1
|
Mehta KJ. Iron-Related Genes and Proteins in Mesenchymal Stem Cell Detection and Therapy. Stem Cell Rev Rep 2023; 19:1773-1784. [PMID: 37269528 PMCID: PMC10238768 DOI: 10.1007/s12015-023-10569-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
Mesenchymal stem cells (MSCs) are located in various tissues of the body. These cells exhibit regenerative and reparative properties, which makes them highly valuable for cell-based therapy. Despite this, majority of MSC-related studies remain to be translated for regular clinical use. This is partly because there are methodical challenges in pre-administration MSC labelling, post-administration detection and tracking of cells, and in retention of maximal therapeutic potential in-vivo. This calls for exploration of alternative or adjunctive approaches that would enable better detection of transplanted MSCs via non-invasive methods and enhance MSC therapeutic potential in-vivo. Interestingly, these attributes have been demonstrated by some iron-related genes and proteins.Accordingly, this unique forward-looking article integrates the apparently distinct fields of iron metabolism and MSC biology, and reviews the utility of iron-related genes and iron-related proteins in facilitating MSC detection and therapy, respectively. Effects of genetic overexpression of the iron-related proteins ferritin, transferrin receptor-1 and MagA in MSCs and their utilisation as reporter genes for improving MSC detection in-vivo are critically evaluated. In addition, the beneficial effects of the iron chelator deferoxamine and the iron-related proteins haem oxygenase-1, lipocalin-2, lactoferrin, bone morphogenetic protein-2 and hepcidin in enhancing MSC therapeutics are highlighted with the consequent intracellular alterations in MSCs. This review aims to inform both regenerative and translational medicine. It can aid in formulating better methodical approaches that will improve, complement, or provide alternatives to the current pre-transplantation MSC labelling procedures, and enhance MSC detection or augment the post-transplantation MSC therapeutic potential.
Collapse
Affiliation(s)
- Kosha J Mehta
- Centre for Education, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|
2
|
Liu T, Li Z, Li X, Zhao R, Wei X, Wang Z, Xin SX. In vivo visualization of murine melanoma cells B16-derived exosomes through magnetic resonance imaging. Biochim Biophys Acta Gen Subj 2022; 1866:130062. [PMID: 34822924 DOI: 10.1016/j.bbagen.2021.130062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/22/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Numerous studies demonstrated that exosomes play a powerful role in mediating intercellular communication to induce a pro-tumoral environment to promote tumor progression, including pre-metastatic niche formation and metastasis. Noninvasive imaging could determine the in vivo kinetics of exosomes in real time to provide better understanding of the mechanisms of the tumor formation, progression and metastasis. Magnetic resonance imaging (MRI) is an ideal technique which provides excellent anatomical resolution, intrinsic soft tissue contrast, unlimited penetration depth and no radiation exposure. METHODS A fusion protein composed of ferritin heavy chain (FTH1) and lactadherin was designed for visualizing exosomes through MRI. FTH1 was served as MRI reporter protein and lactadherin is a membrane-associated protein that is distributed on exosome surface. The characterizations of labeled exosomes were validated through transmission electron microscopy, western blot, nanoparticle tracking analysis and finally visualized in vitro and in vivo through MRI. RESULTS MR imaging showed that the labeled exosomes are able to be visualized in vitro and in vivo. Verification of the characterizations of exosomes observed no significant difference between labeled and unlabeled exosomes. CONCLUSION The proposed FTH1 labeling method was useful for visualizing exosomes through MRI. GENERAL SIGNIFICANCE The present study first reported a novel self-label method for imaging labeled exosomes of tumor cells in vivo through MR with cell endogenous MRI reporter protein. It may be further used as a tool to enhance understanding the role of exosomes in various pathophysiological conditions.
Collapse
Affiliation(s)
- Tianqi Liu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Zhenlin Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xiaodong Li
- School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Ruiting Zhao
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xinhua Wei
- Department of Radiology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, Guangdong, China
| | - Zixin Wang
- School of Electronics and Information Technology, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou 510275, Guangdong, China
| | - Sherman Xuegang Xin
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, Guangdong, China; School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
3
|
Sun J, Huang J, Bao G, Zheng H, Wang C, Wei J, Fu Y, Qiu J, Liao Y, Cai J. MRI detection of the malignant transformation of stem cells through reporter gene expression driven by a tumor-specific promoter. Stem Cell Res Ther 2021; 12:284. [PMID: 33980305 PMCID: PMC8117323 DOI: 10.1186/s13287-021-02359-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 04/27/2021] [Indexed: 01/10/2023] Open
Abstract
Background Existing evidence has shown that mesenchymal stem cells (MSCs) can undergo malignant transformation, which is a serious limitation of MSC-based therapies. Therefore, it is necessary to monitor malignant transformation of MSCs via a noninvasive imaging method. Although reporter gene-based magnetic resonance imaging (MRI) has been successfully applied to longitudinally monitor MSCs, this technique cannot distinguish the cells before and after malignant transformation. Herein, we investigated the feasibility of using a tumor-specific promoter to drive reporter gene expression for MRI detection of the malignant transformation of MSCs. Methods The reporter gene ferritin heavy chain (FTH1) was modified by adding a promoter from the tumor-specific gene progression elevated gene-3 (PEG3) and transduced into MSCs to obtain MSCs-PEG3-FTH1. Cells were induced to undergo malignant transformation via indirect coculture with C6 glioma cells, and these transformed cells were named MTMSCs-PEG3-FTH1. Western blot analysis of FTH1 expression, Prussian blue staining and transmission electron microscopy (TEM) to detect intracellular iron, and MRI to detect signal changes were performed before and after malignant transformation. Then, the cells before and after malignant transformation were inoculated subcutaneously into nude mice, and MRI was performed to observe the signal changes in the xenografts. Results After induction of malignant transformation, MTMSCs demonstrated tumor-like features in morphology, proliferation, migration, and invasion. FTH1 expression was significantly increased in MTMSCs-PEG3-FTH1 compared with MSCs-PEG3-FTH1. Prussian blue staining and TEM showed a large amount of iron particles in MTMSCs-PEG3-FTH1 but a minimal amount in MSCs-PEG3-FTH1. MRI demonstrated that the T2 value was significantly decreased in MTMSCs-PEG3-FTH1 compared with MSCs-PEG3-FTH1. In vivo, mass formation was observed in the MTMSCs-PEG3-FTH1 group but not the MSCs-PEG3-FTH1 group. T2-weighted MRI showed a significant signal decrease, which was correlated with iron accumulation in the tissue mass. Conclusions We developed a novel MRI model based on FTH1 reporter gene expression driven by the tumor-specific PEG3 promoter. This approach could be applied to sensitively detect the occurrence of MSC malignant transformation.
Collapse
Affiliation(s)
- Jun Sun
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, 400014, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, China.,Department of Radiology, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Jie Huang
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, 400014, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, China
| | - Guangcheng Bao
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, 400014, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, China
| | - Helin Zheng
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Cui Wang
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Jie Wei
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, 400014, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, China
| | - Yuanqiao Fu
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, 400014, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, China
| | - Jiawen Qiu
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, 400014, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, China
| | - Yifan Liao
- Department of Nuclear Medicine, Xinqiao Hospital affiliated with Third Military Medical University, Chongqing, 400037, China
| | - Jinhua Cai
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China. .,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China. .,Key Laboratory of Pediatrics in Chongqing, Chongqing, 400014, China. .,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, China.
| |
Collapse
|
4
|
MRI Tracking of SPIO- and Fth1-Labeled Bone Marrow Mesenchymal Stromal Cell Transplantation for Treatment of Stroke. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:5184105. [PMID: 31531004 PMCID: PMC6735219 DOI: 10.1155/2019/5184105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/29/2019] [Accepted: 05/02/2019] [Indexed: 01/09/2023]
Abstract
We aimed to identify a suitable method for long-term monitoring of the migration and proliferation of mesenchymal stromal cells in stroke models of rats using ferritin transgene expression by magnetic resonance imaging (MRI). Bone marrow mesenchymal stromal cells (BMSCs) were transduced with a lentivirus containing a shuttle plasmid (pCDH-CMV-MCS-EF1-copGFP) carrying the ferritin heavy chain 1 (Fth1) gene. Ferritin expression in stromal cells was evaluated with western blotting and immunofluorescent staining. The iron uptake of Fth1-BMSCs was measured with Prussian blue staining. Following surgical introduction of middle cerebral artery occlusion, Fth1-BMSCs and superparamagnetic iron oxide- (SPIO-) labeled BMSCs were injected through the internal jugular vein. The imaging and signal intensities were monitored by diffusion-weighted imaging (DWI), T2-weighted imaging (T2WI), and susceptibility-weighted imaging (SWI) in vitro and in vivo. Pathology was performed for comparison. We observed that the MRI signal intensity of SPIO-BMSCs gradually reduced over time. Fth1-BMSCs showed the same signal intensity between 10 and 60 days. SWI showed hypointense lesions in the SPIO-BMSC (traceable for 30 d) and Fth1-BMSC groups. T2WI was not sensitive enough to trace Fth1-BMSCs. After transplantation, Prussian blue-stained cells were observed around the infarction area and in the infarction center in both transplantation models. Fth1-BMSCs transplanted for treating focal cerebral infarction were safe, reliable, and traceable by MRI. Fth1 labeling was more stable and suitable than SPIO labeling for long-term tracking. SWI was more sensitive than T2W1 and suitable as the optimal MRI-tracking sequence.
Collapse
|
5
|
Guo R, Li Q, Yang F, Hu X, Jiao J, Guo Y, Wang J, Zhang Y. In Vivo MR Imaging of Dual MRI Reporter Genes and Deltex-1 Gene-modified Human Mesenchymal Stem Cells in the Treatment of Closed Penile Fracture. Mol Imaging Biol 2019; 20:417-427. [PMID: 28971290 DOI: 10.1007/s11307-017-1128-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE The purpose of this study was to investigate the feasibility of dual magnetic resonance imaging (MRI) reporter genes, including ferritin heavy subunit (Fth) and transferrin receptor (TfR), which provide sufficient MRI contrast for in vivo MRI tracking, and the Deltex-1 (DTX1) gene, which promotes human mesenchymal stem cell (hMSC) differentiation to smooth muscle cells (SMCs), to treat closed penile fracture (CPF). METHODS Multi-gene co-expressing hMSCs were generated. The expression of mRNA and proteins was assessed, and the original biological properties of hMSCs were determined and compared. The intracellular uptake of iron was evaluated, and the ability to differentiate into SMCs was detected. Fifty rabbits with CPF were randomly transplanted with PBS, hMSCs, Fth-TfR-hMSCs, DTX1-hMSCs, and Fth-TfR-DTX1-hMSCs. In vivo MRI was performed to detect the distribution and migration of the grafted cells and healing progress of CPF, and the results were correlated with histology. RESULTS The mRNA and proteins of the multi-gene were highly expressed. The transgenes could not influence the original biological properties of hMSCs. The dual MRI reporter genes increased the iron accumulation capacity, and the DTX1 gene promoted hMSC differentiation into SMCs. The distribution and migration of the dual MRI reporter gene-modified hMSCs, and the healing state of CPF could be obviously detected by MRI and confirmed by histology. CONCLUSION The dual MRI reporter genes could provide sufficient MRI contrast, and the distribution and migration of MSCs could be detected in vivo. The DTX1 gene can promote MSC differentiation into SMCs for the treatment of CPF and effectively inhibit granulation tissue formation.
Collapse
Affiliation(s)
- Ruomi Guo
- Department of Radiology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qingling Li
- Department of VIP Medical Center, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Fei Yang
- Department of Urology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaojun Hu
- Department of Radiology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ju Jiao
- Department of Nuclear Medicine, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yu Guo
- Department of VIP Medical Center, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jin Wang
- Department of Radiology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yong Zhang
- Department of Nuclear Medicine, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
6
|
In Vitro Neural Differentiation of Bone Marrow Mesenchymal Stem Cells Carrying the FTH1 Reporter Gene and Detection with MRI. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1978602. [PMID: 30046590 PMCID: PMC6038692 DOI: 10.1155/2018/1978602] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/24/2018] [Accepted: 05/31/2018] [Indexed: 01/15/2023]
Abstract
Magnetic resonance imaging (MRI) based on the ferritin heavy chain 1 (FTH1) reporter gene has been used to trace stem cells. However, whether FTH1 expression is affected by stem cell differentiation or whether cell differentiation is affected by reporter gene expression remains unclear. Here, we explore the relationship between FTH1 expression and neural differentiation in the differentiation of mesenchymal stem cells (MSCs) carrying FTH1 into neuron-like cells and investigate the feasibility of using FTH1 as an MRI reporter gene to detect neurally differentiated cells. By inducing cell differentiation with all-trans retinoic acid and a modified neuronal medium, MSCs and MSCs-FTH1 were successfully differentiated into neuron-like cells (Neurons and Neurons-FTH1), and the neural differentiation rates were (91.56±7.89)% and (92.23±7.64)%, respectively. Neuron-specific markers, including nestin, neuron-specific enolase, and microtubule-associated protein-2, were significantly expressed in Neurons-FTH1 and Neurons without noticeable differences. On the other hand, FTH1 was significantly expressed in MSCs-FTH1 and Neurons-FTH1 cells, and the expression levels were not significantly different. The R2 value was significantly increased in MSCs-FTH1 and Neurons-FTH1 cells, which was consistent with the findings of Prussian blue staining, transmission electron microscopy, and intracellular iron measurements. These results suggest that FTH1 gene expression did not affect MSC differentiation into neurons and was not affected by neural differentiation. Thus, MRI reporter gene imaging based on FTH1 can be used for the detection of neurally differentiated cells from MSCs.
Collapse
|
7
|
He X, Cai J, Li H, Liu B, Qin Y, Zhong Y, Wang L, Liao Y. In Vivo magnetic resonance imaging of xenografted tumors using FTH1 reporter gene expression controlled by a tet-on switch. Oncotarget 2018; 7:78591-78604. [PMID: 27732930 PMCID: PMC5346662 DOI: 10.18632/oncotarget.12519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/03/2016] [Indexed: 12/28/2022] Open
Abstract
As a promising magnetic resonance imaging (MRI) reporter, ferritin has been used to track cells in vivo; however, its continuous overexpression can be cytotoxic, which restricts its application. In this study, we aimed to develop a switch to turn this genetic reporter “on” or “off” while monitoring cell grafts via MRI. To accomplish this, we genetically modified the ferritin heavy chain (FTH1) with a Tet-On switch and assessed the expression of FTH1 in transduced neuroblastoma cells (SK-N-SH) in vitro and in xenografted tumors in vivo. We found that FTH1 expression induced by doxycycline (Dox) in SK-N-SH-FTH1 cells depended on treatment dose and duration. We successfully detected T2-weighted MRI contrast in cell grafts after switching “on” the reporter gene using Dox, and this contrast disappeared when we switched it “off”. The genetic reporter FTH1 can thus be switched “on” or “off” throughout longitudinal monitoring of cell grafts, limiting expression to when MRI contrast is needed. The controllable imaging system we have developed minimizes risks from constitutive reporter gene overexpression and facilitates tumor cell monitoring in vitro and in vivo.
Collapse
Affiliation(s)
- Xiaoya He
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Jinhua Cai
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Hao Li
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Bo Liu
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Yong Qin
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Yi Zhong
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Longlun Wang
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Yifan Liao
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| |
Collapse
|
8
|
Cao M, Mao J, Duan X, Lu L, Zhang F, Lin B, Chen M, Zheng C, Zhang X, Shen J. In vivo tracking of the tropism of mesenchymal stem cells to malignant gliomas using reporter gene-based MR imaging. Int J Cancer 2017; 142:1033-1046. [PMID: 29047121 DOI: 10.1002/ijc.31113] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 09/13/2017] [Accepted: 10/12/2017] [Indexed: 12/17/2022]
Abstract
Mesenchymal stem cells (MSCs) have emerged as a promising cellular vehicle for gene therapy of malignant gliomas due to their property of tumor tropism. However, MSCs may show bidirectional and divergent effects on tumor growth. Therefore, a robust surveillance system with a capacity for noninvasive monitoring of the homing, distribution and fate of stem cells in vivo is highly desired for developing stem cell-based gene therapies for tumors. In this study, we used ferritin gene-based magnetic resonance imaging (MRI) to track the tumor tropism of MSCs in a rat orthotopic xenograft model of malignant glioma. MSCs were transduced with lentiviral vectors expressing ferritin heavy chain (FTH) and enhanced green fluorescent protein (eGFP). Intra-arterial, intravenous and intertumoral injections of these FTH transgenic MSCs (FTH-MSCs) were performed in rats bearing intracranial orthotopic C6 gliomas. The FTH-MSCs were detected as hypointense signals on T2- and T2*-weighted images on a 3.0 T clinical MRI. After intra-arterial injection, 17% of FTH-MSCs migrated toward the tumor and gradually diffused throughout the orthotopic glioma. This dynamic process could be tracked in vivo by MRI up to 10 days of follow-up, as confirmed by histology. Moreover, the tumor tropism of MSCs showed no appreciable impact on the progression of the tumor. These results suggest that FTH reporter gene-based MRI can be used to reliably track the tropism and fate of MSCs after their systemic transplantation in orthotopic gliomas. This real-time in vivo tracking system will facilitate the future development of stem cell-based therapies for malignant gliomas.
Collapse
Affiliation(s)
- Minghui Cao
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Jiaji Mao
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Xiaohui Duan
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Liejing Lu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Fang Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Bingling Lin
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Meiwei Chen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Chushan Zheng
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Xiang Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| |
Collapse
|
9
|
Advances in Monitoring Cell-Based Therapies with Magnetic Resonance Imaging: Future Perspectives. Int J Mol Sci 2017; 18:ijms18010198. [PMID: 28106829 PMCID: PMC5297829 DOI: 10.3390/ijms18010198] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 01/07/2023] Open
Abstract
Cell-based therapies are currently being developed for applications in both regenerative medicine and in oncology. Preclinical, translational, and clinical research on cell-based therapies will benefit tremendously from novel imaging approaches that enable the effective monitoring of the delivery, survival, migration, biodistribution, and integration of transplanted cells. Magnetic resonance imaging (MRI) offers several advantages over other imaging modalities for elucidating the fate of transplanted cells both preclinically and clinically. These advantages include the ability to image transplanted cells longitudinally at high spatial resolution without exposure to ionizing radiation, and the possibility to co-register anatomical structures with molecular processes and functional changes. However, since cellular MRI is still in its infancy, it currently faces a number of challenges, which provide avenues for future research and development. In this review, we describe the basic principle of cell-tracking with MRI; explain the different approaches currently used to monitor cell-based therapies; describe currently available MRI contrast generation mechanisms and strategies for monitoring transplanted cells; discuss some of the challenges in tracking transplanted cells; and suggest future research directions.
Collapse
|
10
|
Matteucci M, Casieri V, Gabisonia K, Aquaro GD, Agostini S, Pollio G, Diamanti D, Rossi M, Travagli M, Porcari V, Recchia FA, Lionetti V. Magnetic resonance imaging of infarct-induced canonical wingless/integrated (Wnt)/β-catenin/T-cell factor pathway activation, in vivo. Cardiovasc Res 2016; 112:645-655. [PMID: 27671803 DOI: 10.1093/cvr/cvw214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 09/06/2016] [Accepted: 09/15/2016] [Indexed: 01/16/2023] Open
Abstract
AIMS Combined magnetic resonance imaging (MRI) of molecular and morpho-functional changes might prove highly valuable for the elucidation of pathological processes involved in the development of cardiac diseases. Our aim was to test a novel MRI reporter gene for in vivo assessment of the canonical Wnt/β-catenin/TCF pathway activation, an important regulator of post-ischaemic cardiac remodelling. METHODS AND RESULTS We designed and developed a chimeric construct encoding for both of iron-binding human ferritin heavy chain (hFTH) controlled by the β-catenin-responsive TCF/lymphoid-enhancer binding factor (Lef) promoter and constitutively expressed green fluorescent protein (GFP). It was carried by adeno-associated virus serotype 9 (rAAV9) vectors and delivered to the peri-infarct myocardium of rats subjected to coronary ligation (n = 11). By 1.5 T MRI and a multiecho T2* gradient echo sequence, we detected iron accumulation only in the border zone of the transduced infarcted hearts. In the same cardiac area, post-mortem histological analysis confirmed the co-existence of iron accumulation and GFP. The iron signal was absent when rats (n = 6) were chronically treated with SEN195 (10 mg/kg/day), a small-molecular inhibitor of β-catenin/TCF-dependent gene transcription. Canonical Wnt pathway inhibition attenuated the post-ischaemic remodelling process, as demonstrated by the significant preservation of cardiac function, the 42 ± 1% increase of peri-infarct arteriolar density and 43 ± 3% reduction in infarct scar size compared with untreated animals. CONCLUSIONS The TCF/Lef promoter-hFTH construct is a novel and reliable MRI reporter gene for in vivo detection of the canonical Wnt/β-catenin/TCF activation state in response to cardiac injury and therapeutic interventions.
Collapse
Affiliation(s)
- Marco Matteucci
- Laboratory of Medical Science, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124 Pisa, Italy
| | - Valentina Casieri
- Laboratory of Medical Science, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124 Pisa, Italy
| | - Khatia Gabisonia
- Laboratory of Medical Science, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124 Pisa, Italy
| | | | - Silvia Agostini
- Laboratory of Medical Science, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124 Pisa, Italy
| | | | | | - Marco Rossi
- Siena Biotech Medicine Research Centre, 53100 Siena, Italy
| | | | | | - Fabio A Recchia
- Laboratory of Medical Science, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124 Pisa, Italy.,Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, 19140 Philadelphia, PA, USA
| | - Vincenzo Lionetti
- Laboratory of Medical Science, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124 Pisa, Italy .,Fondazione Toscana 'G. Monasterio', 56124 Pisa, Italy
| |
Collapse
|
11
|
MRI Reporter Genes for Noninvasive Molecular Imaging. Molecules 2016; 21:molecules21050580. [PMID: 27213309 PMCID: PMC6273230 DOI: 10.3390/molecules21050580] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/21/2016] [Accepted: 04/25/2016] [Indexed: 01/17/2023] Open
Abstract
Magnetic resonance imaging (MRI) is one of the most important imaging technologies used in clinical diagnosis. Reporter genes for MRI can be applied to accurately track the delivery of cell in cell therapy, evaluate the therapy effect of gene delivery, and monitor tissue/cell-specific microenvironments. Commonly used reporter genes for MRI usually include genes encoding the enzyme (e.g., tyrosinase and β-galactosidase), the receptor on the cells (e.g., transferrin receptor), and endogenous reporter genes (e.g., ferritin reporter gene). However, low sensitivity limits the application of MRI and reporter gene-based multimodal imaging strategies are common including optical imaging and radionuclide imaging. These can significantly improve diagnostic efficiency and accelerate the development of new therapies.
Collapse
|
12
|
Pereira SM, Herrmann A, Moss D, Poptani H, Williams SR, Murray P, Taylor A. Evaluating the effectiveness of transferrin receptor-1 (TfR1) as a magnetic resonance reporter gene. CONTRAST MEDIA & MOLECULAR IMAGING 2016; 11:236-44. [PMID: 26929139 PMCID: PMC4981909 DOI: 10.1002/cmmi.1686] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/06/2016] [Accepted: 01/08/2016] [Indexed: 12/13/2022]
Abstract
Magnetic resonance (MR) reporter genes have the potential for tracking the biodistribution and fate of cells in vivo, thus allowing the safety, efficacy and mechanisms of action of cell-based therapies to be comprehensively assessed. In this study, we evaluate the effectiveness of the iron importer transferrin receptor-1 (TfR1) as an MR reporter gene in the model cell line CHO-K1. Overexpression of the TfR1 transgene led to a reduction in the levels of endogenous TfR1 mRNA, but to a 60-fold increase in total TfR1 protein levels. Although the mRNA levels of ferritin heavy chain-1 (Fth1) did not change, Fth1 protein levels increased 13-fold. The concentration of intracellular iron increased significantly, even when cells were cultured in medium that was not supplemented with iron and the amount of iron in the extracellular environment was thus at physiological levels. However, we found that, by supplementing the cell culture medium with ferric citrate, a comparable degree of iron uptake and MR contrast could be achieved in control cells that did not express the TfR1 transgene. Sufficient MR contrast to enable the cells to be detected in vivo following their administration into the midbrain of chick embryos was obtained irrespective of the reporter gene. We conclude that TfR1 is not an effective reporter and that, to track the biodistribution of cells with MR imaging in the short term, it is sufficient to simply culture cells in the presence of ferric citrate. Copyright © 2016 The Authors Contrast Media & Molecular Imaging Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Sofia M Pereira
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Anne Herrmann
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Diana Moss
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Harish Poptani
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Steve R Williams
- Centre for Imaging Sciences, Oxford Road, University of Manchester, Manchester, UK
| | - Patricia Murray
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Arthur Taylor
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
13
|
He X, Cai J, Liu B, Zhong Y, Qin Y. Cellular magnetic resonance imaging contrast generated by the ferritin heavy chain genetic reporter under the control of a Tet-On switch. Stem Cell Res Ther 2015; 6:207. [PMID: 26517988 PMCID: PMC4628232 DOI: 10.1186/s13287-015-0205-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/30/2015] [Accepted: 10/16/2015] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Despite the strong appeal of ferritin as a magnetic resonance imaging (MRI) reporter for stem cell research, no attempts have been made to apply this genetic imaging reporter in stem cells in an inducible manner, which is important for minimizing the potential risk related to the constitutive expression of an imaging reporter. The aim of the present study was to develop an inducible genetic MRI reporter system that enables the production of intracellular MRI contrast as needed. METHODS Ferritin heavy chain (FTH1) was genetically modified by adding a Tet-On switch. A C3H10T1/2 cell line carrying Tet-FTH1 (C3H10T1/2-FTH1) was established via lentiviral transduction. The dose- and time-dependent expression of FTH1 in C3H10T1/2 cells was assessed by western blot and immunofluorescence staining. The induced "ON" and non-induced "OFF" expressions of FTH1 were detected using a 3.0 T MRI scanner. Iron accumulation in cells was analyzed by Prussian blue staining and transmission electron microscopy (TEM). RESULTS The expression of FTH1 was both dose- and time-dependently induced, and FTH1 expression peaked in response to induction with doxycycline (Dox) at 0.2 μg/ml for 72 h. The induced expression of FTH1 resulted in a significant increase in the transverse relaxation rate of C3H10T1/2-FTH1 cells following iron supplementation. Prussian blue staining and TEM revealed extensive iron accumulation in C3H10T1/2-FTH1 cells in the presence of Dox. CONCLUSIONS Cellular MRI contrast can be produced as needed via the expression of FTH1 under the control of a Tet-On switch. This finding could lay the groundwork for the use of FTH1 to track stem cells in vivo in an inducible manner.
Collapse
Affiliation(s)
- Xiaoya He
- Department of Radiology, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Ministry of Education Key Laboratory of Child Development and Disorders, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Key Laboratory of Pediatrics in Chongqing, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Chongqing International Science and Technology Cooperation Center For Child Development and Disorders, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China.
| | - Jinhua Cai
- Department of Radiology, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Ministry of Education Key Laboratory of Child Development and Disorders, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Key Laboratory of Pediatrics in Chongqing, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Chongqing International Science and Technology Cooperation Center For Child Development and Disorders, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China.
| | - Bo Liu
- Department of Radiology, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Ministry of Education Key Laboratory of Child Development and Disorders, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Key Laboratory of Pediatrics in Chongqing, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Chongqing International Science and Technology Cooperation Center For Child Development and Disorders, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China.
| | - Yi Zhong
- Department of Radiology, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Ministry of Education Key Laboratory of Child Development and Disorders, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Key Laboratory of Pediatrics in Chongqing, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Chongqing International Science and Technology Cooperation Center For Child Development and Disorders, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China.
| | - Yong Qin
- Department of Radiology, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Ministry of Education Key Laboratory of Child Development and Disorders, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Key Laboratory of Pediatrics in Chongqing, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Chongqing International Science and Technology Cooperation Center For Child Development and Disorders, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China.
| |
Collapse
|