1
|
Bammer R, Amukotuwa SA. Dynamic Susceptibility Contrast Perfusion, Part 2: Deployment With and Without Contrast Leakage Present. Magn Reson Imaging Clin N Am 2024; 32:25-45. [PMID: 38007281 DOI: 10.1016/j.mric.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
A thorough description of perfusion analysis and basic DSC MR acquisition concepts has been described in the companion article to this article, which the interested reader may also find useful. DSC MR imaging requires an MR imaging pulse sequence that is sensitive to magnetic susceptibility changes to register the contrast concentration changes when GBCA passes through the capillary bed. Any pulse sequence that has T2∗-weighting can be used to pick up these changes, provided that the sequence is fast enough to acquire an image of that slice of tissue at least every 1 to 2 second.
Collapse
Affiliation(s)
- Roland Bammer
- Department of Radiology and Radiological Sciences, Monash University, Clayton, VIC, Australia; Monash Imaging, Monash Health, Clayton, VIC, Australia.
| | - Shalini A Amukotuwa
- Department of Radiology and Radiological Sciences, Monash University, Clayton, VIC, Australia; Monash Imaging, Monash Health, Clayton, VIC, Australia
| |
Collapse
|
2
|
Cao D, Sun Y, Li Y, Su P, Pillai JJ, Qiao Y, Lu H, Van Zijl PC, Knutsson L, Hua J. Concurrent measurement of perfusion parameters related to small blood vessels and cerebrospinal fluid circulation in the human brain using dynamic dual-spin-echo perfusion MRI. NMR IN BIOMEDICINE 2023; 36:e4984. [PMID: 37308297 PMCID: PMC10808973 DOI: 10.1002/nbm.4984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 06/14/2023]
Abstract
Accumulating evidence from recent studies has indicated the importance of studying the interaction between the microvascular and lymphatic systems in the brain. To date, most imaging methods can only measure blood or lymphatic vessels separately, such as dynamic susceptibility contrast (DSC) MRI for blood vessels and DSC MRI-in-the-cerebrospinal fluid (CSF) (cDSC MRI) for lymphatic vessels. An approach that can measure both blood and lymphatic vessels in a single scan offers advantages such as a halved scan time and contrast dosage. This study attempts to develop one such approach by optimizing a dual-echo turbo-spin-echo sequence, termed "dynamic dual-spin-echo perfusion (DDSEP) MRI". Bloch simulations were performed to optimize the dual-echo sequence for the measurement of gadolinium (Gd)-induced blood and CSF signal changes using a short and a long echo time, respectively. The proposed method furnishes a T1-dominant contrast in CSF and a T2-dominant contrast in blood. MRI experiments were performed in healthy subjects to evaluate the dual-echo approach by comparing it with existing separate methods. Based on simulations, the short and long echo time were chosen around the time when blood signals show maximum difference between post- and pre-Gd scans, and the time when blood signals are completely suppressed, respectively. The proposed method showed consistent results in human brains as previous studies using separate methods. Signal changes from small blood vessels occurred faster than from lymphatic vessels after intravenous Gd injection. In conclusion, Gd-induced signal changes in blood and CSF can be detected simultaneously in healthy subjects with the proposed sequence. The temporal difference in Gd-induced signal changes from small blood and lymphatic vessels after intravenous Gd injection was confirmed using the proposed approach in the same human subjects. Results from this proof-of-concept study will be used to further optimize DDSEP MRI in subsequent studies.
Collapse
Affiliation(s)
- Di Cao
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
| | - Yuanqi Sun
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
| | - Yinghao Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
| | - Pan Su
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
| | - Jay J. Pillai
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Division of Neuroradiology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, United States
| | - Ye Qiao
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Hanzhang Lu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
| | - Peter C.M. Van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Linda Knutsson
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Jun Hua
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
3
|
Holmes JH, Jen ML, Eisenmenger LB, Schubert T, Turski PA, Johnson KM. Spatial dependency and the role of local susceptibility for velocity selective arterial spin labeling (VS-ASL) relative tagging efficiency using accelerated 3D radial sampling with a BIR-8 preparation. Magn Reson Med 2021; 86:293-307. [PMID: 33615527 DOI: 10.1002/mrm.28726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 01/31/2023]
Abstract
PURPOSE Velocity selective arterial spin labeling (VS-ASL) is a promising approach for non-contrast perfusion imaging that provides robustness to vascular geometry and transit times; however, VS-ASL assumes spatially uniform tagging efficiency. This work presents a mapping approach to investigate VS-ASL relative tagging efficiency including the impact of local susceptibility effects on a BIR-8 preparation. METHODS Numerical simulations of tagging efficiency were performed to evaluate sensitivity to regionally varying local susceptibility gradients and blood velocity. Tagging efficiency mapping was performed in susceptibility phantoms and healthy human subjects (N = 7) using a VS-ASL preparation module followed by a short, high spatial resolution 3D radial-based image acquisition. Tagging efficiency maps were compared to 4D-flow, B1 , and B0 maps acquired in the same imaging session for six of the seven subjects. RESULTS Numerical simulations were found to predict reduced tagging efficiency with the combination of high blood velocity and local gradient fields. Phantom experiments corroborated numerical results. Relative efficiency mapping in normal volunteers showed unique efficiency patterns depending on individual subject anatomy and physiology. Uniform tagging efficiency was generally observed in vivo, but reduced efficiency was noted in regions of high blood velocity and local susceptibility gradients. CONCLUSION We demonstrate an approach to map the relative tagging efficiency and show application of this methodology to a novel BIR-8 preparation recently proposed in the literature. We present results showing rapid flow in the presence of local susceptibility gradients can lead to complicated signal modulations in both tag and control images and reduced tagging efficiency.
Collapse
Affiliation(s)
- James H Holmes
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mu-Lan Jen
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Laura B Eisenmenger
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Tilman Schubert
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| | - Patrick A Turski
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kevin M Johnson
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Zhao W, Ji S. Incorporation of vasculature in a head injury model lowers local mechanical strains in dynamic impact. J Biomech 2020; 104:109732. [PMID: 32151380 DOI: 10.1016/j.jbiomech.2020.109732] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 01/28/2023]
Abstract
Cerebral vasculature is several orders of magnitude stiffer than the brain tissue. However, only a handful of studies have investigated its potential stiffening effect on dynamic brain strains; yet, they report contradictory findings. Here, we reanalyze the cerebrovascular stiffening effect by incorporating vasculature derived from the latest neuroimaging atlases into a re-meshed Worcester Head Injury Model using an embedded element method. Regional brain strains with and without vasculature were simulated using a reconstructed, predominantly sagittal head impact. Using the two previously adopted linear or non-linear vessel material models, we reproduced the earlier conflicting results (~40% vs. ~1-6% in regional strain reductions). Nevertheless, with refitted non-linear material models chosen to represent the average dynamic tension behaviors of arteries and veins, respectively, inclusion of vasculature reduced regional brain strains by ~13-36% relative to the baselines without vasculature. Compared to the whole brain baseline response, inclusion of vasculature led to an element-wise linear regression slope of 0.8 and a Pearson correlation coefficient of 0.8. The vascular stiffening effect appears mild for the whole brain but more significant locally, which should not be ignored in head injury models. Nevertheless, more work is necessary to investigate the cerebrovascular mechanical behaviors and loading environment to allow for more biofidelic modeling of the brain in the future.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01605, United States
| | - Songbai Ji
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01605, United States; Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, United States.
| |
Collapse
|
5
|
Stokes AM, Semmineh NB, Nespodzany A, Bell LC, Quarles CC. Systematic assessment of multi-echo dynamic susceptibility contrast MRI using a digital reference object. Magn Reson Med 2019; 83:109-123. [PMID: 31400035 DOI: 10.1002/mrm.27914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/14/2019] [Accepted: 07/02/2019] [Indexed: 11/07/2022]
Abstract
PURPOSE Brain tumor dynamic susceptibility contrast (DSC) MRI is adversely impacted by T1 and T 2 ∗ contrast agent leakage effects that result in inaccurate hemodynamic metrics. While multi-echo acquisitions remove T1 leakage effects, there is no consensus on the optimal set of acquisition parameters. Using a computational approach, we systematically evaluated a wide range of acquisition strategies to determine the optimal multi-echo DSC-MRI perfusion protocol. METHODS Using a population-based DSC-MRI digital reference object (DRO), we assessed the influence of preload dosing (no preload and full dose preload), field strength (1.5 and 3T), pulse sequence parameters (echo time, repetition time, and flip angle), and leakage correction on relative cerebral blood volume (rCBV) and flow (rCBF) accuracy. We also compared multi-echo DSC-MRI protocols with standard single-echo protocols. RESULTS Multi-echo DSC-MRI is highly consistent across all protocols, and multi-echo rCBV (with or without use of a preload dose) had higher accuracy than single-echo rCBV. Regression analysis showed that choice of repetition time and flip angle had minimal impact on multi-echo rCBV and rCBV, indicating the potential for significant flexibility in acquisition parameters. The echo time combination had minimal impact on rCBV, though longer echo times should be avoided, particularly at higher field strengths. Leakage correction improved rCBV accuracy in all cases. Multi-echo rCBF was less biased than single-echo rCBF, although rCBF accuracy was reduced overall relative to rCBV. CONCLUSIONS Multi-echo acquisitions were more robust than single-echo, essentially decoupling both repetition time and flip angle from rCBV accuracy. Multi-echo acquisitions obviate the need for preload dosing, although leakage correction to remove residual T 2 ∗ leakage effects remains compulsory for high rCBV accuracy.
Collapse
Affiliation(s)
- Ashley M Stokes
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, Arizona
| | - Natenael B Semmineh
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, Arizona
| | - Ashley Nespodzany
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, Arizona
| | - Laura C Bell
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, Arizona
| | - C Chad Quarles
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, Arizona
| |
Collapse
|
6
|
Quarles CC, Bell LC, Stokes AM. Imaging vascular and hemodynamic features of the brain using dynamic susceptibility contrast and dynamic contrast enhanced MRI. Neuroimage 2018; 187:32-55. [PMID: 29729392 DOI: 10.1016/j.neuroimage.2018.04.069] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 04/27/2018] [Accepted: 04/29/2018] [Indexed: 12/22/2022] Open
Abstract
In the context of neurologic disorders, dynamic susceptibility contrast (DSC) and dynamic contrast enhanced (DCE) MRI provide valuable insights into cerebral vascular function, integrity, and architecture. Even after two decades of use, these modalities continue to evolve as their biophysical and kinetic basis is better understood, with improvements in pulse sequences and accelerated imaging techniques and through application of more robust and automated data analysis strategies. Here, we systematically review each of these elements, with a focus on how their integration improves kinetic parameter accuracy and the development of new hemodynamic biomarkers that provide sub-voxel sensitivity (e.g., capillary transit time and flow heterogeneity). Regarding contrast mechanisms, we discuss the dipole-dipole interactions and susceptibility effects that give rise to simultaneous T1, T2 and T2∗ relaxation effects, including their quantification, influence on pulse sequence parameter optimization, and use in methods such as vessel size and vessel architectural imaging. The application of technologic advancements, such as parallel imaging, simultaneous multi-slice, undersampled k-space acquisitions, and sliding window strategies, enables improved spatial and/or temporal resolution of DSC and DCE acquisitions. Such acceleration techniques have also enabled the implementation of, clinically feasible, simultaneous multi-echo spin- and gradient echo acquisitions, providing more comprehensive and quantitative interrogation of T1, T2 and T2∗ changes. Characterizing these relaxation rate changes through different post-processing options allows for the quantification of hemodynamics and vascular permeability. The application of different biophysical models provides insight into traditional hemodynamic parameters (e.g., cerebral blood volume) and more advanced parameters (e.g., capillary transit time heterogeneity). We provide insight into the appropriate selection of biophysical models and the necessary post-processing steps to ensure reliable measurements while minimizing potential sources of error. We show representative examples of advanced DSC- and DCE-MRI methods applied to pathologic conditions affecting the cerebral microcirculation, including brain tumors, stroke, aging, and multiple sclerosis. The maturation and standardization of conventional DSC- and DCE-MRI techniques has enabled their increased integration into clinical practice and use in clinical trials, which has, in turn, spurred renewed interest in their technological and biophysical development, paving the way towards a more comprehensive assessment of cerebral hemodynamics.
Collapse
Affiliation(s)
- C Chad Quarles
- Division of Neuro imaging Research, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, USA.
| | - Laura C Bell
- Division of Neuro imaging Research, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, USA
| | - Ashley M Stokes
- Division of Neuro imaging Research, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, USA
| |
Collapse
|
7
|
Ishii Y, Tanaka Y, Momose T, Yamashina M, Sato A, Wakabayashi S, Maehara T, Nariai T. Chronologic Evaluation of Cerebral Hemodynamics by Dynamic Susceptibility Contrast Magnetic Resonance Imaging After Indirect Bypass Surgery for Moyamoya Disease. World Neurosurg 2017; 108:427-435. [PMID: 28893695 DOI: 10.1016/j.wneu.2017.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Although indirect bypass surgery is an effective treatment option for patients with ischemic-onset moyamoya disease (MMD), the time point after surgery at which the patient's hemodynamic status starts to improve and the time point at which the improvement reaches a maximum have not been known. The objective of the present study is to evaluate the hemodynamic status time course after indirect bypass surgery for MMD, using dynamic susceptibility contrast-magnetic resonance imaging (DSC-MRI). METHODS We retrospectively analyzed the cases of 25 patients with MMD (37 sides; mean age, 14.7 years; range, 3-36 years) who underwent indirect bypass surgery and repeated DSC-MRI measurement within 6 months after the operation. The difference in the mean transit time (MTT) between the target regions and the control region (cerebellum) was termed the MTT delay, and we measured the MTT delay's chronologic changes after surgery. RESULTS The postoperative MTT delay was 1.81 ± 1.16 seconds within 1 week after surgery, 1.57 ± 1.01 at weeks 1-2, 1.55 ± 0.68 at weeks 2-4, 1.32 ± 0.68 at months 1-2, 0.95 ± 0.32 at months 2-3, and 0.77 ± 0.33 at months 3-6. Compared with the preoperative value (2.11 ± 0.98 seconds), the MTT delay decreased significantly from 2 to 4 weeks after surgery (P < 0.05). CONCLUSIONS The amelioration of cerebral hemodynamics by indirect bypass surgery began soon after surgery and gradually reached a maximum at 3 months after surgery. DSC-MRI detected small changes in hemodynamic improvement, which are suspected to be caused by the initiation of angiogenesis and arteriogenesis in the early postoperative period.
Collapse
Affiliation(s)
- Yosuke Ishii
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan; Department of Radiology, Stanford University, California, USA
| | - Yoji Tanaka
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshiya Momose
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Motoshige Yamashina
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akihito Sato
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Taketoshi Maehara
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tadashi Nariai
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
8
|
Bell LC, Does MD, Stokes AM, Baxter LC, Schmainda KM, Dueck AC, Quarles CC. Optimization of DSC MRI Echo Times for CBV Measurements Using Error Analysis in a Pilot Study of High-Grade Gliomas. AJNR Am J Neuroradiol 2017; 38:1710-1715. [PMID: 28684456 PMCID: PMC5591773 DOI: 10.3174/ajnr.a5295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 05/07/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The optimal TE must be calculated to minimize the variance in CBV measurements made with DSC MR imaging. Simulations can be used to determine the influence of the TE on CBV, but they may not adequately recapitulate the in vivo heterogeneity of precontrast T2*, contrast agent kinetics, and the biophysical basis of contrast agent-induced T2* changes. The purpose of this study was to combine quantitative multiecho DSC MRI T2* time curves with error analysis in order to compute the optimal TE for a traditional single-echo acquisition. MATERIALS AND METHODS Eleven subjects with high-grade gliomas were scanned at 3T with a dual-echo DSC MR imaging sequence to quantify contrast agent-induced T2* changes in this retrospective study. Optimized TEs were calculated with propagation of error analysis for high-grade glial tumors, normal-appearing white matter, and arterial input function estimation. RESULTS The optimal TE is a weighted average of the T2* values that occur as a contrast agent bolus transverses a voxel. The mean optimal TEs were 30.0 ± 7.4 ms for high-grade glial tumors, 36.3 ± 4.6 ms for normal-appearing white matter, and 11.8 ± 1.4 ms for arterial input function estimation (repeated-measures ANOVA, P < .001). CONCLUSIONS Greater heterogeneity was observed in the optimal TE values for high-grade gliomas, and mean values of all 3 ROIs were statistically significant. The optimal TE for the arterial input function estimation is much shorter; this finding implies that quantitative DSC MR imaging acquisitions would benefit from multiecho acquisitions. In the case of a single-echo acquisition, the optimal TE prescribed should be 30-35 ms (without a preload) and 20-30 ms (with a standard full-dose preload).
Collapse
Affiliation(s)
- L C Bell
- From the Division of Imaging Research (L.C. Bell, A.M.S., L.C. Baxter, C.C.Q.), Barrow Neurological Institute, Phoenix, Arizona
| | - M D Does
- Department of Biomedical Engineering (M.D.D.), Vanderbilt University Institute of Imaging Science, Nashville, Tennessee
| | - A M Stokes
- From the Division of Imaging Research (L.C. Bell, A.M.S., L.C. Baxter, C.C.Q.), Barrow Neurological Institute, Phoenix, Arizona
| | - L C Baxter
- From the Division of Imaging Research (L.C. Bell, A.M.S., L.C. Baxter, C.C.Q.), Barrow Neurological Institute, Phoenix, Arizona
| | - K M Schmainda
- Departments of Biophysics and Radiology (K.M.S.), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - A C Dueck
- Division of Health Sciences Research (A.C.D.), Section of Biostatistics, Mayo Clinic, Scottsdale, Arizona
| | - C C Quarles
- From the Division of Imaging Research (L.C. Bell, A.M.S., L.C. Baxter, C.C.Q.), Barrow Neurological Institute, Phoenix, Arizona
| |
Collapse
|
9
|
Giacalone M, Frindel C, Robini M, Cervenansky F, Grenier E, Rousseau D. Robustness of spatio-temporal regularization in perfusion MRI deconvolution: An application to acute ischemic stroke. Magn Reson Med 2016; 78:1981-1990. [PMID: 28019027 DOI: 10.1002/mrm.26573] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 12/23/2022]
Abstract
PURPOSE The robustness of a recently introduced globally convergent deconvolution algorithm with temporal and edge-preserving spatial regularization for the deconvolution of dynamic susceptibility contrast perfusion magnetic resonance imaging is assessed in the context of ischemic stroke. THEORY AND METHODS Ischemic tissues are not randomly distributed in the brain but form a spatially organized entity. The addition of a spatial regularization term allows to take into account this spatial organization contrarily to the sole temporal regularization approach which processes each voxel independently. The robustness of the spatial regularization in relation to shape variability, hemodynamic variability in tissues, noise in the magnetic resonance imaging apparatus, and uncertainty on the arterial input function selected for the deconvolution is addressed via an original in silico validation approach. RESULTS The deconvolution algorithm proved robust to the different sources of variability, outperforming temporal Tikhonov regularization in most realistic conditions considered. The limiting factor is the proper estimation of the arterial input function. CONCLUSION This study quantified the robustness of a spatio-temporal approach for dynamic susceptibility contrast-magnetic resonance imaging deconvolution via a new simulator. This simulator, now accessible online, is of wide applicability for the validation of any deconvolution algorithm. Magn Reson Med 78:1981-1990, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Mathilde Giacalone
- University of Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1206, LYON, F69006, France
| | - Carole Frindel
- University of Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1206, LYON, F69006, France
| | - Marc Robini
- University of Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1206, LYON, F69006, France
| | - Frédéric Cervenansky
- University of Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1206, LYON, F69006, France
| | - Emmanuel Grenier
- ENS-Lyon, UCB Lyon, Inria, NUMED, CNRS, UMPA UMR 5669, LYON, F69007, France
| | - David Rousseau
- University of Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1206, LYON, F69006, France
| |
Collapse
|
10
|
Anderson VC, Obayashi JT, Kaye JA, Quinn JF, Berryhill P, Riccelli LP, Peterson D, Rooney WD. Longitudinal relaxographic imaging of white matter hyperintensities in the elderly. Fluids Barriers CNS 2014; 11:24. [PMID: 25379172 PMCID: PMC4209516 DOI: 10.1186/2045-8118-11-24] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 10/04/2014] [Indexed: 11/25/2022] Open
Abstract
Background Incidental white matter hyperintensities (WMHs) are common findings on T2-weighted magnetic resonance images of the aged brain and have been associated with cognitive decline. While a variety of pathogenic mechanisms have been proposed, the origin of WMHs and the extent to which lesions in the deep and periventricular white matter reflect distinct etiologies remains unclear. Our aim was to quantify the fractional blood volume (vb) of small WMHs in vivo using a novel magnetic resonance imaging (MRI) approach and examine the contribution of blood–brain barrier disturbances to WMH formation in the deep and periventricular white matter. Methods Twenty-three elderly volunteers (aged 59–82 years) underwent 7 Tesla relaxographic imaging and fluid-attenuated inversion recovery (FLAIR) MRI. Maps of longitudinal relaxation rate constant (R1) were prepared before contrast reagent (CR) injection and throughout CR washout. Voxelwise estimates of vb were determined by fitting temporal changes in R1 values to a two-site model that incorporates the effects of transendothelial water exchange. Average vb values in deep and periventricular WMHs were determined after semi-automated segmentation of FLAIR images. Ventricular permeability was estimated from the change in CSF R1 values during CR washout. Results In the absence of CR, the total water fraction in both deep and periventricular WMHs was increased compared to normal appearing white matter (NAWM). The vb of deep WMHs was 1.8 ± 0.6 mL/100 g and was significantly reduced compared to NAWM (2.4 ± 0.8 mL/100 g). In contrast, the vb of periventricular WMHs was unchanged compared to NAWM, decreased with ventricular volume and showed a positive association with ventricular permeability. Conclusions Hyperintensities in the deep WM appear to be driven by vascular compromise, while those in the periventricular WM are most likely the result of a compromised ependyma in which the small vessels remain relatively intact. These findings support varying contributions of blood–brain barrier and brain-CSF interface disturbances in the pathophysiology of deep and periventricular WMHs in the aged human brain.
Collapse
Affiliation(s)
- Valerie C Anderson
- Advanced Imaging Research Center, L452, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - James T Obayashi
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Jeffrey A Kaye
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Joseph F Quinn
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | | | - Louis P Riccelli
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, OR, USA
| | - Dean Peterson
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| | - William D Rooney
- Advanced Imaging Research Center, L452, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| |
Collapse
|
11
|
Ishii Y, Nariai T, Tanaka Y, Mukawa M, Inaji M, Maehara T, Ohno K. Practical clinical use of dynamic susceptibility contrast magnetic resonance imaging for the surgical treatment of moyamoya disease. Neurosurgery 2014; 74:302-9. [PMID: 24335813 DOI: 10.1227/neu.0000000000000266] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Precise evaluation of hemodynamic stress is important for the treatment of moyamoya disease (MMD). OBJECTIVE To explore whether dynamic susceptibility contrast magnetic resonance imaging could predict the effects and risk of indirect bypass surgery on MMD. METHODS Clinical data of patients with MMD who were evaluated preoperatively and postoperatively with dynamic susceptibility contrast magnetic resonance imaging and digital subtraction angiography were evaluated retrospectively. Indirect bypass surgery was performed on 115 hemispheres of 69 patients (mean age, 15 years; range, 3-54 years). We examined the correlations of ischemic events and revascularization with the mean transit time (MTT) delay to cerebellum. RESULTS The hemispheres that caused the ischemic events (responsible hemisphere) had a significantly longer preoperative MTT delay than the nonresponsible hemispheres (2.66 ± 1.34 vs 1.57 ± 1.09 seconds). The postoperative MTT delay fell significantly in the patients whose symptoms disappeared (preoperative, 2.61 ± 1.35 seconds; postoperative, 1.35 ± 0.96 seconds). Perioperative infarction occurred in 4 hemispheres (3.5%), and the MTT delay was significantly longer in those hemispheres than in the others (3.97 ± 1.20 vs 2.38 ± 1.34 seconds). The MTT delay was significantly longer in patients with higher angiographic stages. Indirect bypass surgery ameliorated the MTT delay to the same degree in adults and children. Digital subtraction angiography revealed that the induced revascularization was far superior in areas with longer MTT delays. CONCLUSION Dynamic susceptibility contrast magnetic resonance imaging proved to be a useful clinical imaging method for patients with MMD. It may be helpful for selecting candidates for MMD intervention and for predicting the effects and risks of surgery. ABBREVIATIONS DSC-MRI, dynamic susceptibility contrast magnetic resonance imagingMMD, moyamoya diseaseMTT, mean transit timeROI, region of interest.
Collapse
Affiliation(s)
- Yosuke Ishii
- *Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan; ‡Department of Neurosurgery, Kushiro Kojinkai Memorial Hospital, Kushiro, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Calamante F. Arterial input function in perfusion MRI: a comprehensive review. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 74:1-32. [PMID: 24083460 DOI: 10.1016/j.pnmrs.2013.04.002] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/18/2013] [Accepted: 04/30/2013] [Indexed: 06/02/2023]
Abstract
Cerebral perfusion, also referred to as cerebral blood flow (CBF), is one of the most important parameters related to brain physiology and function. The technique of dynamic-susceptibility contrast (DSC) MRI is currently the most commonly used MRI method to measure perfusion. It relies on the intravenous injection of a contrast agent and the rapid measurement of the transient signal changes during the passage of the bolus through the brain. Central to quantification of CBF using this technique is the so-called arterial input function (AIF), which describes the contrast agent input to the tissue of interest. Due to its fundamental role, there has been a lot of progress in recent years regarding how and where to measure the AIF, how it influences DSC-MRI quantification, what artefacts one should avoid, and the design of automatic methods to measure the AIF. The AIF is also directly linked to most of the major sources of artefacts in CBF quantification, including partial volume effect, bolus delay and dispersion, peak truncation effects, contrast agent non-linearity, etc. While there have been a number of good review articles on DSC-MRI over the years, these are often comprehensive but, by necessity, with limited in-depth discussion of the various topics covered. This review article covers in greater depth the issues associated with the AIF and their implications for perfusion quantification using DSC-MRI.
Collapse
Affiliation(s)
- Fernando Calamante
- Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia; Department of Medicine, Austin Health and Northern Health, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
13
|
Willats L, Calamante F. The 39 steps: evading error and deciphering the secrets for accurate dynamic susceptibility contrast MRI. NMR IN BIOMEDICINE 2013; 26:913-931. [PMID: 22782914 DOI: 10.1002/nbm.2833] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/29/2012] [Accepted: 06/01/2012] [Indexed: 06/01/2023]
Abstract
Dynamic susceptibility contrast (DSC) MRI is the most commonly used MRI method to assess cerebral perfusion and other related haemodynamic parameters. Although the technique is well established and used routinely in clinical centres, there are still many problems that impede accurate perfusion quantification. In this review article, we present 39 steps which guide the reader through the theoretical principles, practical decisions, potential problems, current limitations and latest advances in DSC-MRI. The 39 steps span the collection, analysis and interpretation of DSC-MRI data, expounding issues and possibilities relating to the contrast agent, the acquisition of DSC-MRI data, data pre-processing, the contrast concentration-time course, the arterial input function, deconvolution, common perfusion parameters, post-processing possibilities, patient studies, absolute versus relative quantification and automated analysis methods.
Collapse
Affiliation(s)
- Lisa Willats
- Brain Research Institute, Melbourne Brain Centre, 245 Burgundy Street, Heidelberg, Vic., 3084, Australia.
| | | |
Collapse
|
14
|
Arterial spin labelling MRI for assessment of cerebral perfusion in children with moyamoya disease: comparison with dynamic susceptibility contrast MRI. Neuroradiology 2013; 55:639-47. [PMID: 23404242 DOI: 10.1007/s00234-013-1155-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/01/2013] [Indexed: 12/26/2022]
Abstract
INTRODUCTION This study seeks to evaluate the diagnostic accuracy of cerebral perfusion imaging with arterial spin labelling (ASL) MR imaging in children with moyamoya disease compared to dynamic susceptibility contrast (DSC) imaging. METHODS Ten children (7 females; age, 9.2 ± 5.4 years) with moyamoya disease underwent cerebral perfusion imaging with ASL and DSC on a 3-T MRI scanner in the same session. Cerebral perfusion images were acquired with ASL (pulsed continuous 3D ASL sequence, 32 axial slices, TR = 5.5 s, TE = 25 ms, FOV = 24 cm, matrix = 128 × 128) and DSC (gradient echo EPI sequence, 35 volumes of 28 axial slices, TR = 2,000 ms, TE = 36 ms, FOV = 24 cm, matrix = 96 × 96, 0.2 ml/kg Gd-DOTA). Cerebral blood flow maps were generated. ASL and DSC images were qualitatively assessed regarding perfusion of left and right ACA, MCA, and PCA territories by two independent readers using a 3-point-Likert scale and quantitative relative cerebral blood flow (rCBF) was calculated. Correlation between ASL and DSC for qualitative and quantitative assessment and the accuracy of ASL for the detection of reduced perfusion per territory with DSC serving as the standard of reference were calculated. RESULTS With a good interreader agreement (κ = 0.62) qualitative perfusion assessment with ASL and DSC showed a strong and significant correlation (ρ = 0.77; p < 0.001), as did quantitative rCBF (r = 0.79; p < 0.001). ASL showed a sensitivity, specificity and accuracy of 94 %, 93 %, and 93 % for the detection of reduced perfusion per territory. CONCLUSION In children with moyamoya disease, unenhanced ASL enables the detection of reduced perfusion per vascular territory with a good accuracy compared to contrast-enhanced DSC.
Collapse
|
15
|
Nael K, Meshksar A, Liebeskind DS, Wang DJJ, Ellingson BM, Salamon N, Villablanca JP. Periprocedural arterial spin labeling and dynamic susceptibility contrast perfusion in detection of cerebral blood flow in patients with acute ischemic syndrome. Stroke 2013; 44:664-70. [PMID: 23391773 DOI: 10.1161/strokeaha.112.672956] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE To compare the diagnostic performance of arterial spin-labeling (ASL) and dynamic susceptibility contrast (DSC) perfusion in detecting cerebral blood flow (CBF) changes before and after endovascular recanalization in acute ischemic syndrome. METHODS The inclusion criteria for this retrospective study were patients with acute ischemic syndrome who underwent endovascular recanalization and acquisition of both ASL and DSC before and after revascularization. ASL-CBF and multiparametric DSC maps were evaluated for image quality, location, and type of perfusion abnormality. Relative CBF (rCBF) was calculated in the infarction core and hypoperfused areas using coregistered ASL and DSC. Core and hypoperfused rCBF were used for paired pretreatment and posttreatment comparisons. Interobserver and intermodality agreement were evaluated by κ test, and t test was calculated for ASL and DSC rCBF values. RESULTS Twenty-five patients met our inclusion criteria. Five studies were rated nondiagnostic, resulting in 45 pairs of DSC-ASL available for comparison. ASL and DSC agreed on type and location of the perfusion abnormality in 71% and 80% of cases, respectively. The image quality of ASL was lower than DSC, resulting in interobserver variability for the type (κ=0.45) and location (κ=0.56) of perfusion abnormality. ASL was unable to show any type of perfusion abnormality in 11% of patients. In successfully recanalized patients, hyperperfusion (rCBF >1) was detected in 100% on DSC and 47% on ASL. CONCLUSIONS ASL is less sensitive than DSC for detecting rCBF changes in patients with acute ischemic syndrome, particularly with respect to hyperperfusion after successful recanalization.
Collapse
Affiliation(s)
- Kambiz Nael
- Department of Medical Imaging, University of Arizona Medical Center, Tucson, AZ 85724-5067, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Kellner E, Mader I, Mix M, Splitthoff DN, Reisert M, Foerster K, Nguyen-Thanh T, Gall P, Kiselev VG. Arterial input function measurements for bolus tracking perfusion imaging in the brain. Magn Reson Med 2012; 69:771-80. [DOI: 10.1002/mrm.24319] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 03/29/2012] [Accepted: 04/10/2012] [Indexed: 11/08/2022]
|
17
|
Schmiedeskamp H, Straka M, Bammer R. Compensation of slice profile mismatch in combined spin- and gradient-echo echo-planar imaging pulse sequences. Magn Reson Med 2012; 67:378-88. [PMID: 21858858 PMCID: PMC3245351 DOI: 10.1002/mrm.23012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 04/01/2011] [Accepted: 04/29/2011] [Indexed: 11/09/2022]
Abstract
Combined acquisition of gradient-echo and spin-echo signals in MRI time series reveals additional information for perfusion-weighted imaging and functional MRI because of differences in the sensitivity of gradient-echo and spin-echo measurements to the properties of the underlying vascular architecture. The acquisition of multiple echo trains within one time frame facilitates the simultaneous estimation of the transversal relaxation parameters R2 and R2*. However, the simultaneous estimation of these parameters tends to be incorrect in the presence of slice profile mismatches between signal excitation and subsequent refocusing pulses. It is shown here that improvements in pulse design reduced R2 and R2* estimation errors. Further improvements were achieved by augmented parameter estimation through the introduction of an additional parameter δ to correct for discordances in slice profiles to facilitate more quantitative measurements. Moreover, the analysis of time-resolved acquisitions revealed that the temporal stability of R2 estimates could be increased with improved pulse design, counteracting low contrast-to-noise ratios in spin-echo-based perfusion and functional MRI.
Collapse
Affiliation(s)
- Heiko Schmiedeskamp
- Lucas Center, Department of Radiology, Stanford University, Stanford, CA, USA
| | - Matus Straka
- Lucas Center, Department of Radiology, Stanford University, Stanford, CA, USA
| | - Roland Bammer
- Lucas Center, Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
18
|
Schmiedeskamp H, Straka M, Newbould RD, Zaharchuk G, Andre JB, Olivot JM, Moseley ME, Albers GW, Bammer R. Combined spin- and gradient-echo perfusion-weighted imaging. Magn Reson Med 2011; 68:30-40. [PMID: 22114040 DOI: 10.1002/mrm.23195] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 07/21/2011] [Accepted: 08/02/2011] [Indexed: 11/09/2022]
Abstract
In this study, a spin- and gradient-echo echo-planar imaging (SAGE EPI) MRI pulse sequence is presented that allows simultaneous measurements of gradient-echo and spin-echo dynamic susceptibility-contrast perfusion-weighted imaging data. Following signal excitation, five readout trains were acquired using spin- and gradient-echo echo-planar imaging, all of them with echo times of less than 100 ms. Contrast agent concentrations in brain tissue were determined based on absolute R2* and R(2) estimates rather than relative changes in the signals of individual echo trains, producing T(1)-independent dynamic susceptibility-contrast perfusion-weighted imaging data. Moreover, this acquisition technique enabled vessel size imaging through the simultaneous quantification of R2* and R(2), without an increase in acquisition time. In this work, the concepts of SAGE EPI pulse sequence and results in stroke and tumor imaging are presented. Overall, SAGE EPI combined the advantages of higher sensitivity to contrast agent passage of gradient-echo perfusion-weighted imaging with better microvascular selectivity of spin-echo perfusion-weighted imaging.
Collapse
Affiliation(s)
- Heiko Schmiedeskamp
- Department of Radiology, Stanford University, Lucas Center, Stanford, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
The blood-brain barrier and microvascular water exchange in Alzheimer's disease. Cardiovasc Psychiatry Neurol 2011; 2011:615829. [PMID: 21687589 PMCID: PMC3114411 DOI: 10.1155/2011/615829] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 02/12/2011] [Indexed: 01/08/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly. Although traditionally considered a disease of neurofibrillary tangles and amyloid plaques, structural and functional changes in the microvessels may contribute directly to the pathogenesis of the disease. Since vascular dysfunction often precedes cognitive impairment, understanding the role of the blood-brain barrier (BBB) in AD may be key to rational treatment of the disease. We propose that water regulation, a critical function of the BBB, is disturbed in AD and results in abnormal permeability and rates of water exchange across the vessel walls. In this paper, we describe some of the pathological events that may disturb microvascular water exchange in AD and examine the potential of a relatively new imaging technique, dynamic contrast-enhanced MRI, to quantify water exchange on a cellular level and thus serve as a probe of BBB integrity in AD.
Collapse
|
20
|
Zaharchuk G, Straka M, Marks MP, Albers GW, Moseley ME, Bammer R. Combined arterial spin label and dynamic susceptibility contrast measurement of cerebral blood flow. Magn Reson Med 2010; 63:1548-56. [PMID: 20512858 DOI: 10.1002/mrm.22329] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Dynamic susceptibility contrast (DSC) and arterial spin labeling (ASL) are both used to measure cerebral blood flow (CBF), but neither technique is ideal. Absolute DSC-CBF quantitation is challenging due to many uncertainties, including partial- volume errors and nonlinear contrast relaxivity. ASL can measure quantitative CBF in regions with rapidly arriving flow, but CBF is underestimated in regions with delayed arrival. To address both problems, we have derived a patient-specific correction factor, the ratio of ASL- and DSC-CBF, calculated only in short-arrival-time regions (as determined by the DSC-based normalized bolus arrival time [Tmax]). We have compared the combined CBF method to gold-standard xenon CT in 20 patients with cerebrovascular disease, using a range of Tmax threshold levels. Combined ASL and DSC CBF demonstrated quantitative accuracy as good as the ASL technique but with improved correlation in voxels with long Tmax. The ratio of MRI-based CBF to xenon CT CBF (coefficient of variation) was 90 +/- 30% (33%) for combined ASL and DSC CBF, 43 +/- 21% (47%) for DSC, and 91 +/- 31% (34%) for ASL (Tmax threshold 3 sec). These findings suggest that combining ASL and DSC perfusion measurements improves quantitative CBF measurements in patients with cerebrovascular disease.
Collapse
Affiliation(s)
- Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, California 94305-5488, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Schmiedeskamp H, Newbould RD, Pisani LJ, Skare S, Glover GH, Pruessmann KP, Bammer R. Improvements in parallel imaging accelerated functional MRI using multiecho echo-planar imaging. Magn Reson Med 2010; 63:959-69. [PMID: 20373397 DOI: 10.1002/mrm.22222] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Multiecho echo-planar imaging (EPI) was implemented for blood-oxygenation-level-dependent functional MRI at 1.5 T and compared to single-echo EPI with and without parallel imaging acceleration. A time-normalized breath-hold task using a block design functional MRI protocol was carried out in combination with up to four echo trains per excitation and parallel imaging acceleration factors R = 1-3. Experiments were conducted in five human subjects, each scanned in three sessions. Across all reduction factors, both signal-to-fluctuation-noise ratio and the total number of activated voxels were significantly lower using a single-echo EPI pulse sequence compared with the multiecho approach. Signal-to-fluctuation-noise ratio and total number of activated voxels were also considerably reduced for nonaccelerated conventional single-echo EPI when compared to three-echo measurements with R = 2. Parallel imaging accelerated multiecho EPI reduced geometric distortions and signal dropout, while it increased blood-oxygenation-level-dependent signal sensitivity all over the brain, particularly in regions with short underlying T*(2). Thus, the presented method showed multiple advantages over conventional single-echo EPI for standard blood-oxygenation-level-dependent functional MRI experiments.
Collapse
Affiliation(s)
- Heiko Schmiedeskamp
- Lucas Center, Department of Radiology, Stanford University, Stanford, California, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Jochimsen TH, Ivanov D, Ott DV, Heinke W, Turner R, Möller HE, Reichenbach JR. Whole-brain mapping of venous vessel size in humans using the hypercapnia-induced BOLD effect. Neuroimage 2010; 51:765-74. [DOI: 10.1016/j.neuroimage.2010.02.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 01/07/2010] [Accepted: 02/13/2010] [Indexed: 10/19/2022] Open
|
23
|
Zaharchuk G, Bammer R, Straka M, Newbould RD, Rosenberg J, Olivot JM, Mlynash M, Lansberg MG, Schwartz NE, Marks MM, Albers GW, Moseley ME. Improving dynamic susceptibility contrast MRI measurement of quantitative cerebral blood flow using corrections for partial volume and nonlinear contrast relaxivity: A xenon computed tomographic comparative study. J Magn Reson Imaging 2009; 30:743-52. [PMID: 19787719 DOI: 10.1002/jmri.21908] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE To test whether dynamic susceptibility contrast MRI-based CBF measurements are improved with arterial input function (AIF) partial volume (PV) and nonlinear contrast relaxivity correction, using a gold-standard CBF method, xenon computed tomography (xeCT). MATERIALS AND METHODS Eighteen patients with cerebrovascular disease underwent xeCT and MRI within 36 h. PV was measured as the ratio of the area under the AIF and the venous output function (VOF) concentration curves. A correction was applied to account for the nonlinear relaxivity of bulk blood (BB). Mean CBF was measured with both techniques and regression analyses both within and between patients were performed. RESULTS Mean xeCT CBF was 43.3 +/- 13.7 mL/100g/min (mean +/- SD). BB correction decreased CBF by a factor of 4.7 +/- 0.4, but did not affect precision. The least-biased CBF measurement was with BB but without PV correction (45.8 +/- 17.2 mL/100 g/min, coefficient of variation [COV] = 32%). Precision improved with PV correction, although absolute CBF was mildly underestimated (34.3 +/- 10.8 mL/100 g/min, COV = 27%). Between patients correlation was moderate even with both corrections (R = 0.53). CONCLUSION Corrections for AIF PV and nonlinear BB relaxivity improve bolus MRI-based CBF maps. However, there remain challenges given the moderate between-patient correlation, which limit diagnostic confidence of such measurements in individual patients.
Collapse
Affiliation(s)
- Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, California, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hansen AE, Pedersen H, Rostrup E, Larsson HB. Partial volume effect (PVE) on the arterial input function (AIF) in T
1
-weighted perfusion imaging and limitations of the multiplicative rescaling approach. Magn Reson Med 2009; 62:1055-9. [DOI: 10.1002/mrm.22098] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Zaharchuk G, Bammer R, Straka M, Shankaranarayan A, Alsop DC, Fischbein NJ, Atlas SW, Moseley ME. Arterial spin-label imaging in patients with normal bolus perfusion-weighted MR imaging findings: pilot identification of the borderzone sign. Radiology 2009; 252:797-807. [PMID: 19703858 DOI: 10.1148/radiol.2523082018] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE To determine whether perfusion abnormalities are depicted on arterial spin-labeling (ASL) images obtained in patients with normal bolus perfusion-weighted (PW) magnetic resonance (MR) imaging findings. MATERIALS AND METHODS Institutional review board approval and written informed patient consent were obtained. This study was HIPAA compliant. Consecutive patients suspected or known to have cerebrovascular disease underwent 1.5-T brain MR imaging, including MR angiography, gradient-echo PW imaging, and pseudocontinuous ASL imaging, between October 2007 and January 2008. Patients with normal bolus PW imaging findings were retrospectively identified, and two neuroradiologists subsequently evaluated the ASL images for focal abnormalities. The severity of the borderzone sign-that is, bilateral ASL signal dropout with surrounding cortical areas of hyperintensity in the middle cerebral artery borderzone regions-was classified by using a four-point scale. For each group, the ASL-measured mean mixed cortical cerebral blood flow (CBF) at the level of the centrum semiovale was evaluated by using the Jonckheere-Terpstra test. RESULTS One hundred thirty-nine patients met the study inclusion criteria, and 41 (30%) of them had normal bolus PW imaging findings. Twenty-three (56%) of these 41 patients also had normal ASL imaging findings. The remaining 18 (44%) patients had the ASL borderzone sign; these patients were older (mean age, 71 years +/- 11 [standard deviation] vs 57 years +/- 16; P < .005) and had lower mean CBF (30 mL/100 g/min +/- 12 vs 46 mL/100 g/min +/- 12, P < .003) compared with the patients who had normal ASL imaging findings. Five patients had additional focal ASL findings that were related to either slow blood flow in a vascular structure or postsurgical perfusion defects and were not visible on the PW images. CONCLUSION Approximately half of the patients with normal bolus PW imaging findings had abnormal ASL findings-most commonly the borderzone sign. Results of this pilot study suggest that ASL imaging in patients who have this sign and are suspected of having cerebrovascular disease yields additional and complementary hemodynamic information.
Collapse
Affiliation(s)
- Greg Zaharchuk
- Department of Radiology, Stanford University Medical Center, 1201 Welch Rd, PS-04, MC 5488, Stanford, CA 94305-5488, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Kjølby BF, Mikkelsen IK, Pedersen M, Østergaard L, Kiselev VG. Analysis of partial volume effects on arterial input functions using gradient echo: A simulation study. Magn Reson Med 2009; 61:1300-9. [DOI: 10.1002/mrm.21849] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Calamante F, Connelly A, van Osch MJP. Nonlinear DeltaR*2 effects in perfusion quantification using bolus-tracking MRI. Magn Reson Med 2009; 61:486-92. [PMID: 19161169 DOI: 10.1002/mrm.21839] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Dynamic susceptibility contrast MRI involves injection of a contrast agent, whose concentration is estimated from DeltaR*2 changes. However, measurement of contrast-agent concentration is prone to various sources of error; in particular, the commonly assumed linear relationship between contrast agent concentration and DeltaR*2 in arterial blood is known to be invalid. In this study, we characterized the associated perfusion errors. Large errors were found when the linear assumption is used; these errors were highly dependent on the choice of tissue relaxivity. The errors were greatly reduced when using the quadratic model, and were further reduced when quantifying perfusion as a relative measure. This study suggests the linear assumption should be abandoned in favor of the quadratic model. Thus, the errors are minimized leading to improved quantification that will enable perfusion MRI to continue to play an important role in quantifying perfusion in brain diseases (e.g., acute stroke).
Collapse
|
28
|
Zaharchuk G. Theoretical basis of hemodynamic MR imaging techniques to measure cerebral blood volume, cerebral blood flow, and permeability. AJNR Am J Neuroradiol 2008; 28:1850-8. [PMID: 17998415 DOI: 10.3174/ajnr.a0831] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cerebrovascular hemodynamic assessment adds new information to standard anatomic MR imaging and improves patient care. This article reviews the theoretic underpinnings of several potentially quantitative MR imaging-based methods that shed light on the hemodynamic status of the brain, including cerebral blood flow (CBF), cerebral blood volume (CBV), and contrast agent permeability. Techniques addressed include dynamic susceptibility contrast (which most simply and accurately estimates CBV), arterial spin labeling (a powerful method to measure CBF), and contrast-enhanced methods to derive permeability parameters such as the transport constant Ktrans.
Collapse
Affiliation(s)
- G Zaharchuk
- Neuroradiology Section, Stanford University Medical Center, Stanford, CA 94305-5487, USA.
| |
Collapse
|
29
|
Newbould RD, Skare ST, Jochimsen TH, Alley MT, Moseley ME, Albers GW, Bammer R. Perfusion mapping with multiecho multishot parallel imaging EPI. Magn Reson Med 2007; 58:70-81. [PMID: 17659630 PMCID: PMC3986027 DOI: 10.1002/mrm.21255] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Echo-planar imaging (EPI) is the standard technique for dynamic susceptibility-contrast (DSC) perfusion MRI. However, EPI suffers from well-known geometric distortions, which can be reduced by increasing the k-space phase velocity. Moreover, the long echo times (TEs) used in DSC lead to signal saturation of the arterial input signal, and hence to severe quantitation errors in the hemodynamic information. Here, through the use of interleaved shot acquisition and parallel imaging (PI), rapid volumetric EPI is performed using pseudo-single-shot (ss)EPI with the effective T(*)(2) blur and susceptibility distortions of a multishot EPI sequence. The reduced readout lengths permit multiple echoes to be acquired with temporal resolution and spatial coverage similar to those obtained with a single-echo method. Multiecho readouts allow for unbiased R(*)(2) mapping to avoid incorrect estimation of tracer concentration due to signal saturation or T(1) shortening effects. Multiecho perfusion measurement also mitigates the signal-to-noise ratio (SNR) reduction that results from utilizing PI. Results from both volunteers and clinical stroke patients are presented. This acquisition scheme can aid most rapid time-series acquisitions. The use of this method for DSC addresses the problem of signal saturation and T(1) contamination while it improves image quality, and is a logical step toward better quantitative MR PWI.
Collapse
Affiliation(s)
- Rexford D. Newbould
- Lucas MRS/I Center, Department of Radiology, Stanford University, Stanford, California, USA
- Correspondence to: Rexford D. Newbould, Lucas MRS/I Center, 1201 Welch Rd., Mail Code 5488, Room PS-055, Stanford, CA 94305-5488.
| | - Stefan T. Skare
- Lucas MRS/I Center, Department of Radiology, Stanford University, Stanford, California, USA
| | - Thies H. Jochimsen
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Marcus T. Alley
- Lucas MRS/I Center, Department of Radiology, Stanford University, Stanford, California, USA
| | - Michael E. Moseley
- Lucas MRS/I Center, Department of Radiology, Stanford University, Stanford, California, USA
| | - Gregory W. Albers
- Stanford Stroke Center, Department of Neurology, Stanford University, Stanford, California, USA
| | - Roland Bammer
- Lucas MRS/I Center, Department of Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|