1
|
Nava S, Conte G, Triulzi FM, Comi GP, Magri F, Velardo D, Cinnante CM. Diffusion tensor imaging reveals subclinical alterations in muscles of patients with Becker muscular dystrophy. Br J Radiol 2024; 97:947-953. [PMID: 38574384 DOI: 10.1093/bjr/tqae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/21/2023] [Accepted: 03/27/2024] [Indexed: 04/06/2024] Open
Abstract
OBJECTIVES Becker muscular dystrophy (BMD) is a relatively less investigated neuromuscular disease, partially overlapping the phenotype of Duchenne dystrophy (DMD). Physiopathological and anatomical patterns are still not comprehensively known, despite recent effort in the search of early biomarkers. Aim of this study was to selectively compare normal appearing muscles of BMD with healthy controls. METHODS Among a pool of 40 BMD patients and 20 healthy controls, Sartorius and gracilis muscles were selected on the basis of a blinded clinical quantitative/qualitative evaluation, if classified as normal (0 or 1 on Mercuri scale) and subsequently segmented on diffusion tensor MRI scans with a tractographic approach. Diffusion derived parameters were extracted. RESULTS Non-parametric testing revealed significant differences between normal and normal appearing BMD derived parameters in both muscles, the difference being more evident in sartorius. Bonferroni-corrected P-values (<.05) of Mann-Whitney test could discriminate between BMD and controls for standard deviation of all diffusion parameters (mean diffusivity, fractional anisotropy, axial and radial diffusivity) in both sartorius and gracilis, while in sartorius the significant difference was found also in the average values of the same parameters (with exception of RD). CONCLUSIONS This method could identify microstructural alterations in BMD normal appearing sartorius and gracilis. ADVANCES IN KNOWLEDGE Diffusion based MRI could be able to identify possible early or subclinical microstructural alterations in dystrophic patients with BMD.
Collapse
Affiliation(s)
- Simone Nava
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy
| | - Giorgio Conte
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy
| | - Fabio M Triulzi
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy
| | - Giacomo P Comi
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, via Francesco Sforza 35, 20122 MilanItaly
| | - Francesca Magri
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, via Francesco Sforza 35, 20122 MilanItaly
| | - Daniele Velardo
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, via Francesco Sforza 35, 20122 MilanItaly
| | - Claudia M Cinnante
- Radiology Department, Istituto Auxologico Italiano IRCCS, Piazzale Brescia 20, 20149 Milan, Italy
| |
Collapse
|
2
|
Blemker SS, Brooks SV, Esser KA, Saul KR. Fiber-type traps: revisiting common misconceptions about skeletal muscle fiber types with application to motor control, biomechanics, physiology, and biology. J Appl Physiol (1985) 2024; 136:109-121. [PMID: 37994416 PMCID: PMC11212792 DOI: 10.1152/japplphysiol.00337.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/24/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023] Open
Abstract
Skeletal muscle is a highly complex tissue that is studied by scientists from a wide spectrum of disciplines, including motor control, biomechanics, exercise science, physiology, cell biology, genetics, regenerative medicine, orthopedics, and engineering. Although this diversity in perspectives has led to many important discoveries, historically, there has been limited overlap in discussions across fields. This has led to misconceptions and oversimplifications about muscle biology that can create confusion and potentially slow scientific progress across fields. The purpose of this synthesis paper is to bring together research perspectives across multiple muscle fields to identify common assumptions related to muscle fiber type that are points of concern to clarify. These assumptions include 1) classification by myosin isoform and fiber oxidative capacity is equivalent, 2) fiber cross-sectional area (CSA) is a surrogate marker for myosin isoform or oxidative capacity, and 3) muscle force-generating capacity can be inferred from myosin isoform. We address these three fiber-type traps and provide some context for how these misunderstandings can and do impact experimental design, computational modeling, and interpretations of findings, from the perspective of a range of fields. We stress the dangers of generalizing findings about "muscle fiber types" among muscles or across species or sex, and we note the importance for precise use of common terminology across the muscle fields.
Collapse
Affiliation(s)
- Silvia S Blemker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States
| | - Susan V Brooks
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Karyn A Esser
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
| | - Katherine R Saul
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, United States
| |
Collapse
|
3
|
Weedall AD, Dallaway A, Hattersley J, Diokno M, Hutchinson CE, Wilson AJ, Wayte SC. Changes in lumbar muscle diffusion tensor indices with age. BJR Open 2024; 6:tzae002. [PMID: 38371493 PMCID: PMC10873271 DOI: 10.1093/bjro/tzae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/10/2024] [Indexed: 02/20/2024] Open
Abstract
Objective To investigate differences in diffusion tensor imaging (DTI) parameters and proton density fat fraction (PDFF) in the spinal muscles of younger and older adult males. Methods Twelve younger (19-30 years) and 12 older (61-81years) healthy, physically active male participants underwent T1W, T2W, Dixon and DTI of the lumbar spine. The eigenvalues (λ1, λ2, and λ3), fractional anisotropy (FA), and mean diffusivity (MD) from the DTI together with the PDFF were determined in the multifidus, medial and lateral erector spinae (ESmed, ESlat), and quadratus lumborum (QL) muscles. A two-way ANOVA was used to investigate differences with age and muscle and t-tests for differences in individual muscles with age. Results The ANOVA gave significant differences with age for all DTI parameters and the PDFF (P < .01) and with muscle (P < .01) for all DTI parameters except for λ1 and for the PDFF. The mean of the eigenvalues and MD were lower and the FA higher in the older age group with differences reaching statistical significance for all DTI measures for ESlat and QL (P < .01) but only in ESmed for λ3 and MD (P < .05). Conclusions Differences in DTI parameters of muscle with age result from changes in both in the intra- and extra-cellular space and cannot be uniquely explained in terms of fibre length and diameter. Advances in knowledge Previous studies looking at age have used small groups with uneven age spacing. Our study uses two well defined and separated age groups.
Collapse
Affiliation(s)
- Andrew D Weedall
- Radiology Physics, Department of Clinical Physics and Bioengineering, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, United Kingdom
| | - Alexander Dallaway
- Centre for Physical Activity, Sport and Exercise Sciences, Coventry University, Coventry, CV1 5FB, United Kingdom
- Present Address: Faculty of Education, Health and Wellbeing, School of Health and Society, University of Wolverhampton, Wolverhampton, WV1 1LY, United Kingdom
| | - John Hattersley
- Human Metabolic Research Unit, Department of Research and Development, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, United Kingdom
- School of Engineering, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Michael Diokno
- Radiology Department, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, United Kingdom
| | - Charles E Hutchinson
- Radiology Department, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, United Kingdom
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Adrian J Wilson
- Human Metabolic Research Unit, Department of Research and Development, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, United Kingdom
- Department of Physics, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Sarah C Wayte
- Radiology Physics, Department of Clinical Physics and Bioengineering, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, United Kingdom
| |
Collapse
|
4
|
Charles JP, Bates KT. The Functional and Anatomical Impacts of Healthy Muscle Ageing. BIOLOGY 2023; 12:1357. [PMID: 37887067 PMCID: PMC10604714 DOI: 10.3390/biology12101357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023]
Abstract
Even "healthy" muscle ageing is often associated with substantial changes in muscle form and function and can lead to increased injury risks and significant negative impacts on quality of life. However, the impacts of healthy muscle ageing on the fibre architecture and microstructure of different muscles and muscle groups throughout the lower limb, and how these are related to their functional capabilities, are not fully understood. Here, a previously established framework of magnetic resonance and diffusion tensor imaging was used to measure the muscle volumes, intramuscular fat, fibre lengths and physiological cross-sectional areas of 12 lower limb muscles in a cohort of healthily aged individuals, which were compared to the same data from a young population. Maximum muscle forces were also measured from an isokinetic dynamometer. The more substantial interpopulation differences in architecture and functional performance were located within the knee extensor muscles, while the aged muscles were also more heterogeneous in muscle fibre type and atrophy. The relationships between architecture and muscle strength were also more significant in the knee extensors compared to other functional groups. These data highlight the importance of the knee extensors as a potential focus for interventions to negate the impacts of muscle ageing.
Collapse
Affiliation(s)
- James P. Charles
- Department of Musculoskeletal & Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK;
| | | |
Collapse
|
5
|
Martín-Noguerol T, Barousse R, Wessell DE, Rossi I, Luna A. Clinical applications of skeletal muscle diffusion tensor imaging. Skeletal Radiol 2023; 52:1639-1649. [PMID: 37083977 DOI: 10.1007/s00256-023-04350-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
Diffusion tensor imaging (DTI) may allow the determination of new threshold values, based on water anisotropy, to differentiate between healthy muscle and various pathological processes. Additionally, it may quantify treatment monitoring or training effects. Most current studies have evaluated the potential of DTI of skeletal muscle to assess sports-related injuries or therapy, and training monitoring. Another critical area of application of this technique is the characterization and monitoring of primary and secondary myopathies. In this manuscript, we review the application of DTI in the evaluation of skeletal muscle in these and other novel clinical scenarios, with emphasis on the use of quantitative imaging-derived biomarkers. Finally, the main limitations of the introduction of DTI in the clinical setting and potential areas of future use are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Antonio Luna
- MRI Unit, Radiology Department, HT Médica, Jaén, Spain
| |
Collapse
|
6
|
Carpenter RS, Samaan MA, Clasey JL, Butterfield TA, Gao F, Hardy PA, Bollinger LM. Association of vastus lateralis diffusion properties with in vivo quadriceps contractile function in premenopausal women. Scand J Med Sci Sports 2023; 33:213-223. [PMID: 36337008 PMCID: PMC9928607 DOI: 10.1111/sms.14266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/10/2022] [Accepted: 10/23/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Diffusion tensor imaging (DTI) parameters correlate with muscle fiber composition, but it is unclear how these relate to in vivo contractile function. PURPOSE To determine the relationship between DTI parameters of the vastus lateralis (VL) and in vivo knee extensor contractile. METHODS Thirteen healthy, premenopausal women underwent magnetic resonance imaging of the mid-thigh to determine patellar tendon moment arm length and quadriceps cross-sectional area. Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) of the VL were determined using diffusion tensor imaging (DTI). Participants underwent an interpolated twitch (ITT) experiment before and after a fatiguing concentric-eccentric isokinetic knee extension (60°·s-1 ). During the ITT, supramaximal electrical stimuli were delivered to elicit twitch responses from the knee extensors before, during, and after a maximal voluntary isometric contraction (MVIC). Knee extensor-specific tension during twitch and MVIC were calculated from isometric torque data. Pearson's correlations were used to determine the relationship between muscle contractile properties and DTI parameters. RESULTS MD and RD were moderately correlated with peak twitch force and rate of force development. FA and AD were moderately inversely related to percent change in MVIC following exercise. CONCLUSION MD and RD are associated with in vivo quadriceps twitch properties but not voluntary strength, which may reflect the mechanical properties of constituent fiber types. FA and AD appear to relate to MVIC strength following fatiguing exercise.
Collapse
Affiliation(s)
- Rebekah S Carpenter
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, Kentucky, USA
| | - Michael A Samaan
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, Kentucky, USA
| | - Jody L Clasey
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, Kentucky, USA
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA
- Body Composition Core Laboratory, University of Kentucky, Lexington, Kentucky, USA
| | - Tim A Butterfield
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA
- Department of Athletic Training, University of Kentucky, Lexington, Kentucky, USA
| | - Fan Gao
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, Kentucky, USA
| | - Peter A Hardy
- Department of Radiology, University of Kentucky, Lexington, Kentucky, USA
- Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky, Lexington, Kentucky, USA
| | - Lance M Bollinger
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, Kentucky, USA
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
7
|
Yamauchi K, Someya K, Kato C, Kato T. The Relationship Between Quadriceps Femoris Muscle Function and
MRI
‐Derived Water Diffusion and Adipose Tissue Measurements in Young Healthy Males. J Magn Reson Imaging 2022. [DOI: 10.1002/jmri.28525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Koun Yamauchi
- Department of Orthopaedic Surgery Akita hospital Chiryu City Aichi Japan
| | - Keita Someya
- Department of Radiology Akita Hospital Chiryu City Aichi Japan
| | - Chisato Kato
- Department of Orthopaedic Surgery Akita hospital Chiryu City Aichi Japan
| | - Takayuki Kato
- Department of Orthopaedic Surgery Akita hospital Chiryu City Aichi Japan
| |
Collapse
|
8
|
Martín-Noguerol T, Barousse R, Wessell DE, Rossi I, Luna A. A handbook for beginners in skeletal muscle diffusion tensor imaging: physical basis and technical adjustments. Eur Radiol 2022; 32:7623-7631. [PMID: 35554647 DOI: 10.1007/s00330-022-08837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 01/03/2023]
Abstract
Magnetic resonance imaging (MRI) of skeletal muscle is routinely performed using morphological sequences to acquire anatomical information. Recently, there is an increasing interest in applying advanced MRI techniques that provide pathophysiologic information for skeletal muscle evaluation to complement standard morphologic information. Among these advanced techniques, diffusion tensor imaging (DTI) has emerged as a potential tool to explore muscle microstructure. DTI can noninvasively assess the movement of water molecules in well-organized tissues with anisotropic diffusion, such as skeletal muscle. The acquisition of DTI studies for skeletal muscle assessment requires specific technical adjustments. Besides, knowledge of DTI physical basis and skeletal muscle physiopathology facilitates the evaluation of this advanced sequence and both image and parameter interpretation. Parameters derived from DTI provide a quantitative assessment of muscle microstructure with potential to become imaging biomarkers of normal and pathological skeletal muscle. KEY POINTS: • Diffusion tensor imaging (DTI) allows to evaluate the three-dimensional movement of water molecules inside biological tissues. • The skeletal muscle structure makes it suitable for being evaluated with DTI. • Several technical adjustments have to be considered for obtaining robust and reproducible DTI studies for skeletal muscle assessment, minimizing potential artifacts.
Collapse
Affiliation(s)
- Teodoro Martín-Noguerol
- MRI Section, Radiology Department, SERCOSA, HT Médica, Carmelo Torres 2, 23007, Jaén, Spain.
| | | | | | | | - Antonio Luna
- MRI Section, Radiology Department, SERCOSA, HT Médica, Carmelo Torres 2, 23007, Jaén, Spain
| |
Collapse
|
9
|
Newmire DE, Willoughby DS. The Skeletal Muscle Microbiopsy Method in Exercise and Sports Science Research: A Narrative and Methodological Review. Scand J Med Sci Sports 2022; 32:1550-1568. [PMID: 35904526 DOI: 10.1111/sms.14215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/27/2022] [Accepted: 07/24/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND The skeletal muscle microbiopsy protocol was introduced to the Exercise and Sports Science (ESS) research field in 1999 and has been used as a protocol to directly examine muscular structural and biochemical changes. There is much variation in the reporting of the microbiopsy protocol and its related pre-and post-procedure for participant care and sample collection. The purpose of this narrative and methodological review is to compare the microbiopsy to the traditional Bergström protocol used in the ESS field, identify and summarize all related microbiopsy protocols used in previous ESS studies and determine the most frequently used microbiopsy protocols aspects and associated pre- and post-biopsy procedures; METHODS: A review of literature up to January, 2022 was used following the PRISMA and Cochrane Methodological Review Guide to determine frequently used methods that may facilitate optimal and potential recommendations for muscle microbiopsy needle gauge (G), concentration or dose (% or mL) and administration of local anesthetic, co-axial/cannula introducer gauge (G), muscle depth (cm), muscle sample size collected (mg), passes to collect samples, time points of muscle sampling, and promotion of participant compliance and minimization of adverse events; RESULTS: 85 articles were selected based on the inclusionary requirements related to the ESS field or methodological considerations. The most frequently reported aspects in previous research to suggest the location of the vastus lateralis is the midpoint between the patella and the greater trochanter of the femur or 1/3 or 2/3 the distance from the patella to anterior superior iliac spine, 14 G biopsy needle, subcutaneous injected lidocaine administration (2 mL; 1%), 13 G co-axial/cannula, 1-2 cm muscle depth, 10-20 mg of muscle sample, ~3-time points, 2-3 passes; DISCUSSION: There is much variation in the reporting of the microbiopsy protocol and its related pre-and post-biopsy procedures. Standardization in reporting may promote recommendations to optimize data integrity, participant safety, participant adherence to the study design, and increase reproducibility. Recommendations are made for the microbiopsy procedure based on frequently reported characteristics.
Collapse
Affiliation(s)
- Daniel E Newmire
- Exercise Physiology and Biochemistry Laboratory, Department of Kinesiology, Texas A&M University-Corpus Christi, Corpus Christi, TX, USA
| | - Darryn S Willoughby
- School of Health Professions, School of Exercise and Sport Science Mayborn College of Health Sciences, University of Mary Hardin-Baylor, Belton, TX, USA
| |
Collapse
|
10
|
Diffusion tensor imaging (DTI) of human lower leg muscles: correlation between DTI parameters and muscle power with different ankle positions. Jpn J Radiol 2022; 40:939-948. [PMID: 35397060 PMCID: PMC9441424 DOI: 10.1007/s11604-022-01274-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/16/2022] [Indexed: 10/26/2022]
Abstract
PURPOSE To compare diffusion tensor imaging (DTI) parameters in healthy adult human lower leg muscles and to determine the correlation between DTI parameters and muscle power measurements among different types of muscle contraction. MATERIALS AND METHODS DTI measurements of the unilateral lower leg muscles having three different types of contraction (non-contraction state, isometric contraction, and soleus shortening) were obtained from 10 healthy adults using a 3-T MRI scanner. DTI parameters (λ1, λ2, λ3, mean diffusivity, and fractional anisotropy) were calculated. The values of the DTI parameters and correlation between the DTI parameters and muscle power measurements (maximum power and maximum amount of work) obtained from a dynamometer were statistically compared among the different types of contraction. Intra- and inter-class correlation coefficients were calculated for analysis of reproducibility. RESULTS The λ1, λ2, λ3, and mean diffusivity of the soleus muscle are significantly lower in the non-contraction state as compared with isometric contraction and soleus shortening (p < 0.05). A positive correlation of the soleus muscle in the non-contraction state was seen between the maximum power and the λ1, λ2, and mean diffusivity. There was a positive correlation between the maximum amount of work and fractional anisotropy in the non-contraction state for the soleus muscle. A negative correlation for the tibialis anterior muscle in the non-contraction state was seen between the maximum amount of work and fractional anisotropy. Overall reproducibility of the DTI parameters was excellent. CONCLUSIONS DTI parameters were significantly changed depending on the ankle joint position and type of muscle contraction.
Collapse
|
11
|
Englund EK, Reiter DA, Shahidi B, Sigmund EE. Intravoxel Incoherent Motion Magnetic Resonance Imaging in Skeletal Muscle: Review and Future Directions. J Magn Reson Imaging 2022; 55:988-1012. [PMID: 34390617 PMCID: PMC8841570 DOI: 10.1002/jmri.27875] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022] Open
Abstract
Throughout the body, muscle structure and function can be interrogated using a variety of noninvasive magnetic resonance imaging (MRI) methods. Recently, intravoxel incoherent motion (IVIM) MRI has gained momentum as a method to evaluate components of blood flow and tissue diffusion simultaneously. Much of the prior research has focused on highly vascularized organs, including the brain, kidney, and liver. Unique aspects of skeletal muscle, including the relatively low perfusion at rest and large dynamic range of perfusion between resting and maximal hyperemic states, may influence the acquisition, postprocessing, and interpretation of IVIM data. Here, we introduce several of those unique features of skeletal muscle; review existing studies of IVIM in skeletal muscle at rest, in response to exercise, and in disease states; and consider possible confounds that should be addressed for muscle-specific evaluations. Most studies used segmented nonlinear least squares fitting with a b-value threshold of 200 sec/mm2 to obtain IVIM parameters of perfusion fraction (f), pseudo-diffusion coefficient (D*), and diffusion coefficient (D). In healthy individuals, across all muscles, the average ± standard deviation of D was 1.46 ± 0.30 × 10-3 mm2 /sec, D* was 29.7 ± 38.1 × 10-3 mm2 /sec, and f was 11.1 ± 6.7%. Comparisons of reported IVIM parameters in muscles of the back, thigh, and leg of healthy individuals showed no significant difference between anatomic locations. Throughout the body, exercise elicited a positive change of all IVIM parameters. Future directions including advanced postprocessing models and potential sequence modifications are discussed. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Erin K. Englund
- Department of Radiology, University of Colorado Anschutz Medical Campus
| | | | | | - Eric E. Sigmund
- Department of Radiology, New York University Grossman School of Medicine, NYU Langone Health
- Center for Advanced Imaging and Innovation (CAIR), Bernard and Irene Schwarz Center for Biomedical Imaging (CBI), NYU Langone Health
| |
Collapse
|
12
|
A Conceptual Blueprint for Making Neuromusculoskeletal Models Clinically Useful. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052037] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The ultimate goal of most neuromusculoskeletal modeling research is to improve the treatment of movement impairments. However, even though neuromusculoskeletal models have become more realistic anatomically, physiologically, and neurologically over the past 25 years, they have yet to make a positive impact on the design of clinical treatments for movement impairments. Such impairments are caused by common conditions such as stroke, osteoarthritis, Parkinson’s disease, spinal cord injury, cerebral palsy, limb amputation, and even cancer. The lack of clinical impact is somewhat surprising given that comparable computational technology has transformed the design of airplanes, automobiles, and other commercial products over the same time period. This paper provides the author’s personal perspective for how neuromusculoskeletal models can become clinically useful. First, the paper motivates the potential value of neuromusculoskeletal models for clinical treatment design. Next, it highlights five challenges to achieving clinical utility and provides suggestions for how to overcome them. After that, it describes clinical, technical, collaboration, and practical needs that must be addressed for neuromusculoskeletal models to fulfill their clinical potential, along with recommendations for meeting them. Finally, it discusses how more complex modeling and experimental methods could enhance neuromusculoskeletal model fidelity, personalization, and utilization. The author hopes that these ideas will provide a conceptual blueprint that will help the neuromusculoskeletal modeling research community work toward clinical utility.
Collapse
|
13
|
Di Pietro G, Scimeca M, Iundusi R, Celi M, Gasbarra E, Tarantino U, Capuani S. Differences between muscle from osteoporotic and osteoarthritic subjects: in vitro study by diffusion-tensor MRI and histological findings. Aging Clin Exp Res 2020; 32:2489-2499. [PMID: 32026431 DOI: 10.1007/s40520-020-01483-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 01/13/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND Osteoarthritis and osteoporosis are strongly coupled with alterations of muscles quality and fats metabolism. However, there are no studies for investigating possible differences between osteoporotic and osteoarthritic muscles. Understanding muscle-bone and muscle-cartilage interactions would be of high clinical value. AIM Investigate potential microstructural and physiological differences between osteoporotic and osteoarthritic muscles by diffusion Nuclear Magnetic Resonance (NMR) imaging (diffusion MRI) and histological findings. METHODS Vastus-lateralis muscles excised from osteoporotic (n = 26, T Score < - 2.5, Kellgren-Lawrence ≤ 2) and osteoarthritic (n = 26, T Score > - 2.5, Kellgren--Lawrence 3 and 4) age-matched women were investigated by NMR relaxometry, diffusion-tensor imaging (DTI) at 9.4 T, and histological techniques. Intramyocellular (IMCL) and extramyocellular (EMCL) lipid were quantified. The percentage and mean diameters of fibers I and II were evaluated. Relationship between mean diffusivity (MD), fractional anisotropy (FA), the DTI eigenvalues (λ1, λ2, λ3), histological findings in muscles and clinical data (Kellgren-Lawrence and T score, age, menopausal age, body mass index) were studied. Pairwise comparisons between groups were made using one-way analysis of variance and correlation between variables was assessed with linear correlation analysis (Pearson's r coefficient). RESULTS Osteoporotic muscles showed higher MD, λ1, λ2, λ3 compared to osteoarthritis ones. This is explainable with a significant higher density of IMCL droplets found inside the osteoarthritic muscles and a large amount of fibrotic tissue and IMCL infiltration between fibers, i.e. in endomysium and perimysium that lead to a more hindered diffusion. Furthermore, histological analysis suggests mitochondrial degeneration as the origin of the greatest amount of IMCL droplets in osteoarthritic muscles. CONCLUSION This work highlights differences between muscles of osteoporotic and osteoarthritic subjects that can be quantified by NMR DTI investigations.
Collapse
|
14
|
Goodall AF, Broadbent DA, Dumitru RB, Buckley DL, Tan AL, Buch MH, Biglands JD. Feasibility of MRI based extracellular volume fraction and partition coefficient measurements in thigh muscle. Br J Radiol 2020; 93:20190931. [PMID: 32356494 DOI: 10.1259/bjr.20190931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE This study aimed to assess the feasibility of extracellular volume-fraction (ECV) measurement, and time to achieve contrast equilibrium (CE), in healthy muscles, and to determine whether in-flow and partial-volume errors in the femoral artery affect measurements, and if there are differences in the partition coefficient (λ) between muscles. METHODS T1 was measured in the biceps femoris, vastus intermedius, femoral artery and aorta of 10 healthy participants. This was repeated alternately between the thigh and aorta for ≥25 min following a bolus of gadoterate meglumine. λ was calculated for each muscle/blood measurement. Time to CE was assessed semi-quantitatively. RESULTS 8/10 participants achieved CE. Time to CE = 19±2 min (mean ± 95% confidence interval). Measured λ: biceps femoris/aorta = 0.210±0.034, vastus intermedius/aorta = 0.165±0.015, biceps femoris/femoral artery = 0.265±0.054, vastus intermedius/femoral artery = 0.211±0.026. There were significant differences in λ between the muscles when using the same vessel (p < 0.05), and between λ calculated in the same muscle when using different vessels (p < 0.05). CONCLUSION ECV measurements in the thigh are clinically feasible. The use of the femoral artery for the blood measurement is associated with small but significant differences in λ. ECV measurements are sensitive to differences between muscles within the healthy thigh. ADVANCES IN KNOWLEDGE This paper determines the time to contrast equilibrium in the healthy thigh and describes a method for measuring accurately ECV in skeletal muscle. This can aid in the diagnosis and understanding of inflammatory auto-immune diseases.
Collapse
Affiliation(s)
- Alex F Goodall
- Department Of Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, UK.,Department of Medical Imaging and Medical Physics, Sheffield Teaching Hospitals Foundation Trust, Sheffield, UK
| | - David A Broadbent
- Department Of Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Raluca B Dumitru
- NIHR Leeds Biomedical Research Centre, Leeds, UK.,Leeds Institute of Rheumatic and Musculoskeletal Medicine, University Of Leeds, Leeds, UK
| | | | - Ai Lyn Tan
- NIHR Leeds Biomedical Research Centre, Leeds, UK.,Leeds Institute of Rheumatic and Musculoskeletal Medicine, University Of Leeds, Leeds, UK
| | - Maya H Buch
- NIHR Leeds Biomedical Research Centre, Leeds, UK.,Leeds Institute of Rheumatic and Musculoskeletal Medicine, University Of Leeds, Leeds, UK.,Centre for Musculoskeletal Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - John D Biglands
- Department Of Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, UK.,NIHR Leeds Biomedical Research Centre, Leeds, UK
| |
Collapse
|
15
|
Cheung SM, Keenan K, Senn N, Hutcheon G, Chan K, Erwig L, Schrepf A, Dospinescu P, Gray S, Waiter G, He J, Basu N. Metabolic and Structural Skeletal Muscle Health in Systemic Lupus Erythematosus-Related Fatigue: A Multimodal Magnetic Resonance Imaging Study. Arthritis Care Res (Hoboken) 2020; 71:1640-1646. [PMID: 30629805 DOI: 10.1002/acr.23833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 01/08/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To investigate the potential structural and metabolic role of skeletal muscle in systemic lupus erythematosus (SLE)-related fatigue. METHODS A case-control, multimodal magnetic resonance imaging (MRI) study was conducted. Cases were patients with inactive SLE who reported chronic fatigue. Controls were age- and sex-matched healthy members of the general population. Patients were clinically characterized and then underwent a 3T whole-body MRI scan. Resting and dynamic 31 P MRI spectroscopy of the calf muscles was applied, from which phosphocreatine (PCr) recovery halftime, a marker of mitochondrial dysfunction, was computed. In addition, microstructural sequences (T1-weighted anatomic images, T2 mapping, and diffusion tensor imaging) were acquired. Descriptive statistics evaluated group differences and within-case physical fatigue correlations were explored. RESULTS Of the 37 recruits (mean age 43.8 years, 89.2% female), cases (n = 19) reported higher levels of physical fatigue, pain, depression, and sleep disturbance compared to the control group (P < 0.0001). PCr was greater (P = 0.045) among cases (mean ± SD 33.0 ± 9.0 seconds) compared to controls (mean ± SD 27.1 ± 6.6 seconds). No microstructural group differences were observed. Within cases, physical fatigue did not correlate with PCr (r = -0.28, P = 0.25). CONCLUSION We report preliminary data demonstrating greater skeletal muscle mitochondrial dysfunction among fatigued patients with SLE compared to healthy controls.
Collapse
Affiliation(s)
| | | | | | | | | | - Lars Erwig
- University of Aberdeen, Aberdeen, and GlaxoSmithKline, Stevenage, UK
| | | | | | | | | | - Jiabao He
- University of Aberdeen, Aberdeen, UK
| | | |
Collapse
|
16
|
Pereira Botelho D, Curran K, Lowery MM. Anatomically accurate model of EMG during index finger flexion and abduction derived from diffusion tensor imaging. PLoS Comput Biol 2019; 15:e1007267. [PMID: 31465437 PMCID: PMC6738720 DOI: 10.1371/journal.pcbi.1007267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 09/11/2019] [Accepted: 07/08/2019] [Indexed: 01/31/2023] Open
Abstract
This study presents a modelling framework in which information on muscle fiber direction and orientation during contraction is derived from diffusion tensor imaging (DTI) and incorporated in a computational model of the surface electromyographic (EMG) signal. The proposed model makes use of the principle of reciprocity to simultaneously calculate the electric potentials produced at the recording electrode by charges distributed along an arbitrary number of muscle fibers within the muscle, allowing for a computationally efficient evaluation of extracellular motor unit action potentials. The approach is applied to the complex architecture of the first dorsal interosseous (FDI) muscle of the hand to simulate EMG during index finger flexion and abduction. Using diffusion tensor imaging methods, the results show how muscle fiber orientation and curvature in this intrinsic hand muscle change during flexion and abduction. Incorporation of anatomically accurate muscle architecture and other hand tissue morphologies enables the model to capture variations in extracellular action potential waveform shape across the motor unit population and to predict experimentally observed differences in EMG signal features when switching from index finger abduction to flexion. The simulation results illustrate how structural and electrical properties of the tissues comprising the volume conductor, in combination with fiber direction and curvature, shape the detected action potentials. Using the model, the relative contribution of motor units of different sizes located throughout the muscle under both conditions is examined, yielding a prediction of the detection profile of the surface EMG electrode array over the muscle cross-section. Advances in diffusion tensor imaging are providing new information on muscle architecture and the orientation of muscle fibers in vivo. The arrangement of muscle fibers, in combination with geometrical and electrical properties of the surrounding biological tissues, shapes the electrical signal recorded at the skin surface during muscle contraction. As new recording and analysis methods enable muscle and motor unit activity to be examined during complex dynamic contractions, changes in muscle fiber orientation and surrounding tissue properties pose challenges for the interpretation of these data. Here we incorporate details of tissue geometry and muscle fiber architecture obtained using anatomical and diffusion MRI into an anatomically accurate model of electromyography (EMG) signal generation in the first dorsal interosseous muscle of the hand. The new modeling approach presented integrates interdependent electrical and geometrical properties in an anatomically accurate manner, leading to a realistic EMG model where tissue electrical properties are inherently related to bioelectric aspects of muscle activation. The results show how muscle fiber orientation and curvature change according to the direction of force generation, influencing the EMG signal, and provide new insights on how constitutive, anatomical and physiological properties contribute to shape motor unit action potentials detected at the skin surface.
Collapse
Affiliation(s)
- Diego Pereira Botelho
- School of Electrical and Electronic Engineering, University College Dublin, Belfield, Dublin, Ireland
| | - Kathleen Curran
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Madeleine M Lowery
- School of Electrical and Electronic Engineering, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
17
|
Naughton NM, Georgiadis JG. Comparison of two-compartment exchange and continuum models of dMRI in skeletal muscle. ACTA ACUST UNITED AC 2019; 64:155004. [DOI: 10.1088/1361-6560/ab2aa6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
18
|
Farrow M, Grainger AJ, Tan AL, Buch MH, Emery P, Ridgway JP, Feiweier T, Tanner SF, Biglands J. Normal values and test-retest variability of stimulated-echo diffusion tensor imaging and fat fraction measurements in the muscle. Br J Radiol 2019; 92:20190143. [PMID: 31298948 DOI: 10.1259/bjr.20190143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES To assess the test-retest variability of both diffusion parameters and fat fraction (FF) estimates in normal muscle, and to assess differences in normal values between muscles in the thigh. METHODS 29 healthy volunteers (mean age 37 years, range 20-60 years, 17/29 males) completed the study. Magnetic resonance images of the mid-thigh were acquired using a stimulated echo acquisition mode-echoplanar imaging (STEAM-EPI) imaging sequence, to assess diffusion, and 2-point Dixon imaging, to assess FF. Imaging was repeated in 19 participants after a 30 min interval in order to assess test-retest variability of the measurements. RESULTS Intraclass correlation coefficients (ICCs) for test-retest variability were 0.99 [95% confidence interval, (CI): 0.98, 1] for FF, 0.94 (95% CI: 0.84, 0.97) for mean diffusivity and 0.89 (95% CI: 0.74, 0.96) for fractional anisotropy (FA). FF was higher in the hamstrings than the quadriceps by a mean difference of 1.81% (95% CI:1.63, 2.00)%, p < 0.001. Mean diffusivity was significantly lower in the hamstrings than the quadriceps (0.26 (0.13, 0.39) x10-3 mm2s-1, p < 0.001) whereas fractional anisotropy was significantly higher in the hamstrings relative to the quadriceps with a mean difference of 0.063 (0.05, 0.07), p < 0.001. CONCLUSIONS This study has shown excellent test-retest, variability in MR-based FF and diffusion measurements and demonstrated significant differences in these measures between hamstrings and quadriceps in the healthy thigh. ADVANCES IN KNOWLEDGE Test-retest variability is excellent for STEAM-EPI diffusion and 2-point Dixon-based FF measurements in the healthy muscle. Inter- and intraobserver variability were excellent for region of interest placement for STEAM-EPI diffusion and 2-point Dixon-based FF measurements in the healthy muscle. There are significant differences in FF and diffusion measurements between the hamstrings and quadriceps in the normal muscle.
Collapse
Affiliation(s)
- Matthew Farrow
- 1Leeds institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, United Kingdom.,2NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Andrew J Grainger
- 1Leeds institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, United Kingdom.,2NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Ai Lyn Tan
- 1Leeds institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, United Kingdom.,2NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Maya H Buch
- 1Leeds institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, United Kingdom.,2NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Paul Emery
- 1Leeds institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, United Kingdom.,2NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - John P Ridgway
- 2NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom.,3Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | | | - Steven F Tanner
- 2NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom.,3Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - John Biglands
- 2NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom.,3Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| |
Collapse
|
19
|
Valentine J, Dyke J, Ward R, Thornton A, Blair E, Stannage K, Elliott C, Fabian V. Normative data of muscle fiber diameter of vastus lateralis during childhood: a field test. Muscle Nerve 2019; 59:590-593. [PMID: 30680744 DOI: 10.1002/mus.26426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Currently, our knowledge of standard data for muscle morphology in children is largely limited to the 1969 article by Brooke and Engel (BE). In 2016, we reported normal muscle morphology from vastus lateralis biopsies in ambulant children with cerebral palsy (CP). This report compares our normal biopsy results against BE standard value criteria. METHODS Single-blind prospective cross-sectional study design. RESULTS Results of biopsies taken in ambulant children with CP were normal according to morphometry and light and electron microscopy; however, only 5 of 10 fulfilled the BE standard value criteria. DISCUSSION This short report highlights the requirement for contemporary age-specific normative data from a larger number of biopsies, including typically developing children. Review of the literature suggests that biopsy material may be available from typically developing children who were control patients in research trials. This morphometric data could contribute to expanding the normative data set. Muscle Nerve 59:590-590, 2019.
Collapse
Affiliation(s)
- Jane Valentine
- Department of Paediatric Rehabilitation, Princess Margaret Hospital, Perth, Western Australia, Australia.,University of Western Australia, Perth, Western Australia, Australia
| | - Jason Dyke
- Neuropathology Section, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Rosyln Ward
- Faculty of Health Science, Curtin University, Perth, Western Australia, Australia
| | - Ashleigh Thornton
- Department of Paediatric Rehabilitation, Princess Margaret Hospital, Perth, Western Australia, Australia.,University of Western Australia, Perth, Western Australia, Australia
| | - Eve Blair
- Telethon Kids Institute, Perth, Western Australia, Australia
| | - Katherine Stannage
- Department of Orthopaedic Surgery, Princess Margaret Hospital, Perth, Western Australia, Australia
| | - Catherine Elliott
- Department of Paediatric Rehabilitation, Princess Margaret Hospital, Perth, Western Australia, Australia.,Faculty of Health Science, Curtin University, Perth, Western Australia, Australia
| | - Vicki Fabian
- University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
20
|
Odéen H, Parker DL. Magnetic resonance thermometry and its biological applications - Physical principles and practical considerations. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 110:34-61. [PMID: 30803693 PMCID: PMC6662927 DOI: 10.1016/j.pnmrs.2019.01.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/23/2019] [Indexed: 05/25/2023]
Abstract
Most parameters that influence the magnetic resonance imaging (MRI) signal experience a temperature dependence. The fact that MRI can be used for non-invasive measurements of temperature and temperature change deep inside the human body has been known for over 30 years. Today, MR temperature imaging is widely used to monitor and evaluate thermal therapies such as radio frequency, microwave, laser, and focused ultrasound therapy. In this paper we cover the physical principles underlying the biological applications of MR temperature imaging and discuss practical considerations and remaining challenges. For biological tissue, the MR signal of interest comes mostly from hydrogen protons of water molecules but also from protons in, e.g., adipose tissue and various metabolites. Most of the discussed methods, such as those using the proton resonance frequency (PRF) shift, T1, T2, and diffusion only measure temperature change, but measurements of absolute temperatures are also possible using spectroscopic imaging methods (taking advantage of various metabolite signals as internal references) or various types of contrast agents. Currently, the PRF method is the most used clinically due to good sensitivity, excellent linearity with temperature, and because it is largely independent of tissue type. Because the PRF method does not work in adipose tissues, T1- and T2-based methods have recently gained interest for monitoring temperature change in areas with high fat content such as the breast and abdomen. Absolute temperature measurement methods using spectroscopic imaging and contrast agents often offer too low spatial and temporal resolution for accurate monitoring of ablative thermal procedures, but have shown great promise in monitoring the slower and usually less spatially localized temperature change observed during hyperthermia procedures. Much of the current research effort for ablative procedures is aimed at providing faster measurements, larger field-of-view coverage, simultaneous monitoring in aqueous and adipose tissues, and more motion-insensitive acquisitions for better precision measurements in organs such as the heart, liver, and kidneys. For hyperthermia applications, larger coverage, motion insensitivity, and simultaneous aqueous and adipose monitoring are also important, but great effort is also aimed at solving the problem of long-term field drift which gets interpreted as temperature change when using the PRF method.
Collapse
Affiliation(s)
- Henrik Odéen
- University of Utah, Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, 729 Arapeen Drive, Salt Lake City, UT 84108-1217, USA.
| | - Dennis L Parker
- University of Utah, Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, 729 Arapeen Drive, Salt Lake City, UT 84108-1217, USA.
| |
Collapse
|
21
|
Diffusion Tensor Imaging of the Lateral Rectus Muscle in Duane Retraction Syndrome. J Comput Assist Tomogr 2019; 43:467-471. [DOI: 10.1097/rct.0000000000000859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Muscle diffusion tensor imaging in glycogen storage disease V (McArdle disease). Eur Radiol 2018; 29:3224-3232. [DOI: 10.1007/s00330-018-5885-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/18/2018] [Accepted: 11/13/2018] [Indexed: 12/20/2022]
|
23
|
Arrigoni F, De Luca A, Velardo D, Magri F, Gandossini S, Russo A, Froeling M, Bertoldo A, Leemans A, Bresolin N, D'angelo G. Multiparametric quantitative MRI assessment of thigh muscles in limb-girdle muscular dystrophy 2A and 2B. Muscle Nerve 2018; 58:550-558. [PMID: 30028523 DOI: 10.1002/mus.26189] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 05/29/2018] [Accepted: 06/03/2018] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The aim of this study was to apply quantitative MRI (qMRI) to assess structural modifications in thigh muscles of subjects with limb girdle muscular dystrophy (LGMD) 2A and 2B with long disease duration. METHODS Eleven LGMD2A, 9 LGMD2B patients and 11 healthy controls underwent a multi-parametric 3T MRI examination of the thigh. The protocol included structural T1-weighted images, DIXON sequences for fat fraction calculation, T2 values quantification and diffusion MRI. Region of interest analysis was performed on 4 different compartments (anterior compartment, posterior compartment, gracilis, sartorius). RESULTS Patients showed high levels of fat infiltration as measured by DIXON sequences. Sartorius and anterior compartment were more infiltrated in LGMD2B than LGMD2A patients. T2 values were mildly reduced in both disorders. Correlations between clinical scores and qMRI were found. CONCLUSIONS qMRI measures may help to quantify muscular degeneration, but careful interpretation is needed when fat infiltration is massive. Muscle Nerve 58: 550-558, 2018.
Collapse
Affiliation(s)
- Filippo Arrigoni
- Neuroimaging Lab, Scientific Institute, IRCCS E. Medea, Via don L. Monza 20, Bosisio Parini, Italy
| | - Alberto De Luca
- Image Sciences Institute, University Medical Center Utrecht and University Utrecht, Utrecht, The Netherlands
| | - Daniele Velardo
- NeuroMuscular Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy
| | - Francesca Magri
- Neurology Unit, IRCCS Foundation Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Sandra Gandossini
- NeuroMuscular Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy
| | - Annamaria Russo
- NeuroMuscular Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy
| | - Martijn Froeling
- NeuroMuscular Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy
| | | | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht and University Utrecht, Utrecht, The Netherlands
| | - Nereo Bresolin
- Neurology Unit, IRCCS Foundation Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Grazia D'angelo
- NeuroMuscular Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy
| |
Collapse
|
24
|
Agten A, Verbrugghe J, Stevens S, Boomgaert L, O Eijnde B, Timmermans A, Vandenabeele F. Feasibility, accuracy and safety of a percutaneous fine-needle biopsy technique to obtain qualitative muscle samples of the lumbar multifidus and erector spinae muscle in persons with low back pain. J Anat 2018; 233:542-551. [PMID: 30033540 DOI: 10.1111/joa.12867] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2018] [Indexed: 12/12/2022] Open
Abstract
The lumbar muscular system, in particular the lumbar multifidus muscle (LM) and the erector spinae muscle (ES), plays an important role in stabilizing and mobilizing the lumbar spine. Based on the topography, the lumbar paraspinal muscles can be classified into local and global muscles. LM is part of the local system, whereas ES is part of the global system. Therefore, it is interesting to investigate the muscle fibre type composition in both muscles. There is accumulating evidence that nonspecific chronic low back pain is associated with lumbar muscle dysfunction. To further elucidate this lumbar paraspinal muscle dysfunction, it is important to understand the structural characteristics of individual muscle fibres of LM and ES. Muscle fibre type composition can be investigated in muscle tissue samples. So far, muscle samples are taken by using invasive procedures that are not well tolerated. The aim of this article was to evaluate the feasibility, accuracy and safety of a percutaneous fine-needle biopsy technique to obtain muscle samples from LM and ES in persons with nonspecific chronic low back pain and to evaluate the feasibility of performing immunofluorescence analysis of myosin heavy chain isoform expression to investigate muscle fibre type composition. Preliminary investigations in cadavers were performed to determine the optimal vertebral level and puncture site to obtain muscle samples of LM and ES through a single skin puncture. In 15 persons with nonspecific chronic low back pain, muscle samples of LM and ES were taken under local anaesthesia with the percutaneous fine-needle biopsy technique, preceded by determination of the puncture site with ultrasonography. Muscle fibre type composition was investigated using immunofluorescence analysis of myosin heavy chain expression. The subjects reported little or no pain and were willing to repeat the procedure. The obtained muscle tissue contained transverse-sectioned muscle fibres in which muscle fibre contractile characteristics of the paraspinal muscles could be evaluated with immunofluorescence analysis of the myosin heavy chains. We can conclude that percutaneous microbiopsy appears to be feasible and accurate, and safe to use to obtain muscle tissue from the paraspinal muscles. The use of ultrasonography to determine the puncture site is necessary to ensure biopsy of the correct muscles and to ensure the safety of the procedure.
Collapse
Affiliation(s)
- Anouk Agten
- Rehabilitation Research Center, Faculty of Medicine and Life Sciences, BIOMED Biomedical Research Institute, UHasselt - Hasselt University, Diepenbeek, Belgium
| | - Jonas Verbrugghe
- Rehabilitation Research Center, Faculty of Medicine and Life Sciences, BIOMED Biomedical Research Institute, UHasselt - Hasselt University, Diepenbeek, Belgium
| | - Sjoerd Stevens
- Rehabilitation Research Center, Faculty of Medicine and Life Sciences, BIOMED Biomedical Research Institute, UHasselt - Hasselt University, Diepenbeek, Belgium
| | | | - Bert O Eijnde
- Rehabilitation Research Center, Faculty of Medicine and Life Sciences, BIOMED Biomedical Research Institute, UHasselt - Hasselt University, Diepenbeek, Belgium
| | - Annick Timmermans
- Rehabilitation Research Center, Faculty of Medicine and Life Sciences, BIOMED Biomedical Research Institute, UHasselt - Hasselt University, Diepenbeek, Belgium
| | - Frank Vandenabeele
- Rehabilitation Research Center, Faculty of Medicine and Life Sciences, BIOMED Biomedical Research Institute, UHasselt - Hasselt University, Diepenbeek, Belgium.,Department of Morphology, Faculty of Medicine and Life Sciences, UHasselt - Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
25
|
Bruschetta D, Anastasi G, Andronaco V, Cascio F, Rizzo G, Di Mauro D, Bonanno L, Izzo V, Buda D, Vermiglio G, Bertino S, Cacciola G, Bramanti A, Milardi D. Human calf muscles changes after strength training as revealed by diffusion tensor imaging. J Sports Med Phys Fitness 2018; 59:853-860. [PMID: 30024127 DOI: 10.23736/s0022-4707.18.08759-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Diffusion tensor imaging (DTI) is a non-invasive MR technique widely employed to study muscle anatomy. DTI parameters have been used to investigate microstructural changes dependent on demographic factors or transient condition such as exercise. The present study is aimed at investigating the diffusion parameters changes of the human calf muscles after a 3-months strength training protocol. METHODS Ten young men were trained for improving size and strength of the medial (GCM), lateral gastrocnemius (GCL) and soleus (SL) three times a week, with at least 24 hours between training sessions, for a period of three months. Diffusion weighted magnetic resonance images were acquired at the beginning of the training period (TPRE) and at three months (TPOST) using a 3T scanner. The fractional anisotropy (FA), mean diffusivity (MD) and tensor eigenvalues (λ1, λ2, λ3) were derived from the diffusion weighted imaging data. RESULTS We found a significant increase in λ1, λ2, λ3 and MD values and muscle volumes between TPRE and TPOST in all the examined muscles both for the left and right side. No significant differences were highlighted for FA. CONCLUSIONS DTI enables the investigation of muscle microstructure, allowing for the assessment of diffusion parameters variation of the muscle tissue in response to training thus being a useful tool to investigate physiological and pathological changes in skeletal muscle microstructure which could be employed to test the outcomes and the effectiveness of a given training protocol.
Collapse
Affiliation(s)
- Daniele Bruschetta
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Giuseppe Anastasi
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | - Filippo Cascio
- Department of Otorhinolaryngology, Papardo Hospital, Messina, Italy
| | - Giuseppina Rizzo
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Debora Di Mauro
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Lilla Bonanno
- IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| | - Viviana Izzo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Salerno, Italy
| | - Diego Buda
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Giovanna Vermiglio
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Salvatore Bertino
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Giorgio Cacciola
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Alessia Bramanti
- IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy.,National Research Council of Italy (CNR), Applied Sciences and Intelligent System "Eduardo Caianello" (ISASI), Messina, Italy
| | - Demetrio Milardi
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy - .,IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| |
Collapse
|
26
|
Sigmund EE, Baete SH, Luo T, Patel K, Wang D, Rossi I, Duarte A, Bruno M, Mossa D, Femia A, Ramachandran S, Stoffel D, Babb JS, Franks AG, Bencardino J. MRI assessment of the thigh musculature in dermatomyositis and healthy subjects using diffusion tensor imaging, intravoxel incoherent motion and dynamic DTI. Eur Radiol 2018; 28:5304-5315. [DOI: 10.1007/s00330-018-5458-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/23/2018] [Accepted: 04/03/2018] [Indexed: 12/20/2022]
|
27
|
Giraudo C, Motyka S, Weber M, Karner M, Resinger C, Feiweier T, Trattnig S, Bogner W. Normalized STEAM-based diffusion tensor imaging provides a robust assessment of muscle tears in football players: preliminary results of a new approach to evaluate muscle injuries. Eur Radiol 2018; 28:2882-2889. [PMID: 29423575 PMCID: PMC5986840 DOI: 10.1007/s00330-017-5218-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/27/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022]
Abstract
Objectives To assess acute muscle tears in professional football players by diffusion tensor imaging (DTI) and evaluate the impact of normalization of data. Methods Eight football players with acute lower limb muscle tears were examined. DTI metrics of the injured muscle and corresponding healthy contralateral muscle and of ROIs drawn in muscle tears (ROItear) in the corresponding healthy contralateral muscle (ROIhc_t) in a healthy area ipsilateral to the injury (ROIhi) and in a corresponding contralateral area (ROIhc_i) were compared. The same comparison was performed for ratios of the injured (ROItear/ROIhi) and contralateral sides (ROIhc_t/ROIhc_i). ANOVA, Bonferroni-corrected post-hoc and Student’s t-tests were used. Results Analyses of the entire muscle did not show any differences (p>0.05 each) except for axial diffusivity (AD; p=0.048). ROItear showed higher mean diffusivity (MD) and AD than ROIhc_t (p<0.05). Fractional anisotropy (FA) was lower in ROItear than in ROIhi and ROIhc_t (p<0.05). Radial diffusivity (RD) was higher in ROItear than in any other ROI (p<0.05). Ratios revealed higher MD and RD and lower FA and reduced number and length of fibre tracts on the injured side (p<0.05 each). Conclusions DTI allowed a robust assessment of muscle tears in athletes especially after normalization to healthy muscle tissue. Key Points • STEAM-based DTI allows the investigation of muscle tears affecting professional football players. • Fractional anisotropy and mean diffusivity differ between injured and healthy muscle areas. • Only normalized data show differences of fibre tracking metrics in muscle tears. • The normalization of DTI-metrics enables a more robust characterization of muscle tears.
Collapse
Affiliation(s)
- Chiara Giraudo
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Stanislav Motyka
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Michael Weber
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Manuela Karner
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | | | | | - Siegfried Trattnig
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MR Imaging, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Bogner
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| |
Collapse
|
28
|
Damon BM, Froeling M, Buck AKW, Oudeman J, Ding Z, Nederveen AJ, Bush EC, Strijkers GJ. Skeletal muscle diffusion tensor-MRI fiber tracking: rationale, data acquisition and analysis methods, applications and future directions. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3563. [PMID: 27257975 PMCID: PMC5136336 DOI: 10.1002/nbm.3563] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/19/2016] [Accepted: 04/27/2016] [Indexed: 05/21/2023]
Abstract
The mechanical functions of muscles involve the generation of force and the actuation of movement by shortening or lengthening under load. These functions are influenced, in part, by the internal arrangement of muscle fibers with respect to the muscle's mechanical line of action. This property is known as muscle architecture. In this review, we describe the use of diffusion tensor (DT)-MRI muscle fiber tracking for the study of muscle architecture. In the first section, the importance of skeletal muscle architecture to function is discussed. In addition, traditional and complementary methods for the assessment of muscle architecture (brightness-mode ultrasound imaging and cadaver analysis) are presented. Next, DT-MRI is introduced and the structural basis for the reduced and anisotropic diffusion of water in muscle is discussed. The third section discusses issues related to the acquisition of skeletal muscle DT-MRI data and presents recommendations for optimal strategies. The fourth section discusses methods for the pre-processing of DT-MRI data, the available approaches for the calculation of the diffusion tensor and the seeding and propagating of fiber tracts, and the analysis of the tracking results to measure structural properties pertinent to muscle biomechanics. Lastly, examples are presented of how DT-MRI fiber tracking has been used to provide new insights into how muscles function, and important future research directions are highlighted. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Bruce M. Damon
- Institute of Imaging Science, Vanderbilt University, Nashville TN USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville TN USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville TN USA
| | - Martijn Froeling
- Department of Radiology, University Medical Center, Utrecht, the Netherlands
| | - Amanda K. W. Buck
- Institute of Imaging Science, Vanderbilt University, Nashville TN USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville TN USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN USA
| | - Jos Oudeman
- Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Zhaohua Ding
- Institute of Imaging Science, Vanderbilt University, Nashville TN USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville TN USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN USA
- Department of Electrical Engineering and Computer Engineering, Vanderbilt University, Nashville TN USA
| | - Aart J. Nederveen
- Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Emily C. Bush
- Institute of Imaging Science, Vanderbilt University, Nashville TN USA
| | - Gustav J. Strijkers
- Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
29
|
Pubovisceralis Muscle Fiber Architecture Determination: Comparison Between Biomechanical Modeling and Diffusion Tensor Imaging. Ann Biomed Eng 2017; 45:1255-1265. [DOI: 10.1007/s10439-016-1788-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/31/2016] [Indexed: 12/19/2022]
|
30
|
Damon BM, Li K, Dortch RD, Welch EB, Park JH, Buck AKW, Towse TF, Does MD, Gochberg DF, Bryant ND. Quantitative Magnetic Resonance Imaging of Skeletal Muscle Disease. J Vis Exp 2016. [PMID: 28060254 DOI: 10.3791/52352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Quantitative magnetic resonance imaging (qMRI) describes the development and use of MRI to quantify physical, chemical, and/or biological properties of living systems. Neuromuscular diseases often exhibit a temporally varying, spatially heterogeneous, and multi-faceted pathology. The goal of this protocol is to characterize this pathology using qMRI methods. The MRI acquisition protocol begins with localizer images (used to locate the position of the body and tissue of interest within the MRI system), quality control measurements of relevant magnetic field distributions, and structural imaging for general anatomical characterization. The qMRI portion of the protocol includes measurements of the longitudinal and transverse relaxation time constants (T1 and T2, respectively). Also acquired are diffusion-tensor MRI data, in which water diffusivity is measured and used to infer pathological processes such as edema. Quantitative magnetization transfer imaging is used to characterize the relative tissue content of macromolecular and free water protons. Lastly, fat-water MRI methods are used to characterize fibro-adipose tissue replacement of muscle. In addition to describing the data acquisition and analysis procedures, this paper also discusses the potential problems associated with these methods, the analysis and interpretation of the data, MRI safety, and strategies for artifact reduction and protocol optimization.
Collapse
Affiliation(s)
- Bruce M Damon
- Institute of Imaging Science, Vanderbilt University; Department of Radiology and Radiological Sciences, Vanderbilt University; Department of Biomedical Engineering, Vanderbilt University; Department of Molecular Physiology and Biophysics, Vanderbilt University;
| | - Ke Li
- Institute of Imaging Science, Vanderbilt University; Department of Radiology and Radiological Sciences, Vanderbilt University
| | - Richard D Dortch
- Institute of Imaging Science, Vanderbilt University; Department of Radiology and Radiological Sciences, Vanderbilt University
| | - E Brian Welch
- Institute of Imaging Science, Vanderbilt University; Department of Radiology and Radiological Sciences, Vanderbilt University
| | - Jane H Park
- Institute of Imaging Science, Vanderbilt University; Department of Radiology and Radiological Sciences, Vanderbilt University; Department of Molecular Physiology and Biophysics, Vanderbilt University
| | - Amanda K W Buck
- Institute of Imaging Science, Vanderbilt University; Department of Radiology and Radiological Sciences, Vanderbilt University
| | - Theodore F Towse
- Institute of Imaging Science, Vanderbilt University; Department of Radiology and Radiological Sciences, Vanderbilt University; Department of Physical Medicine and Rehabilitation, Vanderbilt University
| | - Mark D Does
- Institute of Imaging Science, Vanderbilt University; Department of Radiology and Radiological Sciences, Vanderbilt University; Department of Biomedical Engineering, Vanderbilt University
| | - Daniel F Gochberg
- Institute of Imaging Science, Vanderbilt University; Department of Radiology and Radiological Sciences, Vanderbilt University; Department of Physics and Astronomy, Vanderbilt University
| | - Nathan D Bryant
- Institute of Imaging Science, Vanderbilt University; Department of Radiology and Radiological Sciences, Vanderbilt University
| |
Collapse
|
31
|
Mazzoli V, Oudeman J, Nicolay K, Maas M, Verdonschot N, Sprengers AM, Nederveen AJ, Froeling M, Strijkers GJ. Assessment of passive muscle elongation using Diffusion Tensor MRI: Correlation between fiber length and diffusion coefficients. NMR IN BIOMEDICINE 2016; 29:1813-1824. [PMID: 27862471 DOI: 10.1002/nbm.3661] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/20/2016] [Accepted: 09/23/2016] [Indexed: 06/06/2023]
Abstract
In this study we investigated the changes in fiber length and diffusion parameters as a consequence of passive lengthening and stretching of the calf muscles. We hypothesized that changes in radial diffusivity (RD) are caused by changes in the muscle fiber cross sectional area (CSA) as a consequence of lengthening and shortening of the muscle. Diffusion Tensor MRI (DT-MRI) measurements were made twice in five healthy volunteers, with the foot in three different positions (30° plantarflexion, neutral position and 15° dorsiflexion). The muscles of the calf were manually segmented on co-registered high resolution anatomical scans, and maps of RD and axial diffusivity (AD) were reconstructed from the DT-MRI data. Fiber tractography was performed and mean fiber length was calculated for each muscle group. Significant negative correlations were found between the changes in RD and changes in fiber length in the dorsiflexed and plantarflexed positions, compared with the neutral foot position. Changes in AD did not correlate with changes in fiber length. Assuming a simple cylindrical model with constant volume for the muscle fiber, the changes in the muscle fiber CSA were calculated from the changes in fiber length. In line with our hypothesis, we observed a significant positive correlation of the CSA with the measured changes in RD. In conclusion, we showed that changes in diffusion coefficients induced by passive muscle stretching and lengthening can be explained by changes in muscle CSA, advancing the physiological interpretation of parameters derived from skeletal muscle DT-MRI.
Collapse
Affiliation(s)
- Valentina Mazzoli
- Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands
- Orthopedic Research Laboratory, Radboud UMC, Nijmegen, the Netherlands
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Jos Oudeman
- Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Mario Maas
- Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Nico Verdonschot
- Orthopedic Research Laboratory, Radboud UMC, Nijmegen, the Netherlands
| | - Andre M Sprengers
- Orthopedic Research Laboratory, Radboud UMC, Nijmegen, the Netherlands
| | - Aart J Nederveen
- Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Martijn Froeling
- Department of Radiology, University Medical Center, Utrecht, the Netherlands
| | - Gustav J Strijkers
- Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
32
|
Rockel C, Akbari A, Kumbhare DA, Noseworthy MD. Dynamic DTI (dDTI) shows differing temporal activation patterns in post-exercise skeletal muscles. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 30:127-138. [PMID: 27624473 DOI: 10.1007/s10334-016-0587-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/09/2016] [Accepted: 08/22/2016] [Indexed: 12/20/2022]
Abstract
OBJECT To assess post-exercise recovery of human calf muscles using dynamic diffusion tensor imaging (dDTI). MATERIALS AND METHODS DTI data (6 directions, b = 0 and 400 s/mm2) were acquired every 35 s from seven healthy men using a 3T MRI, prior to (4 volumes) and immediately following exercise (13 volumes, ~7.5 min). Exercise consisted of 5-min in-bore repetitive dorsiflexion-eversion foot motion with 0.78 kg resistance. Diffusion tensors calculated at each time point produced maps of mean diffusivity (MD), fractional anisotropy (FA), radial diffusivity (RD), and signal at b = 0 s/mm2 (S0). Region-of-interest (ROI) analysis was performed on five calf muscles: tibialis anterior (ATIB), extensor digitorum longus (EDL) peroneus longus (PER), soleus (SOL), and lateral gastrocnemius (LG). RESULTS Active muscles (ATIB, EDL, PER) showed significantly elevated initial MD post-exercise, while predicted inactive muscles (SOL, LG) did not (p < 0.0001). The EDL showed a greater initial increase in MD (1.90 × 10-4mm2/s) than ATIB (1.03 × 10-4mm2/s) or PER (8.79 × 10-5 mm2/s) (p = 7.40 × 10-4), and remained significantly elevated across more time points than ATIB or PER. Significant increases were observed in post-exercise EDL S0 relative to other muscles across the majority of time points (p < 0.01 to p < 0.001). CONCLUSIONS dDTI can be used to differentiate exercise-induced changes between muscles. These differences are suggested to be related to differences in fiber composition.
Collapse
Affiliation(s)
- Conrad Rockel
- McMaster School of Biomedical Engineering, McMaster University, ETB-406 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada.,Imaging Research Centre, St. Joseph's Healthcare, Hamilton, ON, Canada
| | - Alireza Akbari
- McMaster School of Biomedical Engineering, McMaster University, ETB-406 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada.,Imaging Research Centre, St. Joseph's Healthcare, Hamilton, ON, Canada
| | - Dinesh A Kumbhare
- McMaster School of Biomedical Engineering, McMaster University, ETB-406 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada.,Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Michael D Noseworthy
- McMaster School of Biomedical Engineering, McMaster University, ETB-406 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada. .,Imaging Research Centre, St. Joseph's Healthcare, Hamilton, ON, Canada. .,Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, ON, Canada. .,Department of Radiology, McMaster University, Hamilton, ON, Canada. .,Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
33
|
Hooijmans M, Damon B, Froeling M, Versluis M, Burakiewicz J, Verschuuren J, Webb A, Niks E, Kan H. Evaluation of skeletal muscle DTI in patients with duchenne muscular dystrophy. NMR IN BIOMEDICINE 2015; 28:1589-97. [PMID: 26449628 PMCID: PMC4670831 DOI: 10.1002/nbm.3427] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 09/08/2015] [Accepted: 09/11/2015] [Indexed: 05/05/2023]
Abstract
Diffusion tensor imaging (DTI) is a popular method to assess differences in fiber organization in diseased and healthy muscle tissue. Previous work has shown that muscle DTI measurements depend on signal-to-noise ratio (SNR), %fat, and tissue T2. The goal of this study was to evaluate the potential biasing effects of these factors on skeletal muscle DTI data in patients with Duchenne Muscular Dystrophy (DMD). MR images were obtained of the right lower leg of 21 DMD patients and 12 healthy controls on a Philips 3T system. DTI measurements were combined with quantitative in-vivo measures of mean water T2, %fat and SNR to evaluate their effect on DTI parameter estimation. All outcome measures were determined within ROIs drawn for six lower leg muscles. Between group analysis, using all ROIs, revealed a significantly elevated FA in the GCL, SOL and PER muscles (p<0.05) and an increased mean diffusivity (p<0.05) and λ3 (p<0.05) in the TA muscle of DMD patients. In-vivo evaluation of the individual confounders showed behaviour in line with predictions from previous simulation work. To account for these confounders, subsequent analysis used only ROIs with SNR greater than 20. With this criterion we found significantly greater MD in the TA muscle of DMD patient (p<0.009) and λ3 in the TA and GCL muscles (p<0.001) of DMD patients, but no differences in FA. As both increased %fat and lower SNR are expected to reduce the apparent MD and λ3, these between-group differences are likely due to pathophysiology. However, the increased FA, observed when using all ROIs, likely reflects the effect of low SNR and %fat on the DTI parameter estimation. These findings suggest that measuring mean water T2, %fat and SNR is essential to ascribe changes in DTI measures to intrinsic diffusion changes or to confounding influences.
Collapse
Affiliation(s)
- M.T. Hooijmans
- Dept of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Centre, Leiden, The Netherlands
| | - B.M. Damon
- Depts. of Radiology and Radiological Sciences, Biomedical Engineering, and Molecular Physiology and Biophysics, Vanderbilt University, Nashville TN USA
| | - M. Froeling
- Dept of Radiology, Utrecht Medical Center, Utrecht, The Netherlands
| | | | - J. Burakiewicz
- Dept of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Centre, Leiden, The Netherlands
| | - J.J.G.M Verschuuren
- Dept of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - A.G. Webb
- Dept of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Centre, Leiden, The Netherlands
| | - E.H. Niks
- Dept of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - H.E. Kan
- Dept of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
34
|
Chakouch MK, Charleux F, Bensamoun SF. Quantifying the Elastic Property of Nine Thigh Muscles Using Magnetic Resonance Elastography. PLoS One 2015; 10:e0138873. [PMID: 26397730 PMCID: PMC4580449 DOI: 10.1371/journal.pone.0138873] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 09/05/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Pathologies of the muscles can manifest different physiological and functional changes. To adapt treatment, it is necessary to characterize the elastic property (shear modulus) of single muscles. Previous studies have used magnetic resonance elastography (MRE), a technique based on MRI technology, to analyze the mechanical behavior of healthy and pathological muscles. The purpose of this study was to develop protocols using MRE to determine the shear modulus of nine thigh muscles at rest. METHODS Twenty-nine healthy volunteers (mean age = 26 ± 3.41 years) with no muscle abnormalities underwent MRE tests (1.5 T MRI). Five MRE protocols were developed to quantify the shear moduli of the nine following thigh muscles at rest: rectus femoris (RF), vastus medialis (VM), vastus intermedius (VI), vastus lateralis (VL), sartorius (Sr), gracilis (Gr), semimembranosus (SM), semitendinosus (ST), and biceps (BC). In addition, the shear modulus of the subcutaneous adipose tissue was analyzed. RESULTS The gracilis, sartorius, and semitendinosus muscles revealed a significantly higher shear modulus (μ_Gr = 6.15 ± 0.45 kPa, μ_ Sr = 5.15 ± 0.19 kPa, and μ_ ST = 5.32 ± 0.10 kPa, respectively) compared to other tissues (from μ_ RF = 3.91 ± 0.16 kPa to μ_VI = 4.23 ± 0.25 kPa). Subcutaneous adipose tissue had the lowest value (μ_adipose tissue = 3.04 ± 0.12 kPa) of all the tissues tested. CONCLUSION The different elasticities measured between the tissues may be due to variations in the muscles' physiological and architectural compositions. Thus, the present protocol could be applied to injured muscles to identify their behavior of elastic property. Previous studies on muscle pathology found that quantification of the shear modulus could be used as a clinical protocol to identify pathological muscles and to follow-up effects of treatments and therapies. These data could also be used for modelling purposes.
Collapse
Affiliation(s)
- Mashhour K. Chakouch
- Biomechanics and Bioengineering Laboratory, UMR CNRS 7338, Sorbonne University, Université de Technologie de Compiègne, Compiègne, France
| | | | - Sabine F. Bensamoun
- Biomechanics and Bioengineering Laboratory, UMR CNRS 7338, Sorbonne University, Université de Technologie de Compiègne, Compiègne, France
- * E-mail:
| |
Collapse
|
35
|
Agger P, Lass T, Smerup M, Frandsen J, Pedersen M. Optimal preservation of porcine cardiac tissue prior to diffusion tensor magnetic resonance imaging. J Anat 2015; 227:695-701. [PMID: 26391195 DOI: 10.1111/joa.12377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2015] [Indexed: 11/26/2022] Open
Abstract
The effects of ex vivo preservation techniques on the quality of diffusion tensor magnetic resonance imaging in hearts are poorly understood, and the optimal handling procedure prior to investigation remains to be determined. Therefore, 24 porcine hearts were examined in six groups treated with different preservation techniques, including chemical fixation and freezing. Diffusion properties of each heart were assessed with diffusion tensor imaging in terms of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (Da) and radial diffusivity (Dr). Tractography was performed to visualize the course of the cardiomyocytes, assuming greater diffusivity in the longitudinal than the transverse axis of individual cardiomyocytes. Significant differences in MD, Da and Dr were found, as well as in FA between groups (P < 0.001). Freezing of specimens resulted in the lowest mean FA of 0.21 (0.06) and highest Dr of 8.92 (1.5) mm2 s(-1) . The highest mean FA was found to be 0.43 (0.11) in hearts perfusion-fixed with formalin. Calculated tractographies were indistinguishable among groups except in frozen specimens, where no fibres could be tracked. Perfusion fixation with formalin provided the best tractography, but immersion fixation yielded diffusion data most similar to fresh hearts. These findings suggest that parameters derived from diffusion tensor imaging in ex vivo hearts are sensitive to fixation and storage methods. In particular, freezing of specimens should be avoided prior to diffusion tensor imaging investigation due to significant changes in diffusion parameters and subsequent image deteriorations.
Collapse
Affiliation(s)
- Peter Agger
- Department of Cardiothoracic & Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark.,Comparative Medicine Lab, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Lass
- Department of Cardiothoracic & Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Morten Smerup
- Department of Cardiothoracic & Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Jesper Frandsen
- Center for Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Pedersen
- Comparative Medicine Lab, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark.,MR Research Center, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
36
|
Oudeman J, Nederveen AJ, Strijkers GJ, Maas M, Luijten PR, Froeling M. Techniques and applications of skeletal muscle diffusion tensor imaging: A review. J Magn Reson Imaging 2015. [PMID: 26221741 DOI: 10.1002/jmri.25016] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diffusion tensor imaging (DTI) is increasingly applied to study skeletal muscle physiology, anatomy, and pathology. The reason for this growing interest is that DTI offers unique, noninvasive, and potentially diagnostically relevant imaging readouts of skeletal muscle structure that are difficult or impossible to obtain otherwise. DTI has been shown to be feasible within most skeletal muscles. DTI parameters are highly sensitive to patient-specific properties such as age, body mass index (BMI), and gender, but also to more transient factors such as exercise, rest, pressure, temperature, and relative joint position. However, when designing a DTI study one should not only be aware of sensitivity to the above-mentioned factors but also the fact that the DTI parameters are dependent on several acquisition parameters such as echo time, b-value, and diffusion mixing time. The purpose of this review is to provide an overview of DTI studies covering the technical, demographic, and clinical aspects of DTI in skeletal muscles. First we will focus on the critical aspects of the acquisition protocol. Second, we will cover the reported normal variance in skeletal muscle diffusion parameters, and finally we provide an overview of clinical studies and reported parameter changes due to several (patho-)physiological conditions.
Collapse
Affiliation(s)
- Jos Oudeman
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Aart J Nederveen
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Gustav J Strijkers
- Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands
| | - Mario Maas
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Peter R Luijten
- Department of Radiology, University Medical Center, Utrecht, Utrecht, The Netherlands
| | - Martijn Froeling
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands.,Department of Radiology, University Medical Center, Utrecht, Utrecht, The Netherlands
| |
Collapse
|
37
|
Steidle G, Schick F. Addressing spontaneous signal voids in repetitive single-shot DWI of musculature: spatial and temporal patterns in the calves of healthy volunteers and consideration of unintended muscle activities as underlying mechanism. NMR IN BIOMEDICINE 2015; 28:801-810. [PMID: 25943431 DOI: 10.1002/nbm.3311] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 03/26/2015] [Accepted: 03/26/2015] [Indexed: 06/04/2023]
Abstract
Single-shot diffusion-weighted MRI sensitive to different types of incoherent motion inside tissue shows sporadic signal voids with a considerable size (>1 cm) in calf musculature at rest. Spatial and temporal patterns of these signal voids and their dependence on measurement conditions were tested systematically in order to obtain more insight into the underlying mechanism. Lower leg muscles of 10 healthy subjects were examined by recording series of 1000 echo-planar single-shot scans with repetition time 500 ms and b-value 100 s/mm(2) . Effects of strength and orientation of motion sensitization gradients and of repetition times were analysed. Potential influences of arterial blood pulsations and positioning of the subject were studied. Comparison of calf muscle groups showed more frequent signal voids in gastrocnemius and soleus muscle compared with tibialis muscles. Large inter-individual variance in the total number of signal voids visible in a transverse slice of the lower leg was observed (minimum 40/1000 scans; maximum >550/1000 scans). Typical sizes of the affected muscular areas ranged from 1.5 to 2.5 cm in the transverse and from 1.5 to 7 cm in the head-feet direction. Signal voids occurred nearly independent of the cardiac phase and with similar frequencies for supine and prone positions. Resting calf muscles show spontaneous signal voids in single-shot DWI at low b-values with an irregular temporal and spatial pattern. Values of mean diffusivity, diffusion tensor parameters, and IVIM-derived perfusion are expected to be clearly distorted by such signal voids if no rejection of affected data is applied. Several potential causes for the signal voids are discussed. The most probable explanation for the phenomenon is seen in the occurrence of spontaneous incoherent mechanical activity in musculature based on weak muscle fibre contractions. If this is the case it opens up a new field for studies on the physiological role and regulation of these unintended muscle activities.
Collapse
Affiliation(s)
- Günter Steidle
- Section on Experimental Radiology, Department of Radiology, University of Tübingen, Tübingen, Germany
| | - Fritz Schick
- Section on Experimental Radiology, Department of Radiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
38
|
Chilla GS, Tan CH, Xu C, Poh CL. Diffusion weighted magnetic resonance imaging and its recent trend-a survey. Quant Imaging Med Surg 2015; 5:407-22. [PMID: 26029644 DOI: 10.3978/j.issn.2223-4292.2015.03.01] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 01/15/2015] [Indexed: 12/14/2022]
Abstract
Since its inception in 1985, diffusion weighted magnetic resonance imaging has been evolving and is becoming instrumental in diagnosis and investigation of tissue functions in various organs including brain, cartilage, and liver. Even though brain related pathology and/or investigation remains as the main application, diffusion weighted magnetic resonance imaging (DWI) is becoming a standard in oncology and in several other applications. This review article provides a brief introduction of diffusion weighted magnetic resonance imaging, challenges involved and recent advancements.
Collapse
Affiliation(s)
- Geetha Soujanya Chilla
- 1 School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore ; 2 Department of Diagnostic Radiology, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Cher Heng Tan
- 1 School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore ; 2 Department of Diagnostic Radiology, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Chenjie Xu
- 1 School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore ; 2 Department of Diagnostic Radiology, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Chueh Loo Poh
- 1 School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore ; 2 Department of Diagnostic Radiology, Tan Tock Seng Hospital, Singapore 308433, Singapore
| |
Collapse
|
39
|
Crema MD, Yamada AF, Guermazi A, Roemer FW, Skaf AY. Imaging techniques for muscle injury in sports medicine and clinical relevance. Curr Rev Musculoskelet Med 2015; 8:154-61. [PMID: 25708212 DOI: 10.1007/s12178-015-9260-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Magnetic resonance imaging (MRI) and ultrasound are the imaging modalities of choice to assess muscle injuries in athletes. Most authors consider MRI as the reference standard for evaluation of muscle injuries, since it superiorly depicts the extent of injuries independently of its temporal evolution, and due to the fact that MRI seems to be more sensitive for the detection of minimal injuries. Furthermore, MRI may potentially allow sports medicine physicians to more accurately estimate recovery times of athletes sustaining muscle injuries in the lower limbs, as well as the risk of re-injury. However, based on data available, the specific utility of imaging (including MRI) regarding its prognostic value remains limited and controversial. Although high-quality imaging is systematically performed in professional athletes and data extracted from it may potentially help to plan and guide management of muscle injuries, clinical (and functional) assessment is still the most valuable tool to guide return to competition decisions.
Collapse
Affiliation(s)
- Michel D Crema
- Department of Radiology, Hospital do Coração (HCor) and Teleimagem, São Paulo, SP, Brazil,
| | | | | | | | | |
Collapse
|
40
|
Hiepe P, Gussew A, Rzanny R, Kurz E, Anders C, Walther M, Scholle HC, Reichenbach JR. Age-related structural and functional changes of low back muscles. Exp Gerontol 2015; 65:23-34. [PMID: 25735850 DOI: 10.1016/j.exger.2015.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 01/15/2023]
Abstract
During aging declining maximum force capacity with more or less unchanged fatigability is observed with the underlying mechanisms still not fully understood. Therefore, we compared morphology and function of skeletal muscles between different age groups. Changes in high-energy phosphate turnover (PCr, Pi and pH) and muscle functional MRI (mfMRI) parameters, including proton transverse relaxation time (T2), diffusion (D) and vascular volume fraction (f), were investigated in moderately exercised low back muscles of young and late-middle-aged healthy subjects with (31)P-MR spectroscopy, T2- and diffusion-weighted MRI at 3T. In addition, T1-weighted MRI data were acquired to determine muscle cross-sectional areas (CSA) and to assess fat infiltration into muscle tissue. Except for pH, both age groups showed similar load-induced MR changes and rates of perceived exertion (RPE), which indicates comparable behavior of muscle activation at moderate loads. Changes of mfMRI parameters were significantly associated with RPE in both cohorts. Age-related differences were observed, with lower pH and higher Pi/ATP ratios as well as lower D and f values in the late-middle-aged subjects. These findings are ascribed to age-related changes of fiber type composition, fiber size and vascularity. Interestingly, post exercise f was negatively associated with fat infiltration with the latter being significantly higher in late-middle-aged subjects. CSA of low back muscles remained unchanged, while CSA of inner back muscle as well as mean T2 at rest were associated with maximum force capacity. Overall, applying the proposed MR approach provides evidence of age-related changes in several muscle tissue characteristics and gives new insights into the physiological processes that take place during aging.
Collapse
Affiliation(s)
- Patrick Hiepe
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Germany.
| | - Alexander Gussew
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Germany
| | - Reinhard Rzanny
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Germany
| | - Eduard Kurz
- Department for Trauma-, Hand- and Reconstructive Surgery, Division of Motor Research, Pathophysiology and Biomechanics, Jena University Hospital - Friedrich Schiller University Jena, Germany
| | - Christoph Anders
- Department for Trauma-, Hand- and Reconstructive Surgery, Division of Motor Research, Pathophysiology and Biomechanics, Jena University Hospital - Friedrich Schiller University Jena, Germany
| | - Mario Walther
- Institute of Medical Statistics, Computer Sciences and Documentation (IMSID), Jena University Hospital - Friedrich Schiller University Jena, Germany
| | - Hans-Christoph Scholle
- Department for Trauma-, Hand- and Reconstructive Surgery, Division of Motor Research, Pathophysiology and Biomechanics, Jena University Hospital - Friedrich Schiller University Jena, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Germany
| |
Collapse
|
41
|
Diffusion Tensor Imaging of the Anterior Cruciate Ligament Graft After Reconstruction. J Comput Assist Tomogr 2015; 39:244-9. [DOI: 10.1097/rct.0000000000000198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Li K, Dortch RD, Welch EB, Bryant ND, Buck AKW, Towse TF, Gochberg DF, Does MD, Damon BM, Park JH. Multi-parametric MRI characterization of healthy human thigh muscles at 3.0 T - relaxation, magnetization transfer, fat/water, and diffusion tensor imaging. NMR IN BIOMEDICINE 2014; 27:1070-84. [PMID: 25066274 PMCID: PMC4153695 DOI: 10.1002/nbm.3159] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 05/28/2014] [Accepted: 06/01/2014] [Indexed: 05/11/2023]
Abstract
Muscle diseases commonly have clinical presentations of inflammation, fat infiltration, fibrosis, and atrophy. However, the results of existing laboratory tests and clinical presentations are not well correlated. Advanced quantitative MRI techniques may allow the assessment of myo-pathological changes in a sensitive and objective manner. To progress towards this goal, an array of quantitative MRI protocols was implemented for human thigh muscles; their reproducibility was assessed; and the statistical relationships among parameters were determined. These quantitative methods included fat/water imaging, multiple spin-echo T2 imaging (with and without fat signal suppression, FS), selective inversion recovery for T1 and quantitative magnetization transfer (qMT) imaging (with and without FS), and diffusion tensor imaging. Data were acquired at 3.0 T from nine healthy subjects. To assess the repeatability of each method, the subjects were re-imaged an average of 35 days later. Pre-testing lifestyle restrictions were applied to standardize physiological conditions across scans. Strong between-day intra-class correlations were observed in all quantitative indices except for the macromolecular-to-free water pool size ratio (PSR) with FS, a metric derived from qMT data. Two-way analysis of variance revealed no significant between-day differences in the mean values for any parameter estimate. The repeatability was further assessed with Bland-Altman plots, and low repeatability coefficients were obtained for all parameters. Among-muscle differences in the quantitative MRI indices and inter-class correlations among the parameters were identified. There were inverse relationships between fractional anisotropy (FA) and the second eigenvalue, the third eigenvalue, and the standard deviation of the first eigenvector. The FA was positively related to the PSR, while the other diffusion indices were inversely related to the PSR. These findings support the use of these T1 , T2 , fat/water, and DTI protocols for characterizing skeletal muscle using MRI. Moreover, the data support the existence of a common biophysical mechanism, water content, as a source of variation in these parameters.
Collapse
Affiliation(s)
- Ke Li
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Heymsfield SB, Adamek M, Gonzalez MC, Jia G, Thomas DM. Assessing skeletal muscle mass: historical overview and state of the art. J Cachexia Sarcopenia Muscle 2014; 5:9-18. [PMID: 24532493 PMCID: PMC3953319 DOI: 10.1007/s13539-014-0130-5] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 01/22/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Even though skeletal muscle (SM) is the largest body compartment in most adults and a key phenotypic marker of sarcopenia and cachexia, SM mass was until recently difficult and often impractical to quantify in vivo. This review traces the historical development of SM mass measurement methods and their evolution to advances that now promise to provide in-depth noninvasive measures of SM composition. METHODS Key steps in the advancement of SM measurement methods and their application were obtained from historical records and widely cited publications over the past two centuries. Recent advances were established by collecting information on notable studies presented at scientific meetings and their related publications. RESULTS The year 1835 marks the discovery of creatine in meat by Chevreul, a finding that still resonates today in the D3-creatine method of measuring SM mass. Matiegka introduced an anthropometric approach for estimating SM mass in 1921 with the vision of creating a human "capacity" marker. The 1940s saw technological advances eventually leading up to the development of ultrasound and bioimpedance analysis methods of quantifying SM mass in vivo. Continuing to seek an elusive SM mass "reference" method, Burkinshaw and Cohn introduced the whole-body counting-neutron activation analysis method and provided some of the first detailed reports of cancer cachexia in the late 1970s. Three transformative breakthroughs leading to the current SM mass reference methods appeared in the 1970s and early 1980s as follows: the introduction of computed tomography (CT), photon absorptiometry, and magnetic resonance (MR) imaging. Each is advanced as an accurate and/or practical approach to quantifying whole-body and regional SM mass across the lifespan. These advances have led to a new understanding of fundamental body size-SM mass relationships that are now widely applied in the evaluation and monitoring of patients with sarcopenia and cachexia. An intermediate link between SM mass and function is SM composition. Advances in water-fat MR imaging, diffusion tensor imaging, MR elastography, imaging of connective tissue structures by ultra-short echo time MR, and other new MR approaches promise to close the gap that now exists between SM anatomy and function. CONCLUSIONS The global efforts of scientists over the past two centuries provides us with highly accurate means by which to measure SM mass across the lifespan with new advances promising to extend these efforts to noninvasive methods for quantifying SM composition.
Collapse
Affiliation(s)
- Steven B Heymsfield
- Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Rd, Baton Rouge, LA, 70808, USA,
| | | | | | | | | |
Collapse
|
44
|
Yang X, Li M, Chen D, Shi D, Zhou Z, Zhu B, Jiang Q. Diffusion Tensor Imaging for Anatomical and Quantitative Evaluation of the Anterior Cruciate Ligament and ACL Grafts. J Comput Assist Tomogr 2014; 38:489-94. [DOI: 10.1097/rct.0000000000000078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|