1
|
Liu D, Yang Y, Chen D, Wang Z, Guo D, Bao L, Dong J, Wang X, Qu X. Brain metabolic differences between temporal lobe epileptic seizures and organic non-epileptic seizures in postictal phase: a retrospective study with magnetic resonance spectroscopy. Quant Imaging Med Surg 2021; 11:3781-3791. [PMID: 34341749 DOI: 10.21037/qims-20-1147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/22/2021] [Indexed: 11/06/2022]
Abstract
Magnetic resonance spectroscopy (MRS) is employed to investigate the brain metabolites differences between patients with temporal lobe epileptic seizures (TLES) and organic non-epileptic seizures (ONES) that appear to be epileptic seizures. Twenty-three patients with TLES and nine patients with ONES in postictal phase underwent MRS examinations on a clinical 1.5T system, with 15 healthy controls in comparison. Statistical analyses on the ratios of brain metabolites were performed using the Mann-Whitney U test with age as a covariate. The results showed that N-acetyl-aspartate/Creatine (NAA/Cr) ratio of patients with TLES was statistically different from that of patients with ONES in postictal phase, i.e., TLES 1.422±0.037, ONES 1.640±0.061, P=0.012 in left temporal pole, while TLES 1.470±0.052, ONES 1.687±0.084, P=0.023 in the right temporal pole. Besides, compared with healthy controls, patients with TLES in postictal phase present significant differences in ratios of NAA/Cr, N-acetyl-aspartate/Choline (NAA/Cho) and NAA/(Cho + Cr). Experimental results demonstrate that NAA/Cr can be used to discriminate TLES from ONES, which has not been found in the references to the best of our knowledge. Although a prospective controlled validation is needed in the future, this retrospective study reveals that MRS may provide useful metabolites information to facilitate the epilepsy diagnosis.
Collapse
Affiliation(s)
- Dongbao Liu
- Department of Electronic Science, Biomedical Intelligent Cloud R&D Center, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Yonggui Yang
- Department of Radiology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Dicheng Chen
- Department of Electronic Science, Biomedical Intelligent Cloud R&D Center, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Zi Wang
- Department of Electronic Science, Biomedical Intelligent Cloud R&D Center, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Di Guo
- School of Computer and Information Engineering, Xiamen University of Technology, Xiamen, China
| | - Lijun Bao
- Department of Electronic Science, Biomedical Intelligent Cloud R&D Center, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Jiyang Dong
- Department of Electronic Science, Biomedical Intelligent Cloud R&D Center, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Xin Wang
- Department of Electronic Science, Biomedical Intelligent Cloud R&D Center, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Xiaobo Qu
- Department of Electronic Science, Biomedical Intelligent Cloud R&D Center, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
2
|
Sarlo GL, Holton KF. Brain concentrations of glutamate and GABA in human epilepsy: A review. Seizure 2021; 91:213-227. [PMID: 34233236 DOI: 10.1016/j.seizure.2021.06.028] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/27/2022] Open
Abstract
An imbalance between excitation and inhibition has been a longstanding proposed mechanism regarding ictogenesis and epileptogenesis. This imbalance is related to increased extracellular glutamate in the brain and/or reduction in GABA concentrations, leading to excitotoxicity, seizures, and cell death. This review aims to summarize the microdialysis and magnetic resonance spectroscopy (MRS) literature investigating glutamate and GABA concentrations in epilepsy patients, present limitations, and suggest future directions to help direct the search for novel epilepsy treatments. The majority of microdialysis studies demonstrated increased glutamate in epileptic regions either compared to control regions or to baseline levels; however, sample sizes were small, with some statistical comparisons missing. For the MRS research, two of six studies reported significant changes in glutamate levels compared to controls, though the results were mixed, with one reporting increased and the other reporting decreased glutamate levels. Eleven of 20 studies reported significant changes in Glx (glutamate + glutamine) or Glx ratios, with most reporting increased levels, except for a few epilepsy syndromes where reduced levels were reported. Few studies investigated GABA concentrations, with one microdialysis and four spectroscopy studies reporting increased GABA levels, and one study reporting decreased GABA in a different brain region. Based on this review, future research should account for medication use; include measurements of GABA, glutamate, and glutamine; use high-tesla strength MRI; and further evaluate the timing of microdialysis. Understanding the importance of brain glutamate and GABA levels in epilepsy may provide direction for future therapies and treatments.
Collapse
Affiliation(s)
- Gabrielle L Sarlo
- Department of Psychology, Behavior, Cognition and Neuroscience Program, American University, Washington DC, United States
| | - Kathleen F Holton
- Department of Health Studies, American University, Washington DC, United States; Center for Behavioral Neuroscience, American University, Washington DC, United States.
| |
Collapse
|
3
|
Tan Q, Sun H, Wang W, Wu X, Hao N, Su X, Yang X, Zhang S, Su J, Yue Q, Gong Q. Quantitative MR spectroscopy reveals metabolic changes in the dorsolateral prefrontal cortex of patients with temporal lobe epilepsy. Eur Radiol 2018; 28:4496-4503. [DOI: 10.1007/s00330-018-5443-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/25/2018] [Accepted: 03/21/2018] [Indexed: 12/15/2022]
|
4
|
Fadaie F, Mobarakeh NM, Fesharaki SSH, Harirchian MH, Kharazi HH, Rad HS, Habibabadi JM. 1H-MRS metabolite's ratios show temporal alternation in temporal lobe seizure: Comparison between interictal and postictal phases. Epilepsy Res 2016; 128:158-162. [PMID: 27838503 DOI: 10.1016/j.eplepsyres.2016.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 07/20/2016] [Accepted: 08/14/2016] [Indexed: 10/21/2022]
Abstract
PURPOSES To determine 1H-MRSI metabolites changes in interictal and postictal phases of patients suffering from mesial temporal lobe epilepsy with hippocampal sclerosis and lateralization of seizure foci. MATERIALS AND METHODS MR spectroscopic imaging was performed in 5 adult patients with refractory temporal lobe epilepsy interictally and immediately after the seizure and in 4 adult control subjects. All patients underwent MR imaging and VideoEEG Monitoring. RESULTS The results showed statistically significant decreases in N-acetylaspartate/Creatine, N-acetylaspartate/Choline and N-acetylaspartate/(creatine+choline) immediately after ictus in ipsilateral hippocampus as compared with control data and contralateral hippocampus of patients while no statistically significant difference was presented in interictal phase. CONCLUSION The present study clearly indicates 1H-MRS abnormalities following an ictus of temporal lobe epilepsy with metabolite recovery in interictal phase. This finding suggests postictal 1H-MRS as a possible useful tool to assist in lateralizing and localizing of seizure foci in epileptic patients with structural lesions.
Collapse
Affiliation(s)
- Fatemeh Fadaie
- Comprehensive Epilepsy Program, Epilepsy Monitoring Unit, Pars Hospital, Tehran, Iran
| | - Neda Mohammadi Mobarakeh
- Quantitative MR Imaging and Spectroscopy Group, Research Center for Molecular and Cellular Imaging, Tehran, Iran; Department of Biomedical Engineering and Medical Physics, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Hossein Harirchian
- Department of Neurology, School of Medicine, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hamidreza Saligheh Rad
- Quantitative MR Imaging and Spectroscopy Group, Research Center for Molecular and Cellular Imaging, Tehran, Iran; Department of Biomedical Engineering and Medical Physics, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Mehvari Habibabadi
- Isfahan Neurosciences Research Center, Neurology Department, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
5
|
Tunc-Skarka N, Meier S, Demirakca T, Sack M, Weber-Fahr W, Brusniak W, Wolf I, Matthäus F, Schulze TG, Diener C, Ende G. Effects of normal aging and SCN1A risk-gene expression on brain metabolites: evidence for an association between SCN1A and myo-inositol. NMR IN BIOMEDICINE 2014; 27:228-234. [PMID: 24357141 DOI: 10.1002/nbm.3057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 10/29/2013] [Accepted: 11/04/2013] [Indexed: 06/03/2023]
Abstract
Previously reported MRS findings in the aging brain include lower N-acetylaspartate (NAA) and higher myo-inositol (mI), total creatine (Cr) and choline-containing compound (Cho) concentrations. Alterations in the sodium channel voltage gated type I, alpha subunit SCN1A variant rs10930201 have been reported to be associated with several neurological disorders with cognitive deficits. MRS studies in SCN1A-related diseases have reported striking differences in the mI concentrations between patients and controls. In a study on 'healthy aging', we investigated metabolite spectra in a sample of 83 healthy volunteers and determined their age dependence. We also investigated a potential link between SCN1A and mI. We observed a significantly negative association of NAA (p = 0.004) and significantly positive associations of mI (p ≤ 0.001), Cr (p ≤ 0.001) and Cho (p = 0.034) with age in frontal white matter. The linear association of Cho ends at the age of about 50 years and is followed by an inverted 'U'-shaped curve. Further, mI was higher in C allele carriers of the SCN1A variant rs10930201. Our results corroborated the age-related changes in metabolite concentrations, and found evidence for a link between SCN1A and frontal white matter mI in healthy subjects.
Collapse
Affiliation(s)
- Nuran Tunc-Skarka
- Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty of Mannheim/Heidelberg University, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
The effect of epileptic seizures on proton MRS visible neurochemical concentrations. Epilepsy Res 2008; 81:36-43. [DOI: 10.1016/j.eplepsyres.2008.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2008] [Revised: 04/06/2008] [Accepted: 04/13/2008] [Indexed: 11/19/2022]
|
7
|
Cudalbu C, Cavassila S, Rabeson H, van Ormondt D, Graveron-Demilly D. Influence of measured and simulated basis sets on metabolite concentration estimates. NMR IN BIOMEDICINE 2008; 21:627-636. [PMID: 18085510 DOI: 10.1002/nbm.1234] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
By quantification of brain metabolites, localized brain proton MRS can non-invasively provide biochemical information from distinct regions of the brain. Quantification of short-TE signals is usually based on a metabolite basis set. The basis set can be obtained by two approaches: (1) by measuring the signals of metabolites in aqueous solution; (2) by quantum-mechanically simulating the theoretical metabolite signals. The purpose of this study was to compare the effect of these two approaches on metabolite concentration estimates. Metabolite concentrations were quantified with the QUEST method, using both approaches. A comparison was performed with the aid of Monte Carlo studies, by using signals simulated from both basis sets. The best results were obtained when the basis set used for the fit was the same as that used to simulate the Monte Carlo signals. This comparison was also performed using in vivo short-TE signals acquired at 7 T from the central region of rat brains. The concentration estimates, with confidence intervals, obtained using both basis sets were in good agreement with values from the literature. The in vivo study showed that, in general, the differences between the estimates obtained with the two basis sets were not statistically significant or scientifically important. Consequently, a simulated basis set can be used in place of a measured basis set.
Collapse
|
8
|
Metabolic changes in temporal lobe structures measured by HR-MAS NMR at early stage of electrogenic rat epilepsy. Exp Neurol 2008; 212:377-85. [PMID: 18538323 DOI: 10.1016/j.expneurol.2008.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 04/04/2008] [Accepted: 04/10/2008] [Indexed: 02/04/2023]
Abstract
The purpose of this study was to determine cerebral metabolic profile changes in response to electric stimulation to the right dorsal hippocampus (HPC) for the establishment of an epileptic rat model. Electroencephalogram measurements and behavioral results indicated that the experimental rats were in an early stage of epilepsy. Metabolites were determined by high-resolution magic-angle-spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy of the following intact brain tissue: bilateral hippocampi, entorhinal cortices (ECs), and temporal lobes (TLs). The NMR data was statistically analyzed using principal component analysis (PCA). Results demonstrated that metabolic profiles were significantly different between the experimental and sham rats in the bilateral hippocampi and the ipsilateral EC. Significant increases in total creatine in the ipsilateral HPC and alanine in the ipsilateral TL were measured (p<0.05). Some metabolite levels were disturbed in the bilateral HPC-EC loops. In the sham group, glutamate and choline concentrations were significantly higher or lower in the ipsilateral EC than bilateral hippocampi, respectively (p<0.01). However, such differences were not observed in the experimental group. In addition, N-acetylaspartate levels in the experimental group were significantly less in the ipsilateral HPC than in bilateral ECs (p<0.05). The level of myo-inositol in the ipsilateral EC significantly increased in the experimental group, compared to the contralateral EC (p<0.05). These results may provide metabolic information about temporal lobe structures to provide more knowledge about epileptic abnormalities at the early stage.
Collapse
|
9
|
Cudalbu C, Montavont A, Ryvlin P, Cavassila S. Brain metabolite concentration estimates using Magnetic Resonance Spectroscopy in a chronic model of temporal lobe epilepsy. CR CHIM 2008. [DOI: 10.1016/j.crci.2007.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
McLean MA, Barker GJ. Concentrations and magnetization transfer ratios of metabolites in gray and white matter. Magn Reson Med 2007; 56:1365-70. [PMID: 17051529 DOI: 10.1002/mrm.21070] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The concentrations and magnetization transfer ratios (MTRs) in gray matter (GM) and white matter (WM) of N-acetyl aspartate (NAA), creatine (Cr), choline (Cho), myo-inositol (Ins), and glutamate plus glutamine (Glx) were investigated using magnetic resonance spectroscopic imaging (MRSI). The macromolecule (MM) baseline was studied separately using a metabolite-nulling inversion. Three data sets were collected from a point-resolved spectroscopy (PRESS)-selected volume (TE/TR = 30/3000 ms) of human frontal lobe in vivo: one with MT pulses applied, one with an inversion pulse to null small metabolites, and one with no inversion or MT pulses. The MM signal, which was analyzed by integrating the metabolite-nulled spectrum between 0 and 3 ppm, was estimated to be 38% higher in GM than in WM. MM subtraction decreased the signal-to-noise ratio (SNR) and also decreased the reliability of LCModel quantification of most metabolites, but may have improved the accuracy of quantification of Glx. Glx and Cr were both found to correlate strongly with the GM volume fraction of the voxels. Cr showed the highest MTR, but the other metabolites also showed some attenuation of signal when the MT pulses were applied. The MTRs did not correlate with the GM volume fraction, which implies that the local environment of metabolites does not differ markedly between GM and WM.
Collapse
Affiliation(s)
- Mary A McLean
- MRI Unit, National Society for Epilepsy, Chalfont St. Peter, Bucks, UK.
| | | |
Collapse
|
11
|
Westman E, Spenger C, Wahlund LO, Lavebratt C. Carbamazepine treatment recovered low N-acetylaspartate+N-acetylaspartylglutamate (tNAA) levels in the megencephaly mouse BALB/cByJ-Kv1.1(mceph/mceph). Neurobiol Dis 2006; 26:221-8. [PMID: 17291773 DOI: 10.1016/j.nbd.2006.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 11/29/2006] [Accepted: 12/20/2006] [Indexed: 11/23/2022] Open
Abstract
Megencephaly mice (BALB/cByJ-Kv1.1(mceph/mceph)) display excessive brain growth and seizures related to a mutation within the potassium channel gene Kv1.1 producing a malfunctioning protein. (1)H Magnetic resonance spectroscopy (MRS) provides means to study brain transmitters and metabolites in vivo. We applied MRS to pinpoint differences in hippocampus between mceph/mceph and wild type (wt) mice. Carbamazepine (CBZ) protects against brain overgrowth in mceph/mceph. Therefore, the effects of durable oral CBZ treatment on the MR spectra were investigated. LCModel was used for spectra quantification and multivariate data analysis applied to detect group differences. mceph/mceph mice had lower levels of N-acetylaspartate+N-acetylaspartylglutamate (tNAA) and choline-containing (tCho) compounds compared to wt mice. Glutamate, glutamine, taurine and myo-inositol levels were similar in wt and mceph/mceph. Furthermore, CBZ treatment recovered tCho and tNAA levels in mceph/mceph. Thus, distinct differences in MRS spectra between mceph/mceph and wt mice were depicted and treatment effects of CBZ were monitored using MRS.
Collapse
Affiliation(s)
- Eric Westman
- Department of Neurobiology, Health Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|