation(s)
- April N Herrity
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, The University of Louisville, 220 Abraham Flexner Way, Suite 1518, Louisville, KY, 40202, USA.
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA.
- Department of Physiology, University of Louisville, Louisville, KY, USA.
| | - Sevda C Aslan
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, The University of Louisville, 220 Abraham Flexner Way, Suite 1518, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA
| | - Samineh Mesbah
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, The University of Louisville, 220 Abraham Flexner Way, Suite 1518, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA
| | - Ricardo Siu
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, The University of Louisville, 220 Abraham Flexner Way, Suite 1518, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA
| | - Karthik Kalvakuri
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, The University of Louisville, 220 Abraham Flexner Way, Suite 1518, Louisville, KY, 40202, USA
| | - Beatrice Ugiliweneza
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, The University of Louisville, 220 Abraham Flexner Way, Suite 1518, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA
- Department of Health Sciences, University of Louisville, Louisville, KY, USA
| | - Ahmad Mohamed
- Department of Urology, University of Louisville, Louisville, KY, USA
| | - Charles H Hubscher
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, The University of Louisville, 220 Abraham Flexner Way, Suite 1518, Louisville, KY, 40202, USA
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA
| | - Susan J Harkema
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, The University of Louisville, 220 Abraham Flexner Way, Suite 1518, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA
| |
Collapse
|
4
|
Moufarrij N, Huebner M. Relief of interstitial cystitis/bladder pain syndrome by spinal cord stimulation. INTERDISCIPLINARY NEUROSURGERY 2022. [DOI: 10.1016/j.inat.2022.101517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
5
|
Chen L, Guo T, Zhang S, Smith PP, Feng B. Blocking peripheral drive from colorectal afferents by subkilohertz dorsal root ganglion stimulation. Pain 2022; 163:665-681. [PMID: 34232925 PMCID: PMC8720331 DOI: 10.1097/j.pain.0000000000002395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 06/16/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Clinical evidence indicates dorsal root ganglion (DRG) stimulation effectively reduces pain without the need to evoke paresthesia. This paresthesia-free anesthesia by DRG stimulation can be promising to treat pain from the viscera, where paresthesia usually cannot be produced. Here, we explored the mechanisms and parameters for DRG stimulation using an ex vivo preparation with mouse distal colon and rectum (colorectum), pelvic nerve, L6 DRG, and dorsal root in continuity. We conducted single-fiber recordings from split dorsal root filaments and assessed the effect of DRG stimulation on afferent neural transmission. We determined the optimal stimulus pulse width by measuring the chronaxies of DRG stimulation to be below 216 µs, indicating spike initiation likely at attached axons rather than somata. Subkilohertz DRG stimulation significantly attenuates colorectal afferent transmission (10, 50, 100, 500, and 1000 Hz), of which 50 and 100 Hz show superior blocking effects. Synchronized spinal nerve and DRG stimulation reveals a progressive increase in conduction delay by DRG stimulation, suggesting activity-dependent slowing in blocked fibers. Afferents blocked by DRG stimulation show a greater increase in conduction delay than the unblocked counterparts. Midrange frequencies (50-500 Hz) are more efficient at blocking transmission than lower or higher frequencies. In addition, DRG stimulation at 50 and 100 Hz significantly attenuates in vivo visceromotor responses to noxious colorectal balloon distension. This reversible conduction block in C-type and Aδ-type afferents by subkilohertz DRG stimulation likely underlies the paresthesia-free anesthesia by DRG stimulation, thereby offering a promising new approach for managing chronic visceral pain.
Collapse
Affiliation(s)
- Longtu Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269
| | - Tiantian Guo
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269
| | - Shaopeng Zhang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269
| | - Phillip P. Smith
- School of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Bin Feng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269
| |
Collapse
|
6
|
Ness TJ, Su X. Parametric Assessment of Spinal Cord Stimulation on Bladder Pain-Like Responses in Rats. Neuromodulation 2022; 25:1134-1140. [PMID: 35088748 DOI: 10.1016/j.neurom.2021.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/09/2021] [Accepted: 09/07/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Spinal cord stimulation (SCS) for the treatment of pelvic visceral pains has been understudied and underused. The goal of the current study was to examine multiple stimulation parameters of SCS to determine optimal settings for the inhibition of responses to urinary bladder distension (UBD) in animal models of bladder pain as a guide for human studies. MATERIALS AND METHODS Adult, female isoflurane/urethane-anesthetized rats underwent a T13/L1 mini-laminectomy sufficient to implant an SCS paddle lead for neuromodulation. Silver wire electrodes were inserted into the external oblique musculature. A 22-gauge angiocatheter was placed transurethrally into the bladder and used to deliver phasic, air UBDs at pressures of 10 to 60 mm Hg and visceromotor (abdominal contractile) electromyographic responses to UBD measured in the presence and absence of SCS. Electromyographic activity was quantified using standard differential amplification and rectification. Parameter settings for SCS included both conventional (10, 50, 100 Hz) and high frequency (1,000, 5,000, and 10,000 Hz) biphasic square wave pulses with 50 to 200 μs durations. To create states of hypersensitivity, pretreatment of adult rats included an intravesical zymosan infusion 24 hours before testing with and without a preceding episode of neonatal bladder inflammation. RESULTS Low frequency (10, 50, and 100 Hz) 200 μs biphasic pulses at submotor thresholds demonstrated inhibition of visceromotor responses (VMRs) to UBD in rats made hypersensitive to UBD by a protocol that included neonatal cystitis. Onset of inhibitory effects occurred within 20 minutes of beginning SCS. Otherwise, SCS at all other parameters studied and in other tested rat models produced either no significant effect or augmentation of VMRs. CONCLUSIONS Demonstration of inhibitory effects of SCS in a clinically relevant model of bladder pain suggests the potential utility of this therapy in patients with painful bladder disorders.
Collapse
Affiliation(s)
- Timothy J Ness
- Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Xin Su
- Global Neuromodulation Research, Medtronic, Fridley, MN, USA
| |
Collapse
|
7
|
Lin Z, Hu H, Liu B, Chen Y, Tao Y, Zhou X, Li M. Biomaterial-assisted drug delivery for interstitial cystitis/bladder pain syndrome treatment. J Mater Chem B 2020; 9:23-34. [PMID: 33179709 DOI: 10.1039/d0tb02094j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic and painful bladder condition afflicting patients with increased urinary urgency and frequency as well as incontinence. Owing to the elusive pathogenesis of IC/BPS, obtaining effective therapeutic outcomes remains challenging. Current administrational routes such as intravesical-bladder injection improve the treatment efficacy and reduce systemic side effects. However, the bladder permeability barrier hinders drug penetration into the bladder wall to meet the desired therapeutic expectation. These issues can be addressed by encapsulating drugs into biomaterials. When appropriately exploited, they would increase the drug dwelling time in the bladder, enhance the penetration of mucosa and improve the therapeutic response of IC/BPS. In this review, we first elucidate the pathogenesis and animal models of IC/BPS. Then, we highlight recent representative biomaterial-assisted drug delivery systems for IC/BPS treatment. Finally, we discuss the challenges and outlook for further developing biomaterial-based delivery systems for IC/BPS management.
Collapse
Affiliation(s)
- Zhijun Lin
- Laboratory of Biomaterials and Translational Medicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China.
| | | | | | | | | | | | | |
Collapse
|
8
|
Sysoev Y, Bazhenova E, Lyakhovetskii V, Kovalev G, Shkorbatova P, Islamova R, Pavlova N, Gorskii O, Merkulyeva N, Shkarupa D, Musienko P. Site-Specific Neuromodulation of Detrusor and External Urethral Sphincter by Epidural Spinal Cord Stimulation. Front Syst Neurosci 2020; 14:47. [PMID: 32774243 PMCID: PMC7387722 DOI: 10.3389/fnsys.2020.00047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022] Open
Abstract
Impairments of the lower urinary tract function including urine storage and voiding are widely spread among patients with spinal cord injuries. The management of such patients includes bladder catheterization, surgical and pharmacological approaches, which reduce the morbidity from urinary tract-related complications. However, to date, there is no effective treatment of neurogenic bladder and restoration of urinary function. In the present study, we examined neuromodulation of detrusor (Detr) and external urethral sphincter by epidural electrical stimulation (EES) of lumbar and sacral regions of the spinal cord in chronic rats. To our knowledge, it is the first chronic study where detrusor and external urethral sphincter signals were recorded simultaneously to monitor their neuromodulation by site-specific spinal cord stimulation (SCS). The data obtained demonstrate that activation of detrusor muscle mainly occurs during the stimulation of the upper lumbar (L1) and lower lumbar (L5-L6) spinal segments whereas external urethral sphincter was activated predominantly by sacral stimulation. These findings can be used for the development of neurorehabilitation strategies based on spinal cord epidural stimulation for autonomic function recovery after severe spinal cord injury (SCI).
Collapse
Affiliation(s)
- Yuriy Sysoev
- Institute of Translational Biomedicine, Saint-Petersburg State University, Saint-Petersburg, Russia.,Department of Pharmacology and Clinical Pharmacology, Saint-Petersburg State Chemical Pharmaceutical University, Saint-Petersburg, Russia
| | - Elena Bazhenova
- Institute of Translational Biomedicine, Saint-Petersburg State University, Saint-Petersburg, Russia.,Pavlov Institute of Physiology, Russian Academy of Sciences (RAS), Saint-Petersburg, Russia
| | - Vsevolod Lyakhovetskii
- Pavlov Institute of Physiology, Russian Academy of Sciences (RAS), Saint-Petersburg, Russia.,Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of the Russian Federation, Saint-Petersburg, Russia
| | - Gleb Kovalev
- Clinic of High Medical Technology named after N.I. Pirogov St. Petersburg State University, Saint-Petersburg, Russia
| | - Polina Shkorbatova
- Pavlov Institute of Physiology, Russian Academy of Sciences (RAS), Saint-Petersburg, Russia
| | - Regina Islamova
- Institute of Chemistry, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Natalia Pavlova
- Institute of Translational Biomedicine, Saint-Petersburg State University, Saint-Petersburg, Russia.,Pavlov Institute of Physiology, Russian Academy of Sciences (RAS), Saint-Petersburg, Russia
| | - Oleg Gorskii
- Institute of Translational Biomedicine, Saint-Petersburg State University, Saint-Petersburg, Russia.,Pavlov Institute of Physiology, Russian Academy of Sciences (RAS), Saint-Petersburg, Russia.,Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of the Russian Federation, Saint-Petersburg, Russia
| | - Natalia Merkulyeva
- Institute of Translational Biomedicine, Saint-Petersburg State University, Saint-Petersburg, Russia.,Pavlov Institute of Physiology, Russian Academy of Sciences (RAS), Saint-Petersburg, Russia.,Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of the Russian Federation, Saint-Petersburg, Russia
| | - Dmitry Shkarupa
- Clinic of High Medical Technology named after N.I. Pirogov St. Petersburg State University, Saint-Petersburg, Russia
| | - Pavel Musienko
- Institute of Translational Biomedicine, Saint-Petersburg State University, Saint-Petersburg, Russia.,Pavlov Institute of Physiology, Russian Academy of Sciences (RAS), Saint-Petersburg, Russia.,Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of the Russian Federation, Saint-Petersburg, Russia.,Saint-Petersburg State Research Institute of Phthisiopulmonology, Ministry of Healthcare of the Russian Federation, Saint-Petersburg, Russia
| |
Collapse
|
9
|
Propriospinal Neurons of L3-L4 Segments Involved in Control of the Rat External Urethral Sphincter. Neuroscience 2019; 425:12-28. [PMID: 31785359 DOI: 10.1016/j.neuroscience.2019.11.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/31/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022]
Abstract
Coordination of activity of external urethral sphincter (EUS) striated muscle and bladder (BL) smooth muscle is essential for efficient voiding. In this study we examined the morphological and electrophysiological properties of neurons in the L3/L4 spinal cord (SC) that are likely to have an important role in EUS-BL coordination in rats. EUS-related SC neurons were identified by retrograde transsynaptic tracing following injection of pseudorabies virus (PRV) co-expressing fluorescent markers into the EUS of P18-P20 male rats. Tracing revealed not only EUS motoneurons in L6/S1 but also interneurons in lamina X of the L6/S1 and L3/L4 SC. Physiological properties of fluorescently labeled neurons were assessed during whole-cell recordings in SC slices followed by reconstruction of biocytin-filled neurons. Reconstructions of neuronal processes from transverse or longitudinal slices showed that some L3/L4 neurons have axons projecting toward and into the ventro-medial funiculus (VMf) where axons extended caudally. Other neurons had axons projecting within laminae X and VII. Dendrites of L3/L4 neurons were distributed within laminae X and VII. The majority of L3/L4 neurons exhibited tonic firing in response to depolarizing currents. In transverse slices focal electrical stimulation (FES) in the VMf or in laminae X and VII elicited antidromic axonal spikes and/or excitatory synaptic responses in L3/L4 neurons; while in longitudinal slices FES elicited excitatory synaptic inputs from sites up to 400 μm along the central canal. Inhibitory inputs were rarely observed. These data suggest that L3/L4 EUS-related circuitry consists of at least two neuronal populations: segmental interneurons and propriospinal neurons projecting to L6/S1.
Collapse
|
10
|
Yeh JC, Do R, Choi H, Lin CT, Chen JJ, Zi X, Chang HH, Ghoniem G. Investigations of urethral sphincter activity in mice with bladder hyperalgesia before and after drug administration of gabapentin. Int Urol Nephrol 2018; 51:53-59. [PMID: 30387068 DOI: 10.1007/s11255-018-2021-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/29/2018] [Indexed: 01/01/2023]
Abstract
PURPOSE This study investigated the effect of gabapentin on lower urinary tract dysfunction focusing on urethral activities and cystitis-induced hyperalgesia in a mouse model of painful bladder syndrome/interstitial cystitis (PBS/IC). The electromyography (EMG) of external urethral sphincter (EUS) was difficult to obtain, but contained useful information to examine the drug effect in mice. METHODS Female C57BL/6J mice were intraperitoneally (ip) administration with either saline or 200 mg/kg of cyclophosphamide (CYP) 48 h before experimental evaluation. Cystitis mice were treated with administration of gabapentin (25 or 50 mg/kg, ip). Cystometry and EUS EMG were obtained and analyzed during continuous bladder infusion. The visceral pain-related visceromotor reflex (VMR) was recorded in response to isotonic bladder distension. RESULTS Cystitis mice showed shorter inter-contraction intervals and increased occurrence of non-voiding contractions during bladder infusion, with increased VMR during isotonic bladder distension, indicating cystitis-induced bladder hyperalgesia. Gabapentin (50 mg/kg) suppressed effects of CYP on cystometry, but not on EUS EMG activity, during bladder infusion. The effect on urodynamic recordings lasted 4 h. VMR was significantly reduced by gabapentin. CONCLUSIONS The present study showed that CYP-induced cystitis in mice is a model of visceral hyperalgesia affecting detrusor contractions, not urethral activations. The technique of using EUS EMG to evaluate the drug effects on urethral activities is novel and useful for future investigations. Gabapentin can be as a potential treatment for detrusor overactivity and PBS/IC.
Collapse
Affiliation(s)
- Jih-Chao Yeh
- Urology at University of Southern California, Los Angeles, CA, USA
| | - Rebecca Do
- Urology at University of California Irvine, Irvine, CA, USA
| | - Hanul Choi
- Urology at University of California Irvine, Irvine, CA, USA
| | - Ching-Ting Lin
- Biomedical Engineering at National Cheng Kung University, Tainan, Taiwan
| | - Jia-Jin Chen
- Biomedical Engineering at National Cheng Kung University, Tainan, Taiwan
| | - Xiaolin Zi
- Urology at University of California Irvine, Irvine, CA, USA
| | - Huiyi H Chang
- Urology at University of California Irvine, Irvine, CA, USA. .,Urology and Reeve-Irvine Research Center, University of California at Irvine, 837 Health Science Rd, GNRF 2111, Zotcode 4265, Irvine, CA, USA.
| | - Gamal Ghoniem
- Urology at University of California Irvine, Irvine, CA, USA. .,Urology, University of California, Irvine, 333 City Blvd. West, Ste 2100, Orange, CA, USA.
| |
Collapse
|