1
|
Berger C, Bauer M, Wittig H, Gerlach K, Scheurer E, Lenz C. Investigation of post mortem brain, rectal and forehead temperature relations. J Therm Biol 2023; 115:103615. [PMID: 37390676 DOI: 10.1016/j.jtherbio.2023.103615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 07/02/2023]
Abstract
It is well known that magnetic resonance (MR) imaging is temperature sensitive, which is highly relevant for post mortem examinations. Therefore, the determination of the exact temperature of the investigated body site, e.g. the brain, is crucial. However, direct temperature measurements are invasive and inconvenient. Thus, in view of post mortem MR imaging of the brain, this study aims at investigating the relation between the brain and the forehead temperature for modelling the brain temperature based on the non-invasive forehead temperature. In addition, the brain temperature will be compared to the rectal temperature. Brain temperature profiles measured in the longitudinal fissure between the brain hemispheres, as well as rectal and forehead temperature profiles of 16 deceased were acquired continuously. Linear mixed, linear, quadratic and cubic models were fitted to the relation between the longitudinal fissure and the forehead and between the longitudinal fissure and the rectal temperature, respectively. Highest adjusted R2 values were found between the longitudinal fissure and the forehead temperature, as well as between the longitudinal fissure and the rectal temperature using a linear mixed model including the sex, environmental temperature and humidity as fixed effects. The results indicate that the forehead, as well as the rectal temperature, can be used to model the brain temperature measured in the longitudinal fissure. Comparable fit results were observed for the longitudinal fissure-forehead temperature relation and for the longitudinal fissure-rectal temperature relation. Combined with the fact that the forehead temperature overcomes the problem of measurement invasiveness, the results suggest using the forehead temperature for modelling the brain temperature in the longitudinal fissure.
Collapse
Affiliation(s)
- Celine Berger
- Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, Basel, Switzerland; Institute of Forensic Medicine, Health Department Basel-Stadt, Basel, Switzerland
| | - Melanie Bauer
- Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, Basel, Switzerland; Institute of Forensic Medicine, Health Department Basel-Stadt, Basel, Switzerland
| | - Holger Wittig
- Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, Basel, Switzerland; Institute of Forensic Medicine, Health Department Basel-Stadt, Basel, Switzerland
| | - Kathrin Gerlach
- Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, Basel, Switzerland; Institute of Forensic Medicine, Health Department Basel-Stadt, Basel, Switzerland
| | - Eva Scheurer
- Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, Basel, Switzerland; Institute of Forensic Medicine, Health Department Basel-Stadt, Basel, Switzerland
| | - Claudia Lenz
- Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, Basel, Switzerland; Institute of Forensic Medicine, Health Department Basel-Stadt, Basel, Switzerland.
| |
Collapse
|
2
|
Brain temperature in healthy and diseased conditions: A review on the special implications of MRS for monitoring brain temperature. Biomed Pharmacother 2023; 160:114287. [PMID: 36709597 DOI: 10.1016/j.biopha.2023.114287] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/30/2023] Open
Abstract
Brain temperature determines not only an individual's cognitive functionality but also the prognosis and mortality rates of many brain diseases. More specifically, brain temperature not only changes in response to different physiological events like yawning and stretching, but also plays a significant pathophysiological role in a number of neurological and neuropsychiatric illnesses. Here, we have outlined the function of brain hyperthermia in both diseased and healthy states, focusing particularly on the amyloid beta aggregation in Alzheimer's disease.
Collapse
|
3
|
Dong Z, Kantrowitz JT, Mann JJ. Improving the reproducibility of proton magnetic resonance spectroscopy brain thermometry: Theoretical and empirical approaches. NMR IN BIOMEDICINE 2022; 35:e4749. [PMID: 35475306 DOI: 10.1002/nbm.4749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/25/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
In proton magnetic resonance spectroscopy (1 H MRS)-based thermometry of brain, averaging temperatures measured from more than one reference peak offers several advantages, including improving the reproducibility (i.e., precision) of the measurement. This paper proposes theoretically and empirically optimal weighting factors to improve the weighted average of temperatures measured from three references. We first proposed concepts of equivalent noise and equivalent signal-to-noise ratio in terms of frequency measurement and a concept of relative frequency that allows the combination of different peaks in a spectrum for improving the precision of frequency measurement. Based on these, we then derived a theoretically optimal weighting factor and proposed an empirical weighting factor, both involving equivalent noise levels, for a weighted average of temperatures measured from three references (i.e., the singlets of NAA, Cr, and Ch in the 1 H MR spectrum). We assessed these two weighting factors by comparing their errors in measurement of temperatures with the errors of temperatures measured from individual references; we also compared these two new weighting factors with two previously proposed weighting factors. These errors were defined as the standard deviations in repeated measurements or in Monte Carlo studies. Both the proposed theoretical and empirical weighting factors outperformed the two previously proposed weighting factors as well as the three individual references in all phantom and in vivo experiments. In phantom experiments with 4- or 10-Hz line broadening, the theoretical weighting factor outperformed the empirical one, but the latter was superior in all other repeated and Monte Carlo tests performed on phantom and in vivo data. The proposed weighting factors are superior to the two previously proposed weighting factors and can improve the reproducibility of temperature measurement using 1 H MRS-based thermometry.
Collapse
Affiliation(s)
- Zhengchao Dong
- Department of Psychiatry, Columbia University College of Physicians & Surgeons, New York, New York, USA
- New York State Psychiatric Institute, New York, New York, USA
| | - Joshua T Kantrowitz
- Department of Psychiatry, Columbia University College of Physicians & Surgeons, New York, New York, USA
- New York State Psychiatric Institute, New York, New York, USA
- Nathan Kline Institute, Orangeburg, New York, USA
| | - J John Mann
- Department of Psychiatry, Columbia University College of Physicians & Surgeons, New York, New York, USA
- New York State Psychiatric Institute, New York, New York, USA
- Department of Radiology, Columbia University, College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
4
|
Verma V, Lange F, Bainbridge A, Harvey-Jones K, Robertson NJ, Tachtsidis I, Mitra S. Brain temperature monitoring in newborn infants: Current methodologies and prospects. Front Pediatr 2022; 10:1008539. [PMID: 36268041 PMCID: PMC9577084 DOI: 10.3389/fped.2022.1008539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/15/2022] [Indexed: 02/02/2023] Open
Abstract
Brain tissue temperature is a dynamic balance between heat generation from metabolism, passive loss of energy to the environment, and thermoregulatory processes such as perfusion. Perinatal brain injuries, particularly neonatal encephalopathy, and seizures, have a significant impact on the metabolic and haemodynamic state of the developing brain, and thereby likely induce changes in brain temperature. In healthy newborn brains, brain temperature is higher than the core temperature. Magnetic resonance spectroscopy (MRS) has been used as a viable, non-invasive tool to measure temperature in the newborn brain with a reported accuracy of up to 0.2 degrees Celcius and a precision of 0.3 degrees Celcius. This measurement is based on the separation of chemical shifts between the temperature-sensitive water peaks and temperature-insensitive singlet metabolite peaks. MRS thermometry requires transport to an MRI scanner and a lengthy single-point measurement. Optical monitoring, using near infrared spectroscopy (NIRS), offers an alternative which overcomes this limitation in its ability to monitor newborn brain tissue temperature continuously at the cot side in real-time. Near infrared spectroscopy uses linear temperature-dependent changes in water absorption spectra in the near infrared range to estimate the tissue temperature. This review focuses on the currently available methodologies and their viability for accurate measurement, the potential benefits of monitoring newborn brain temperature in the neonatal intensive care unit, and the important challenges that still need to be addressed.
Collapse
Affiliation(s)
- Vinita Verma
- Institute for Women's Health, University College London, London, United Kingdom
| | - Frederic Lange
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Alan Bainbridge
- Medical Physics and Engineering, University College London Hospital, London, United Kingdom
| | - Kelly Harvey-Jones
- Institute for Women's Health, University College London, London, United Kingdom
| | - Nicola J Robertson
- Institute for Women's Health, University College London, London, United Kingdom
| | - Ilias Tachtsidis
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Subhabrata Mitra
- Institute for Women's Health, University College London, London, United Kingdom
| |
Collapse
|
5
|
Wisnowski JL, Wintermark P, Bonifacio SL, Smyser CD, Barkovich AJ, Edwards AD, de Vries LS, Inder TE, Chau V. Neuroimaging in the term newborn with neonatal encephalopathy. Semin Fetal Neonatal Med 2021; 26:101304. [PMID: 34736808 PMCID: PMC9135955 DOI: 10.1016/j.siny.2021.101304] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Neuroimaging is widely used to aid in the diagnosis and clinical management of neonates with neonatal encephalopathy (NE). Yet, despite widespread use clinically, there are few published guidelines on neuroimaging for neonates with NE. This review outlines the primary patterns of brain injury associated with hypoxic-ischemic injury in neonates with NE and their frequency, associated neuropathological features, and risk factors. In addition, it provides an overview of neuroimaging methods, including the most widely used scoring systems used to characterize brain injury in these neonates and their utility as predictive biomarkers. Last, recommendations for neuroimaging in neonates with NE are presented.
Collapse
Affiliation(s)
- Jessica L Wisnowski
- Departments of Radiology and Pediatrics (Neonatology), Children's Hospital Los Angeles, 4650 Sunset Blvd. MS #81, Los Angeles CA 90027, USA.
| | - Pia Wintermark
- Department of Pediatrics (Neonatology), McGill University/Montreal Children's Hospital, Division of Newborn Medicine, Research Institute of the McGill University Health Centre, 1001 boul. Décarie, Site Glen Block E, EM0.3244, Montréal, QC H4A 3J1, Canada.
| | - Sonia L Bonifacio
- Division of Neonatal and Developmental Medicine, Department of Pediatrics (Neonatology), Lucile Packard Children's Hospital, Stanford University School of Medicine, 750 Welch Road, Suite 315, Palo Alto, CA 94304, USA.
| | - Christopher D Smyser
- Departments of Neurology, Radiology, and Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8111, St. Louis, MO 63110-1093, USA.
| | - A James Barkovich
- Department of Radiology, UCSF Benioff Children's Hospital, University of California San Francisco, 505 Parnassus Avenue, M-391, San Francisco, CA 94143-0628, USA.
| | - A David Edwards
- Evelina London Children's Hospital, Centre for Developing Brain, King's College London, Westminster Bridge Road, London, SE1 7EH, United Kingdom.
| | - Linda S de Vries
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Lundlaan 6, 3584 EA, Utrecht, the Netherlands.
| | - Terrie E Inder
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Vann Chau
- Department of Pediatrics (Neurology), The Hospital for Sick Children, University of Toronto, 555 University Avenue, Room 6513, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
6
|
Annink KV, Groenendaal F, Cohen D, van der Aa NE, Alderliesten T, Dudink J, Benders MJNL, Wijnen JP. Brain temperature of infants with neonatal encephalopathy following perinatal asphyxia calculated using magnetic resonance spectroscopy. Pediatr Res 2020; 88:279-284. [PMID: 31896129 DOI: 10.1038/s41390-019-0739-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/10/2019] [Accepted: 12/15/2019] [Indexed: 01/20/2023]
Abstract
BACKGROUND Little is known about brain temperature of neonates during MRI. Brain temperature can be estimated non-invasively with proton Magnetic Resonance Spectroscopy (1H-MRS), but the most accurate 1H-MRS method has not yet been determined. The primary aim was to estimate brain temperature using 1H-MRS in infants with neonatal encephalopathy (NE) following perinatal asphyxia. The secondary aim was to compare brain temperature during MRI with rectal temperatures before and after MRI. METHODS In this retrospective study, brain temperature in 36 (near-)term infants with NE was estimated using short (36 ms) and long (288 ms) echo time (TE) 1H-MRS. Brain temperature was calculated using two different formulas: formula of Wu et al. and a formula based on phantom calibration. The methods were compared. Rectal temperatures were collected <3 hours before and after MRI. RESULTS Brain temperatures calculated with the formula of Wu et al. and the calibrated formula were similar as well as brain temperatures derived from short and long TE 1H-MRS. Rectal temperature did not differ before and after MRI. CONCLUSIONS Brain temperature can be measured using 1H-MRS in daily clinical practice using the formula of Wu et al. with both short and long TE 1H-MRS. Brain temperature remained within physiological range during MRI.
Collapse
Affiliation(s)
- Kim V Annink
- Department of Neonatology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Floris Groenendaal
- Department of Neonatology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Daan Cohen
- Department of Neonatology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Niek E van der Aa
- Department of Neonatology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Thomas Alderliesten
- Department of Neonatology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Jeroen Dudink
- Department of Neonatology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Manon J N L Benders
- Department of Neonatology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Jannie P Wijnen
- Department of Radiology, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
7
|
Wu TW, Wisnowski JL, Geisler RF, Reitman A, Ho E, Tamrazi B, Chapman R, Blüml S. An In Vivo Assessment of Regional Brain Temperature during Whole-Body Cooling for Neonatal Encephalopathy. J Pediatr 2020; 220:73-79.e3. [PMID: 32089332 PMCID: PMC7265905 DOI: 10.1016/j.jpeds.2020.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/05/2019] [Accepted: 01/10/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To assess differences in regional brain temperatures during whole-body hypothermia and test the hypothesis that brain temperature profile is nonhomogenous in infants with hypoxic-ischemic encephalopathy. STUDY DESIGN Infants with hypoxic-ischemic encephalopathy were enrolled prospectively in this observational study. Magnetic resonance (MR) spectra of basal ganglia, thalamus, cortical gray matter, and white matter (WM) were acquired during therapeutic hypothermia. Regional brain tissue temperatures were calculated from the chemical shift difference between water signal and metabolites in the MR spectra after performing calibration measurements. Overall difference in regional temperature was analyzed by mixed-effects model; temperature among different patterns and severity of injury on MR imaging also was analyzed. Correlation between temperature and depth of brain structure was analyzed using repeated-measures correlation. RESULTS In total, 53 infants were enrolled (31 girls, mean gestational age: 38.6 ± 2 weeks; mean birth weight: 3243 ± 613 g). MR spectroscopy was acquired at mean age of 2.2 ± 0.6 days. A total of 201 MR spectra were included in the analysis. The thalamus, the deepest structure (36.4 ± 2.3 mm from skull surface), was lowest in temperature (33.2 ± 0.8°C, compared with basal ganglia: 33.5 ± 0.9°C; gray matter: 33.6 ± 0.7°C; WM: 33.8 ± 0.9°C, all P < .001). Temperatures in more superficial gray matter and WM regions (depth: 21.9 ± 2.4 and 21.5 ± 2.2 mm) were greater than the rectal temperatures (33.4 ± 0.4°C, P < .03). There was a negative correlation between temperature and depth of brain structure (rrm = -0.36, P < .001). CONCLUSIONS Whole-body hypothermia was effective in cooling deep brain structures, whereas superficial structures were warmer, with temperatures significantly greater than rectal temperatures.
Collapse
Affiliation(s)
- Tai-Wei Wu
- Fetal and Neonatal Institute, Division of Neonatology, Children's Hospital Los Angeles, Los Angeles, CA; Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA.
| | - Jessica L. Wisnowski
- Department of Radiology, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA;,Rudi Schulte Research Institute, Santa Barbara, CA
| | - Robert F. Geisler
- Division of Neonatology, Children’s Hospital, Fetal and Neonatal Institute, Los Angeles
| | - Aaron Reitman
- Division of Neonatology, Children’s Hospital, Fetal and Neonatal Institute, Los Angeles
| | - Eugenia Ho
- Division of Neurology, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Benita Tamrazi
- Department of Radiology, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Rachel Chapman
- Division of Neonatology, Children’s Hospital, Fetal and Neonatal Institute, Los Angeles;,Department of Pediatrics, Keck School of Medicine, University of Southern California
| | - Stefan Blüml
- Department of Radiology, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA;,Rudi Schulte Research Institute, Santa Barbara, CA
| |
Collapse
|
8
|
Antonacci MA, McHugh C, Kelley M, McCallister A, Degan S, Branca RT. Direct detection of brown adipose tissue thermogenesis in UCP1-/- mice by hyperpolarized 129Xe MR thermometry. Sci Rep 2019; 9:14865. [PMID: 31619741 PMCID: PMC6795875 DOI: 10.1038/s41598-019-51483-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/02/2019] [Indexed: 12/19/2022] Open
Abstract
Brown adipose tissue (BAT) is a type of fat specialized in non-shivering thermogenesis. While non-shivering thermogenesis is mediated primarily by uncoupling protein 1 (UCP1), the development of the UCP1 knockout mouse has enabled the study of possible UCP1-independent non-shivering thermogenic mechanisms, whose existence has been shown so far only indirectly in white adipose tissue and still continues to be a matter of debate in BAT. In this study, by using magnetic resonance thermometry with hyperpolarized xenon, we produce the first direct evidence of UCP1-independent BAT thermogenesis in knockout mice. We found that, following adrenergic stimulation, the BAT temperature of knockout mice increases more and faster than rectal temperature. While with this study we cannot exclude or separate the physiological effect of norepinephrine on core body temperature, the fast increase of iBAT temperature seems to suggest the existence of a possible UCP1-independent thermogenic mechanism responsible for this temperature increase.
Collapse
Affiliation(s)
- Michael A Antonacci
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Physics, Saint Vincent College, Latrobe, Pennsylvania, United States of America
| | - Christian McHugh
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Michele Kelley
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Andrew McCallister
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Simone Degan
- Department of Radiology, Duke University, Durham, North Carolina, United States of America
| | - Rosa T Branca
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.
| |
Collapse
|
9
|
Mitra S, Bale G, Highton D, Gunny R, Uria-Avellanal C, Bainbridge A, Sokolska M, Price D, Huertas-Ceballos A, Kendall GS, Meek J, Tachtsidis I, Robertson NJ. Pressure passivity of cerebral mitochondrial metabolism is associated with poor outcome following perinatal hypoxic ischemic brain injury. J Cereb Blood Flow Metab 2019; 39:118-130. [PMID: 28949271 PMCID: PMC6311664 DOI: 10.1177/0271678x17733639] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypoxic ischemic encephalopathy (HIE) leads to significant morbidity and mortality. Impaired autoregulation after hypoxia-ischaemia has been suggested to contribute further to injury. Thalamic lactate/N-Acetylasperate (Lac/NAA) peak area ratio of > 0.3 on proton (1H) magnetic resonance spectroscopy (MRS) is associated with poor neurodevelopment outcome following HIE. Cytochrome-c-oxidase (CCO) plays a central role in mitochondrial oxidative metabolism and ATP synthesis. Using a novel broadband NIRS system, we investigated the impact of pressure passivity of cerebral metabolism (CCO), oxygenation (haemoglobin difference (HbD)) and cerebral blood volume (total haemoglobin (HbT)) in 23 term infants following HIE during therapeutic hypothermia (HT). Sixty-minute epochs of data from each infant were studied using wavelet analysis at a mean age of 48 h. Wavelet semblance (a measure of phase difference) was calculated to compare reactivity between mean arterial blood pressure (MABP) with oxCCO, HbD and HbT. OxCCO-MABP semblance correlated with thalamic Lac/NAA ( r = 0.48, p = 0.02). OxCCO-MABP semblance also differed between groups of infants with mild to moderate and severe injury measured using brain MRI score ( p = 0.04), thalamic Lac/NAA ( p = 0.04) and neurodevelopmental outcome at one year ( p = 0.04). Pressure passive changes in cerebral metabolism were associated with injury severity indicated by thalamic Lac/NAA, MRI scores and neurodevelopmental assessment at one year of age.
Collapse
Affiliation(s)
- Subhabrata Mitra
- 1 Institute for Women's Health, University College London, London, UK
| | - Gemma Bale
- 2 Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - David Highton
- 3 Neurocritical Care, National Hospital for Neurology & Neurosurgery, University College London, London, UK
| | - Roxanna Gunny
- 4 Paediatric Neuroradiology, Great Ormond Street Hospital for Children, London, UK
| | | | - Alan Bainbridge
- 5 Department of Medical Physics and Biomedical Engineering, University College London Hospital, London, UK
| | - Magdalena Sokolska
- 5 Department of Medical Physics and Biomedical Engineering, University College London Hospital, London, UK
| | - David Price
- 5 Department of Medical Physics and Biomedical Engineering, University College London Hospital, London, UK
| | | | - Giles S Kendall
- 6 Neonatal Unit, University College London Hospital, London, UK
| | - Judith Meek
- 1 Institute for Women's Health, University College London, London, UK
| | - Ilias Tachtsidis
- 2 Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | | |
Collapse
|
10
|
Verius M, Frank F, Gizewski E, Broessner G. Magnetic Resonance Spectroscopy Thermometry at 3 Tesla: Importance of Calibration Measurements. Ther Hypothermia Temp Manag 2018; 9:146-155. [PMID: 30457932 DOI: 10.1089/ther.2018.0027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
To demonstrate the importance of calibration measurements in 3 Tesla proton magnetic resonance (MR) spectroscopy (1H-MRS) thermometry for human brain temperature estimation for routine clinical applications. In vitro proton MR spectroscopy to obtain calibration constants of the water-chemical shift was conducted at 3 Tesla with a temperature-controlled phantom, containing a pH-buffered aqueous solution of N-acetyl aspartate (NAA), creatine (Cr), methylene protons of Cr (Cr2), dimethyl silapentane sulfonic acid (DSS), and sodium formate (NaFor). Estimations of absolute human brain temperature were performed utilizing the correlation of temperature to the water-chemical shift for the resonances of NAA, Cr, and Cr2. Data for calibration of the metabolites' chemical shift differences and in vivo temperature estimations were acquired with single-voxel point-resolved spectroscopy (PRESS) sequences (repetition time/echo time = 2000/30 ms; voxel size 2 × 2 × 2 cm3). Spectroscopy data were quantified in the time-domain, and a Pearson correlation analysis was performed to estimate the correlation between the chemical shift of metabolites and measured temperatures. The correlation coefficients (r) of our calibration measurements were NAA 0.9975 (±0.0609), Cr -0.9979 (±0.0621), Cr2 - 0.9973 (±0.0577), DSS -0.9976 (±0.0615), and NaFor -0.8132 (±2.348). The mean calculated brain temperature was 37.78 ± 1.447°C, and the mean tympanic temperature was 36.83 ± 0.2456°C. Calculated temperatures derived from Cr and Cr2 provided significant (p = 0.0241 and p = 0.0210, respectively) correlations with measured temperatures (r = 0.4108 and r = -0.4194, respectively). Calibration measurements are vital for 1H-MRS thermometry. Small numeric differences in measured signal and data preprocessing without any calibration measurements reduce accuracy of temperature calculations, which indicates that calculated temperatures should be interpreted with caution. Application of this method for clinical purposes warrants further investigation and a more practical approach.
Collapse
Affiliation(s)
- Michael Verius
- 1 Medizinische Universität Innsbruck, Neuroimaging Research Core Facility, Innsbruck, Austria
| | - Florian Frank
- 2 Medizinische Universität Innsbruck, Universitätsklinik für Neurologie, Innsbruck, Austria
| | - Elke Gizewski
- 1 Medizinische Universität Innsbruck, Neuroimaging Research Core Facility, Innsbruck, Austria.,3 Medizinische Universität Innsbruck, Universitätsklinik für Neuroradiologie, Innsbruck, Austria
| | - Gregor Broessner
- 2 Medizinische Universität Innsbruck, Universitätsklinik für Neurologie, Innsbruck, Austria
| |
Collapse
|
11
|
Owji ZP, Gilbert G, Saint-Martin C, Wintermark P. Brain Temperature Is Increased During the First Days of Life in Asphyxiated Newborns: Developing Brain Injury Despite Hypothermia Treatment. AJNR Am J Neuroradiol 2017; 38:2180-2186. [PMID: 28860214 DOI: 10.3174/ajnr.a5350] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/12/2017] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND PURPOSE Therapeutic hypothermia is the current treatment for neonates with hypoxic-ischemic encephalopathy. It is believed to work by decreasing the brain temperature and reducing the baseline metabolism and energy demand of the brain. This study aimed to noninvasively assess brain temperature during the first month of life in neonates with hypoxic-ischemic encephalopathy treated with hypothermia. MATERIALS AND METHODS Neonates with hypoxic-ischemic encephalopathy treated with hypothermia and healthy neonates were enrolled prospectively. MR imaging was used to identify the presence and extent of brain injury. MR imaging multivoxel spectroscopy was used to derive brain temperatures in the basal ganglia and white matter at different time points during the first month of life. Brain temperature measurements were compared between neonates with hypoxic-ischemic encephalopathy and healthy neonates. RESULTS Forty-three term neonates with hypoxic-ischemic encephalopathy treated with hypothermia had a total of 74 spectroscopy scans, and 3 healthy term neonates had a total of 9 spectroscopy scans during the first month of life. Brain temperatures were lower in neonates with hypoxic-ischemic encephalopathy during hypothermia, compared with the healthy neonates (respectively, on day 1 of life: basal ganglia, 38.81°C ± 2.08°C, and white matter, 39.11°C ± 1.99°C; and on days 2-3 of life: basal ganglia, 38.25°C ± 0.91°C, and white matter, 38.54°C ± 2.79°C). However, neonates with hypoxic-ischemic encephalopathy who developed brain injury had higher brain temperatures during hypothermia (respectively, on day 1 of life: basal ganglia, 35.55°C ± 1.31°C, and white matter, 37.35°C ± 2.55°C; and on days 2-3 of life: basal ganglia, 35.20°C ± 1.15°C, and white matter, 35.44°C ± 1.90°C) compared with neonates who did not develop brain injury (respectively, on day 1 of life: basal ganglia, 34.46°C ± 1.09°C, and white matter, 33.97°C ± 1.42°C; and on days 2-3 of life: basal ganglia, 33.90°C ± 1.34°C, and white matter, 33.07°C ± 1.71°C). Also, brain temperatures tended to remain slightly higher in the neonates who developed brain injury around day 10 of life and around 1 month of age. CONCLUSIONS Therapeutic hypothermia using current guidelines decreased the brain temperature of neonates with hypoxic-ischemic encephalopathy during the first days of life but did not prevent an early increase of brain temperature in neonates with hypoxic-ischemic encephalopathy who developed brain injury despite this treatment.
Collapse
Affiliation(s)
- Z P Owji
- From the Department of Pediatrics, Division of Newborn Medicine, Research Institute of the McGill University Health Centre (Z.P.O., P.W.)
| | - G Gilbert
- MR Clinical Science (G.G.), Philips Healthcare, Montreal, Quebec, Canada
| | - C Saint-Martin
- Department of Pediatric Radiology (C.S.-M.), Montreal Children's Hospital, McGill University, Montreal, Quebec, Canada
| | - P Wintermark
- From the Department of Pediatrics, Division of Newborn Medicine, Research Institute of the McGill University Health Centre (Z.P.O., P.W.)
| |
Collapse
|
12
|
Tsitovich PB, Cox JM, Benedict JB, Morrow JR. Six-coordinate Iron(II) and Cobalt(II) paraSHIFT Agents for Measuring Temperature by Magnetic Resonance Spectroscopy. Inorg Chem 2016; 55:700-16. [PMID: 26716610 PMCID: PMC5555598 DOI: 10.1021/acs.inorgchem.5b02144] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Paramagnetic Fe(II) and Co(II) complexes are utilized as the first transition metal examples of (1)H NMR shift agents (paraSHIFT) for thermometry applications using Magnetic Resonance Spectroscopy (MRS). The coordinating ligands consist of TACN (1,4,7-triazacyclononane) and CYCLEN (1,4,7,10-tetraazacyclododecane) azamacrocycles appended with 6-methyl-2-picolyl groups, denoted as MPT and TMPC, respectively. (1)H NMR spectra of the MPT- and TMPC-based Fe(II) and Co(II) complexes demonstrate narrow and highly shifted resonances that are dispersed as broadly as 440 ppm. The six-coordinate complex cations, [M(MPT)](2+) and [M(TMPC)](2+), vary from distorted octahedral to distorted trigonal prismatic geometries, respectively, and also demonstrate that 6-methyl-2-picolyl pendents control the rigidity of these complexes. Analyses of the (1)H NMR chemical shifts, integrated intensities, line widths, the distances obtained from X-ray diffraction measurements, and longitudinal relaxation time (T1) values allow for the partial assignment of proton resonances of the [M(MPT)](2+) complexes. Nine and six equivalent methyl protons of [M(MPT)](2+) and [M(TMPC)](2+), respectively, produce 3-fold higher (1)H NMR intensities compared to other paramagnetically shifted proton resonances. Among all four complexes, the methyl proton resonances of [Fe(TMPC)](2+) and [Co(TMPC)](2+) at -49.3 ppm and -113.7 ppm (37 °C) demonstrate the greatest temperature dependent coefficients (CT) of 0.23 ppm/°C and 0.52 ppm/°C, respectively. The methyl groups of these two complexes both produce normalized values of |CT|/fwhm = 0.30 °C(-1), where fwhm is full width at half-maximum (Hz) of proton resonances. The T1 values of the highly shifted methyl protons are in the range of 0.37-2.4 ms, allowing rapid acquisition of spectroscopic data. These complexes are kinetically inert over a wide range of pH values (5.6-8.6), as well as in the presence of serum albumin and biologically relevant cations and anions. The combination of large hyperfine shifts, large temperature sensitivity, increased signal-to-noise ratio, and short T1 values suggests that these complexes, in particular the TMPC-based complexes, show promise as paraSHIFT agents for thermometry.
Collapse
Affiliation(s)
- Pavel B. Tsitovich
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260
| | - Jordan M. Cox
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260
| | - Jason B. Benedict
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260
| | - Janet R. Morrow
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260
| |
Collapse
|
13
|
Wagner MW, Stern SE, Oshmyansky A, Huisman TAGM, Poretti A. The Role of ADC-Based Thermometry in Measuring Brain Intraventricular Temperature in Children. J Neuroimaging 2015; 26:315-23. [PMID: 26707790 DOI: 10.1111/jon.12325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND AND PURPOSE To determine the feasibility of apparent diffusion coefficient (ADC)-based thermometry to assess intraventricular temperature in children. METHODS ADC maps were generated from diffusion tensor imaging data, which were acquired with diffusion gradients along 20 noncollinear directions using a b-value of 1000 s/mm(2) . The intraventricular temperature was calculated based on intraventricular ADC values and the mode method as previously reported. The calculated intraventricular temperature was validated with an estimated brain temperature based on temporal artery temperature measurements. We included 120 children in this study (49 females, 71 males, mean age 6.63 years), 15 consecutive children for each of the following age groups: 0-1, 1-2, 2-4, 4-6, 6-8, 8-10, 10-14, and 14-18 years. Forty-three children had a normal brain MRI and 77 children had an abnormal brain scan. Polynomial fitting to the temperature distribution and subsequent calculation of mode values was performed. A correlation coefficient and a coefficient of determination were calculated between ADC calculated temperatures and estimated brain temperatures. Linear regression analysis was performed to investigate the two temperature measures. RESULTS ADC-based intraventricular temperatures ranged between 31.5 and 39.6 °C, although estimated brain temperatures ranged between 36.3 and 38.1 °C. The difference between the temperatures is larger for children with more than 8,000 voxels within the lateral ventricles compared to children with less than 8,000 voxels. The correlation coefficient between ADC-based temperatures and the estimated brain temperatures is .1, the respective R(2) is .01 indicating that 1% of the changes in estimated brain temperatures are attributable to corresponding changes in ADC-based temperature measurements (P = .275). CONCLUSIONS ADC-based thermometry has limited application in the pediatric population mainly due to a small ventricular size.
Collapse
Affiliation(s)
- Matthias W Wagner
- Section of Pediatric Neuroradiology, Division of Pediatric Radiology, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Steven E Stern
- School of Mathematical Sciences, Faculty of Science and Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Alexander Oshmyansky
- Section of Pediatric Neuroradiology, Division of Pediatric Radiology, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD.,School of Mathematical Sciences, Faculty of Science and Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Thierry A G M Huisman
- Section of Pediatric Neuroradiology, Division of Pediatric Radiology, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Andrea Poretti
- Section of Pediatric Neuroradiology, Division of Pediatric Radiology, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
14
|
Tocchio S, Kline-Fath B, Kanal E, Schmithorst VJ, Panigrahy A. MRI evaluation and safety in the developing brain. Semin Perinatol 2015; 39:73-104. [PMID: 25743582 PMCID: PMC4380813 DOI: 10.1053/j.semperi.2015.01.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Magnetic resonance imaging (MRI) evaluation of the developing brain has dramatically increased over the last decade. Faster acquisitions and the development of advanced MRI sequences, such as magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI), perfusion imaging, functional MR imaging (fMRI), and susceptibility-weighted imaging (SWI), as well as the use of higher magnetic field strengths has made MRI an invaluable tool for detailed evaluation of the developing brain. This article will provide an overview of the use and challenges associated with 1.5-T and 3-T static magnetic fields for evaluation of the developing brain. This review will also summarize the advantages, clinical challenges, and safety concerns specifically related to MRI in the fetus and newborn, including the implications of increased magnetic field strength, logistics related to transporting and monitoring of neonates during scanning, and sedation considerations, and a discussion of current technologies such as MRI conditional neonatal incubators and dedicated small-foot print neonatal intensive care unit (NICU) scanners.
Collapse
Affiliation(s)
- Shannon Tocchio
- Pediatric Imaging Research Center, Department of Radiology Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Beth Kline-Fath
- Department of Radiology Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Emanuel Kanal
- Director, Magnetic Resonance Services; Professor of Neuroradiology; Department of Radiology, University of Pittsburgh Medical Center (UPMC)
| | - Vincent J. Schmithorst
- Pediatric Imaging Research Center, Department of Radiology Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Ashok Panigrahy
- Pediatric Imaging Research Center, Department of Radiology Children׳s Hospital of Pittsburgh of UPMC, University of Pittsburgh Medical Center, Pittsburgh, PA.
| |
Collapse
|
15
|
Parikh J, Thrippleton MJ, Murray C, Armitage PA, Harris BA, Andrews PJD, Wardlaw JM, Starr JM, Deary IJ, Marshall I. Proton spectroscopic imaging of brain metabolites in basal ganglia of healthy older adults. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2014; 28:251-7. [PMID: 25312604 PMCID: PMC4445772 DOI: 10.1007/s10334-014-0465-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 08/28/2014] [Accepted: 09/23/2014] [Indexed: 11/26/2022]
Abstract
Object
We sought to measure brain metabolite levels in healthy older people. Materials and methods Spectroscopic imaging at the level of the basal ganglia was applied in 40 participants aged 73–74 years. Levels of the metabolites N-acetyl aspartate (NAA), choline, and creatine were determined in "institutional units" (IU) corrected for T1 and T2 relaxation effects. Structural imaging enabled determination of grey matter (GM), white matter (WM), and cerebrospinal fluid content. ANOVA analysis was carried out for voxels satisfying quality criteria. Results Creatine levels were greater in GM than WM (57 vs. 44 IU, p < 0.001), whereas choline and NAA levels were greater in WM than GM [13 vs. 10 IU (p < 0.001) and 76 versus 70 IU (p = 0.03), respectively]. The ratio of NAA/cre was greater in WM than GM (2.1 vs. 1.4, p = 0.001) as was that of cho/cre (0.32 vs. 0.16, p < 0.001). A low voxel yield was due to brain atrophy and the difficulties of shimming over an extended region of brain. Conclusion This study addresses the current lack of information on brain metabolite levels in older adults. The normal features of ageing result in a substantial loss of reliable voxels and should be taken into account when planning studies. Improvements in shimming are also required before the methods can be applied more widely.
Collapse
Affiliation(s)
- Jehill Parikh
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor’s Building, Edinburgh, EH16 4SB UK
| | - Michael J. Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor’s Building, Edinburgh, EH16 4SB UK
| | - Catherine Murray
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Paul A. Armitage
- Academic Unit of Radiology, Department of Cardiovascular Science, University of Sheffield, Sheffield, UK
| | - Bridget A. Harris
- Critical Care Medicine, NHS Lothian and University of Edinburgh, Edinburgh, UK
| | - Peter J. D. Andrews
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor’s Building, Edinburgh, EH16 4SB UK
- Critical Care Medicine, NHS Lothian and University of Edinburgh, Edinburgh, UK
| | - Joanna M. Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor’s Building, Edinburgh, EH16 4SB UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - John M. Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Ian J. Deary
- Department of Psychology, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Ian Marshall
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor’s Building, Edinburgh, EH16 4SB UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
16
|
Thrippleton MJ, Parikh J, Harris BA, Hammer SJ, Semple SIK, Andrews PJD, Wardlaw JM, Marshall I. Reliability of MRSI brain temperature mapping at 1.5 and 3 T. NMR IN BIOMEDICINE 2014; 27:183-90. [PMID: 24273188 PMCID: PMC4265254 DOI: 10.1002/nbm.3050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 10/08/2013] [Accepted: 10/10/2013] [Indexed: 06/02/2023]
Abstract
MRSI permits the non-invasive mapping of brain temperature in vivo, but information regarding its reliability is lacking. We obtained MRSI data from 31 healthy male volunteers [age range, 22-40 years; mean ± standard deviation (SD), 30.5 ± 5.0 years]. Eleven subjects (age range, 23-40 years; mean ± SD, 30.5 ± 5.2 years) were invited to receive four point-resolved spectroscopy MRSI scans on each of 3 days in both 1.5-T (TR/TE = 1000/144 ms) and 3-T (TR/TE = 1700/144 ms) clinical scanners; a further 20 subjects (age range, 22-40 years; mean ± SD, 30.5 ± 4.9 years) were scanned on a single occasion at 3 T. Data were fitted in the time domain to determine the water-N-acetylaspartate chemical shift difference, from which the temperature was estimated. Temperature data were analysed using a linear mixed effects model to determine variance components and systematic temperature changes during the scanning sessions. To characterise the effects of instrumental drift on apparent MRSI brain temperature, a temperature-controlled phantom was constructed and scanned on multiple occasions. Components of apparent in vivo temperature variability at 1.5 T/3 T caused by inter-subject (0.18/0.17 °C), inter-session (0.18/0.15 °C) and within-session (0.36/0.14 °C) effects, as well as voxel-to-voxel variation (0.59/0.54 °C), were determined. There was a brain cooling effect during in vivo MRSI of 0.10 °C [95% confidence interval (CI): -0.110, -0.094 °C; p < 0.001] and 0.051 °C (95% CI: -0.054, -0.048 °C; p < 0.001) per scan at 1.5 T and 3 T, respectively, whereas phantom measurements revealed minimal drift in apparent MRSI temperature relative to fibre-optic temperature measurements. The mean brain temperature at 3 T was weakly associated with aural (R = 0.55, p = 0.002) and oral (R = 0.62, p < 0.001) measurements of head temperature. In conclusion, the variability associated with MRSI brain temperature mapping was quantified. Repeatability was somewhat higher at 3 T than at 1.5 T, although subtle spatial and temporal variations in apparent temperature were demonstrated at both field strengths. Such data should assist in the efficient design of future clinical studies.
Collapse
Affiliation(s)
- Michael J Thrippleton
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, University of EdinburghEdinburgh, UK
| | - Jehill Parikh
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, University of EdinburghEdinburgh, UK
| | | | - Steven J Hammer
- School of Engineering and Physical Sciences, Heriot-Watt UniversityEdinburgh, UK
| | - Scott I K Semple
- Clinical Research Imaging Centre, Centre for Cardiovascular Sciences, University of EdinburghEdinburgh, UK
| | - Peter J D Andrews
- Centre for Clinical Brain Sciences, University of EdinburghEdinburgh, UK
| | - Joanna M Wardlaw
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, University of EdinburghEdinburgh, UK
| | - Ian Marshall
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, University of EdinburghEdinburgh, UK
| |
Collapse
|