1
|
Price SEN, Gjennestad MA, Kjelstrup S, Hansen R. The effect of temperature constraints on the treatment of tumors using focused ultrasound-induced acoustic streaming. Sci Rep 2025; 15:49. [PMID: 39747331 DOI: 10.1038/s41598-024-83782-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
The transport of drugs into tumor cells near the center of the tumor is known to be severely hindered due to the high interstitial pressure and poor vascularization. The aim of this work is to investigate the possibility to induce acoustic streaming in a tumor. Two tumor cases (breast and abdomen) are simulated to find the acoustic streaming and temperature rise, while varying the focused ultrasound transducer radius, frequency, and power for a constant duty cycle (1%). In the absence of perfusion, the simulated rise in temperature, despite the low duty cycle, never reaches a steady state and is fitted to a logarithmic equation, enabling predictions of the temperature for long treatment times. Higher frequencies and larger probe radii are found to result in shorter treatment times relative to the temperature rise, at the cost of a smaller treated area. Results from the simulations indicate that it may be possible to achieve reasonable acoustic streaming values in tumor without the temperature exceeding 50 °C. Treatment times for streaming a distance of 50 μm in the breast case are shown to range from less than one and a half hour to 93 h, depending on the probe settings.
Collapse
Affiliation(s)
- Sebastian E N Price
- Porelab and Department of Chemistry, The Norwegian University of Science and Technology NTNU, 7491, Trondheim, Norway.
| | | | - Signe Kjelstrup
- Porelab and Department of Chemistry, The Norwegian University of Science and Technology NTNU, 7491, Trondheim, Norway
| | - Rune Hansen
- SINTEF, Department of Health Research and Department of Circulation and Medical Imaging, The Norwegian University of Science and Technology NTNU, 7491, Trondheim, Norway
| |
Collapse
|
2
|
Rey JA, Spanick KG, Cabral G, Rivera-Santiago IN, Nagaraja TN, Brown SL, Ewing JR, Sarntinoranont M. Heterogeneous Mechanical Stress and Interstitial Fluid Flow Predictions Derived from DCE-MRI for Rat U251N Orthotopic Gliomas. Ann Biomed Eng 2024; 52:3053-3066. [PMID: 39048699 DOI: 10.1007/s10439-024-03569-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/21/2024] [Indexed: 07/27/2024]
Abstract
Mechanical stress and fluid flow influence glioma cell phenotype in vitro, but measuring these quantities in vivo continues to be challenging. The purpose of this study was to predict these quantities in vivo, thus providing insight into glioma physiology and potential mechanical biomarkers that may improve glioma detection, diagnosis, and treatment. Image-based finite element models of human U251N orthotopic glioma in athymic rats were developed to predict structural stress and interstitial flow in and around each animal's tumor. In addition to accounting for structural stress caused by tumor growth, our approach has the advantage of capturing fluid pressure-induced structural stress, which was informed by in vivo interstitial fluid pressure (IFP) measurements. Because gliomas and the brain are soft, elevated IFP contributed substantially to tumor structural stress, even inverting this stress from compressive to tensile in the most compliant cases. The combination of tumor growth and elevated IFP resulted in a concentration of structural stress near the tumor boundary where it has the greatest potential to influence cell proliferation and invasion. MRI-derived anatomical geometries and tissue property distributions resulted in heterogeneous interstitial fluid flow with local maxima near cerebrospinal fluid spaces, which may promote tumor invasion and hinder drug delivery. In addition, predicted structural stress and interstitial flow varied markedly between irradiated and radiation-naïve animals. Our modeling suggests that relative to tumors in stiffer tissues, gliomas experience unusual mechanical conditions with potentially important biological (e.g., proliferation and invasion) and clinical consequences (e.g., drug delivery and treatment monitoring).
Collapse
Affiliation(s)
- Julian A Rey
- Department of Mechanical and Aerospace Engineering, University of Florida, 497 Wertheim, PO Box 116250, Gainesville, FL, 32611, USA
| | | | - Glauber Cabral
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Isabel N Rivera-Santiago
- Department of Mechanical and Aerospace Engineering, University of Florida, 497 Wertheim, PO Box 116250, Gainesville, FL, 32611, USA
| | - Tavarekere N Nagaraja
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - Stephen L Brown
- Department of Radiology, Michigan State University, East Lansing, MI, USA
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, MI, USA
| | - James R Ewing
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
- Department of Radiology, Michigan State University, East Lansing, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Malisa Sarntinoranont
- Department of Mechanical and Aerospace Engineering, University of Florida, 497 Wertheim, PO Box 116250, Gainesville, FL, 32611, USA.
| |
Collapse
|
3
|
Chen R, Rey JA, Tuna IS, Tran DD, Sarntinoranont M. A Spatial Interpolation Approach to Assign Magnetic Resonance Imaging-Derived Material Properties for Finite Element Models of Adeno-Associated Virus Infusion Into a Recurrent Brain Tumor. J Biomech Eng 2024; 146:101001. [PMID: 38581376 PMCID: PMC11110824 DOI: 10.1115/1.4064966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 04/08/2024]
Abstract
Adeno-associated virus (AAV) is a clinically useful gene delivery vehicle for treating neurological diseases. To deliver AAV to focal targets, direct infusion into brain tissue by convection-enhanced delivery (CED) is often needed due to AAV's limited penetration across the blood-brain-barrier and its low diffusivity in tissue. In this study, computational models that predict the spatial distribution of AAV in brain tissue during CED were developed to guide future placement of infusion catheters in recurrent brain tumors following primary tumor resection. The brain was modeled as a porous medium, and material property fields that account for magnetic resonance imaging (MRI)-derived anatomical regions were interpolated and directly assigned to an unstructured finite element mesh. By eliminating the need to mesh complex surfaces between fluid regions and tissue, mesh preparation was expedited, increasing the model's clinical feasibility. The infusion model predicted preferential fluid diversion into open fluid regions such as the ventricles and subarachnoid space (SAS). Additionally, a sensitivity analysis of AAV delivery demonstrated that improved AAV distribution in the tumor was achieved at higher tumor hydraulic conductivity or lower tumor porosity. Depending on the tumor infusion site, the AAV distribution covered 3.67-70.25% of the tumor volume (using a 10% AAV concentration threshold), demonstrating the model's potential to inform the selection of infusion sites for maximal tumor coverage.
Collapse
Affiliation(s)
- Reed Chen
- Department of Biomedical Engineering, Duke University, 407 Towerview Rd, Box 97756, Durham, NC 27708
| | - Julian A. Rey
- Department of Mechanical & Aerospace Engineering, University of Florida, 142 New Engineering Building, P.O. Box 116250, Gainesville, FL 32611
- University of Florida
| | - Ibrahim S. Tuna
- Department of Radiology, University of Florida College of Medicine, P.O. Box 100374, Gainesville, FL 32610-0374
- University of Florida
| | - David D. Tran
- Division of Neuro-Oncology, Department of Neurological Surgery and Neurology USC Brain Tumor Center, University of Southern California Keck School of Medicine, Los Angeles, CA 90033
- University of Southern California
| | - Malisa Sarntinoranont
- Department of Mechanical & Aerospace Engineering, University of Florida, 497 Wertheim, P.O. Box 116250, Gainesville, FL 32611
| |
Collapse
|
4
|
Bagher-Ebadian H, Brown SL, Ghassemi MM, Nagaraja TN, Movsas B, Ewing JR, Chetty IJ. Radiomics characterization of tissues in an animal brain tumor model imaged using dynamic contrast enhanced (DCE) MRI. Sci Rep 2023; 13:10693. [PMID: 37394559 DOI: 10.1038/s41598-023-37723-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/27/2023] [Indexed: 07/04/2023] Open
Abstract
Here, we investigate radiomics-based characterization of tumor vascular and microenvironmental properties in an orthotopic rat brain tumor model measured using dynamic-contrast-enhanced (DCE) MRI. Thirty-two immune compromised-RNU rats implanted with human U-251N cancer cells were imaged using DCE-MRI (7Tesla, Dual-Gradient-Echo). The aim was to perform pharmacokinetic analysis using a nested model (NM) selection technique to classify brain regions according to vasculature properties considered as the source of truth. A two-dimensional convolutional-based radiomics analysis was performed on the raw-DCE-MRI of the rat brains to generate dynamic radiomics maps. The raw-DCE-MRI and respective radiomics maps were used to build 28 unsupervised Kohonen self-organizing-maps (K-SOMs). A Silhouette-Coefficient (SC), k-fold Nested-Cross-Validation (k-fold-NCV), and feature engineering analyses were performed on the K-SOMs' feature spaces to quantify the distinction power of radiomics features compared to raw-DCE-MRI for classification of different Nested Models. Results showed that eight radiomics features outperformed respective raw-DCE-MRI in prediction of the three nested models. The average percent difference in SCs between radiomics features and raw-DCE-MRI was: 29.875% ± 12.922%, p < 0.001. This work establishes an important first step toward spatiotemporal characterization of brain regions using radiomics signatures, which is fundamental toward staging of tumors and evaluation of tumor response to different treatments.
Collapse
Affiliation(s)
- Hassan Bagher-Ebadian
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI, 48202, USA.
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Physics, Oakland University, Rochester, MI, 48309, USA.
| | - Stephen L Brown
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI, 48202, USA
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Radiation Oncology, Wayne State University, Detroit, MI, 48202, USA
| | - Mohammad M Ghassemi
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Tavarekere N Nagaraja
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Neurosurgery, Henry Ford Health, Detroit, MI, 48202, USA
| | - Benjamin Movsas
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI, 48202, USA
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Radiation Oncology, Wayne State University, Detroit, MI, 48202, USA
| | - James R Ewing
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Physics, Oakland University, Rochester, MI, 48309, USA
- Department of Neurosurgery, Henry Ford Health, Detroit, MI, 48202, USA
- Department of Neurology, Henry Ford Health, Detroit, MI, 48202, USA
- Department of Neurology, Wayne State University, Detroit, MI, 48202, USA
| | - Indrin J Chetty
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI, 48202, USA
- Department of Physics, Oakland University, Rochester, MI, 48309, USA
- Department of Radiation Oncology, Wayne State University, Detroit, MI, 48202, USA
| |
Collapse
|
5
|
Bagher-Ebadian H, Brown SL, Ghassemi MM, Nagaraja TN, Valadie OG, Acharya PC, Cabral G, Divine G, Knight RA, Lee IY, Xu JH, Movsas B, Chetty IJ, Ewing JR. Dynamic contrast enhanced (DCE) MRI estimation of vascular parameters using knowledge-based adaptive models. Sci Rep 2023; 13:9672. [PMID: 37316579 PMCID: PMC10267191 DOI: 10.1038/s41598-023-36483-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/05/2023] [Indexed: 06/16/2023] Open
Abstract
We introduce and validate four adaptive models (AMs) to perform a physiologically based Nested-Model-Selection (NMS) estimation of such microvascular parameters as forward volumetric transfer constant, Ktrans, plasma volume fraction, vp, and extravascular, extracellular space, ve, directly from Dynamic Contrast-Enhanced (DCE) MRI raw information without the need for an Arterial-Input Function (AIF). In sixty-six immune-compromised-RNU rats implanted with human U-251 cancer cells, DCE-MRI studies estimated pharmacokinetic (PK) parameters using a group-averaged radiological AIF and an extended Patlak-based NMS paradigm. One-hundred-ninety features extracted from raw DCE-MRI information were used to construct and validate (nested-cross-validation, NCV) four AMs for estimation of model-based regions and their three PK parameters. An NMS-based a priori knowledge was used to fine-tune the AMs to improve their performance. Compared to the conventional analysis, AMs produced stable maps of vascular parameters and nested-model regions less impacted by AIF-dispersion. The performance (Correlation coefficient and Adjusted R-squared for NCV test cohorts) of the AMs were: 0.914/0.834, 0.825/0.720, 0.938/0.880, and 0.890/0.792 for predictions of nested model regions, vp, Ktrans, and ve, respectively. This study demonstrates an application of AMs that quickens and improves DCE-MRI based quantification of microvasculature properties of tumors and normal tissues relative to conventional approaches.
Collapse
Affiliation(s)
- Hassan Bagher-Ebadian
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI, 48202, USA.
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Physics, Oakland University, Rochester, MI, 48309, USA.
| | - Stephen L Brown
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI, 48202, USA
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Radiation Oncology, Wayne State University, Detroit, MI, 48202, USA
| | - Mohammad M Ghassemi
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Tavarekere N Nagaraja
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Neurosurgery, Henry Ford Health, Detroit, MI, 48202, USA
| | - Olivia Grahm Valadie
- Department of Radiation Oncology, Wayne State University, Detroit, MI, 48202, USA
| | - Prabhu C Acharya
- Department of Physics, Oakland University, Rochester, MI, 48309, USA
| | - Glauber Cabral
- Department of Neurology, Henry Ford Health, Detroit, MI, 48202, USA
| | - George Divine
- Department of Public Health Sciences, Henry Ford Health, Detroit, MI, 48202, USA
- Department of Epidemiology and Biostatistics, Michigan State University, E. Lansing, MI, 48824, USA
| | - Robert A Knight
- Department of Neurology, Henry Ford Health, Detroit, MI, 48202, USA
| | - Ian Y Lee
- Department of Neurosurgery, Henry Ford Health, Detroit, MI, 48202, USA
| | - Jun H Xu
- Department of Neurosurgery, Henry Ford Health, Detroit, MI, 48202, USA
| | - Benjamin Movsas
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI, 48202, USA
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Radiation Oncology, Wayne State University, Detroit, MI, 48202, USA
| | - Indrin J Chetty
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI, 48202, USA
- Department of Physics, Oakland University, Rochester, MI, 48309, USA
- Department of Radiation Oncology, Wayne State University, Detroit, MI, 48202, USA
| | - James R Ewing
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Physics, Oakland University, Rochester, MI, 48309, USA
- Department of Neurosurgery, Henry Ford Health, Detroit, MI, 48202, USA
- Department of Neurology, Henry Ford Health, Detroit, MI, 48202, USA
- Department of Neurology, Wayne State University, Detroit, MI, 48202, USA
| |
Collapse
|
6
|
Grahm Valadie O, Brown SL, Farmer K, Nagaraja TN, Cabral G, Shadaia S, Divine GW, Knight RA, Lee IY, Dolan J, Rusu S, Joiner MC, Ewing JR. Characterization of the Response of 9L and U-251N Orthotopic Brain Tumors to 3D Conformal Radiation Therapy. Radiat Res 2023; 199:217-228. [PMID: 36656561 PMCID: PMC10174721 DOI: 10.1667/rade-22-00048.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 12/21/2022] [Indexed: 01/20/2023]
Abstract
In a study employing MRI-guided stereotactic radiotherapy (SRS) in two orthotopic rodent brain tumor models, the radiation dose yielding 50% survival (the TCD50) was sought. Syngeneic 9L cells, or human U-251N cells, were implanted stereotactically in 136 Fischer 344 rats or 98 RNU athymic rats, respectively. At approximately 7 days after implantation for 9L, and 18 days for U-251N, rats were imaged with contrast-enhanced MRI (CE-MRI) and then irradiated using a Small Animal Radiation Research Platform (SARRP) operating at 220 kV and 13 mA with an effective energy of ∼70 keV and dose rate of ∼2.5 Gy per min. Radiation doses were delivered as single fractions. Cone-beam CT images were acquired before irradiation, and tumor volumes were defined using co-registered CE-MRI images. Treatment planning using MuriPlan software defined four non-coplanar arcs with an identical isocenter, subsequently accomplished by the SARRP. Thus, the treatment workflow emulated that of current clinical practice. The study endpoint was animal survival to 200 days. The TCD50 inferred from Kaplan-Meier survival estimation was approximately 25 Gy for 9L tumors and below 20 Gy, but within the 95% confidence interval in U-251N tumors. Cox proportional-hazards modeling did not suggest an effect of sex, with the caveat of wide confidence intervals. Having identified the radiation dose at which approximately half of a group of animals was cured, the biological parameters that accompany radiation response can be examined.
Collapse
Affiliation(s)
- O. Grahm Valadie
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan
- Department of Radiation Oncology, Wayne State University, Detroit, Michigan
| | - Stephen L. Brown
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan
- Department of Radiation Oncology, Wayne State University, Detroit, Michigan
- Department of Radiology, Michigan State University College of Human Medicine, East Lansing, Michigan
| | - Katelynn Farmer
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan
| | | | - Glauber Cabral
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan
| | - Sheldon Shadaia
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan
| | - George W. Divine
- Department of Public Health Sciences, Henry Ford Hospital, Detroit Michigan
| | - Robert A. Knight
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan
- Department of Physics, Oakland University, Rochester, Michigan
| | - Ian Y. Lee
- Department of Neurosurgery, Henry Ford Hospital, Detroit Michigan
| | - Jennifer Dolan
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan
| | - Sam Rusu
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan
| | - Michael C. Joiner
- Department of Radiation Oncology, Wayne State University, Detroit, Michigan
| | - James R. Ewing
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan
- Department of Radiology, Michigan State University College of Human Medicine, East Lansing, Michigan
- Department of Neurosurgery, Henry Ford Hospital, Detroit Michigan
- Department of Physics, Oakland University, Rochester, Michigan
| |
Collapse
|
7
|
Neuroinflammation and apoptosis after surgery for a rat model of double-level cervical cord compression. Neurochem Int 2022; 157:105340. [DOI: 10.1016/j.neuint.2022.105340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/11/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022]
|
8
|
Adaptation of laser interstitial thermal therapy for tumor ablation under MRI monitoring in a rat orthotopic model of glioblastoma. Acta Neurochir (Wien) 2021; 163:3455-3463. [PMID: 34554269 DOI: 10.1007/s00701-021-05002-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Laser interstitial thermal therapy (LITT) under magnetic resonance imaging (MRI) monitoring is being increasingly used in cytoreductive surgery of recurrent brain tumors and tumors located in eloquent brain areas. The objective of this study was to adapt this technique to an animal glioma model. METHODS A rat model of U251 glioblastoma (GBM) was employed. Tumor location and extent were determined by MRI and dynamic contrast-enhanced (DCE) MRI. A day after assessing tumor appearance, tumors were ablated during diffusion-weighted imaging (DWI)-MRI using a Visualase LITT system (n = 5). Brain images were obtained immediately after ablation and again at 24 h post-ablation to confirm the efficacy of tumor cytoablation. Untreated tumors served as controls (n = 3). Rats were injected with fluorescent isothiocyanate (FITC) dextran and Evans blue that circulated for 10 min after post-LITT MRI. The brains were then removed for fluorescence microscopy and histopathology evaluations using hematoxylin and eosin (H&E) and major histocompatibility complex (MHC) staining. RESULTS All rats showed a space-occupying tumor with T2 and T1 contrast-enhancement at pre-LITT imaging. The rats that underwent the LITT procedure showed a well-demarcated ablation zone with near-complete ablation of tumor tissue and with peri-ablation contrast enhancement at 24 h post-ablation. Tumor cytoreduction by ablation as seen on MRI was confirmed by H&E and MHC staining. CONCLUSIONS Data showed that tumor cytoablation using MRI-monitored LITT was possible in preclinical glioma models. Real-time MRI monitoring facilitated visualizing and controlling the area of ablation as it is otherwise performed in clinical applications.
Collapse
|
9
|
Walsh JJ, Parent M, Akif A, Adam LC, Maritim S, Mishra SK, Khan MH, Coman D, Hyder F. Imaging Hallmarks of the Tumor Microenvironment in Glioblastoma Progression. Front Oncol 2021; 11:692650. [PMID: 34513675 PMCID: PMC8426346 DOI: 10.3389/fonc.2021.692650] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/05/2021] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma progression involves multifaceted changes in vascularity, cellularity, and metabolism. Capturing such complexities of the tumor niche, from the tumor core to the periphery, by magnetic resonance imaging (MRI) and spectroscopic imaging (MRSI) methods has translational impact. In human-derived glioblastoma models (U87, U251) we made simultaneous and longitudinal measurements of tumor perfusion (Fp), permeability (Ktrans), and volume fractions of extracellular (ve) and blood (vp) spaces from dynamic contrast enhanced (DCE) MRI, cellularity from apparent diffusion coefficient (ADC) MRI, and extracellular pH (pHe) from an MRSI method called Biosensor Imaging of Redundant Deviation in Shifts (BIRDS). Spatiotemporal patterns of these parameters during tumorigenesis were unique for each tumor. While U87 tumors grew faster, Fp, Ktrans, and vp increased with tumor growth in both tumors but these trends were more pronounced for U251 tumors. Perfused regions between tumor periphery and core with U87 tumors exhibited higher Fp, but Ktrans of U251 tumors remained lowest at the tumor margin, suggesting primitive vascularization. Tumor growth was uncorrelated with ve, ADC, and pHe. U87 tumors showed correlated regions of reduced ve and lower ADC (higher cellularity), suggesting ongoing proliferation. U251 tumors revealed that the tumor core had higher ve and elevated ADC (lower cellularity), suggesting necrosis development. The entire tumor was uniformly acidic (pHe 6.1-6.8) early and throughout progression, but U251 tumors were more acidic, suggesting lower aerobic glycolysis in U87 tumors. Characterizing these cancer hallmarks with DCE-MRI, ADC-MRI, and BIRDS-MRSI will be useful for exploring tumorigenesis as well as timely therapies targeted to specific vascular and metabolic aspects of the tumor microenvironment.
Collapse
Affiliation(s)
- John J Walsh
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Maxime Parent
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States.,Magnetic Resonance Research Center, Yale University, New Haven, CT, United States
| | - Adil Akif
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Lucas C Adam
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States.,Magnetic Resonance Research Center, Yale University, New Haven, CT, United States
| | - Samuel Maritim
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Sandeep K Mishra
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States.,Magnetic Resonance Research Center, Yale University, New Haven, CT, United States
| | - Muhammad H Khan
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Daniel Coman
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States.,Magnetic Resonance Research Center, Yale University, New Haven, CT, United States
| | - Fahmeed Hyder
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States.,Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States.,Magnetic Resonance Research Center, Yale University, New Haven, CT, United States
| |
Collapse
|
10
|
Longitudinal Monitoring of Simulated Interstitial Fluid Pressure for Pancreatic Ductal Adenocarcinoma Patients Treated with Stereotactic Body Radiotherapy. Cancers (Basel) 2021; 13:cancers13174319. [PMID: 34503129 PMCID: PMC8430878 DOI: 10.3390/cancers13174319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/03/2021] [Accepted: 08/19/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary High vessel permeability, poor perfusion, low lymphatic drainage, and dense abundant stroma elevate interstitial fluid pressures (IFP) in pancreatic ductal adenocarcinoma (PDAC). The present study aims to monitor longitudinal changes in simulated tumor IFP and velocity (IFV) values using a dynamic contrast-enhanced (DCE)-MRI-based computational fluid modeling (CFM) approach in PDAC. Nine PDAC patients underwent DCE-MRI acquisition on a 3-Tesla MRI scanner at pre-treatment (TX (0)), immediately after the first fraction of stereotactic body radiotherapy (SBRT, (D1-TX)), and six weeks post-TX (D2-TX). The partial differential equation of IFP formulated from the continuity equation using the Starling Principle of fluid exchange and Darcy velocity–pressure relationship was solved in COMSOL Multiphysics software to generate IFP and IFV parametric maps using relevant tumor tissue physiological parameters. Initial results suggest that after validation, IFP and IFV can be imaging biomarkers of early response to therapy that may guide precision medicine in PDAC. Abstract The present study aims to monitor longitudinal changes in simulated tumor interstitial fluid pressure (IFP) and velocity (IFV) values using dynamic contrast-enhanced (DCE)-MRI-based computational fluid modeling (CFM) in pancreatic ductal adenocarcinoma (PDAC) patients. Nine PDAC patients underwent MRI, including DCE-MRI, on a 3-Tesla MRI scanner at pre-treatment (TX (0)), after the first fraction of stereotactic body radiotherapy (SBRT, (D1-TX)), and six weeks post-TX (D2-TX). The partial differential equation of IFP formulated from the continuity equation, incorporating the Starling Principle of fluid exchange, Darcy velocity, and volume transfer constant (Ktrans), was solved in COMSOL Multiphysics software to generate IFP and IFV maps. Tumor volume (Vt), Ktrans, IFP, and IFV values were compared (Wilcoxon and Spearman) between the time- points. D2-TX Ktrans values were significantly different from pre-TX and D1-TX (p < 0.05). The D1-TX and pre-TX mean IFV values exhibited a borderline significant difference (p = 0.08). The IFP values varying <3.0% between the three time-points were not significantly different (p > 0.05). Vt and IFP values were strongly positively correlated at pre-TX (ρ = 0.90, p = 0.005), while IFV exhibited a strong negative correlation at D1-TX (ρ = −0.74, p = 0.045). Vt, Ktrans, IFP, and IFV hold promise as imaging biomarkers of early response to therapy in PDAC.
Collapse
|
11
|
Rey JA, Ewing JR, Sarntinoranont M. A computational model of glioma reveals opposing, stiffness-sensitive effects of leaky vasculature and tumor growth on tissue mechanical stress and porosity. Biomech Model Mechanobiol 2021; 20:1981-2000. [PMID: 34363553 DOI: 10.1007/s10237-021-01488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
A biphasic computational model of a growing, vascularized glioma within brain tissue was developed to account for unique features of gliomas, including soft surrounding brain tissue, their low stiffness relative to brain tissue, and a lack of draining lymphatics. This model is the first to couple nonlinear tissue deformation with porosity and tissue hydraulic conductivity to study the mechanical interaction of leaky vasculature and solid growth in an embedded glioma. The present model showed that leaky vasculature and elevated interstitial fluid pressure produce tensile stress within the tumor in opposition to the compressive stress produced by tumor growth. This tensile effect was more pronounced in softer tissue and resulted in a compressive stress concentration at the tumor rim that increased when tumor was softer than host. Aside from generating solid stress, fluid pressure-driven tissue deformation decreased the effective stiffness of the tumor while growth increased it, potentially leading to elevated stiffness in the tumor rim. A novel prediction of reduced porosity at the tumor rim was corroborated by direct comparison with estimates from our in vivo imaging studies. Antiangiogenic and radiation therapy were simulated by varying vascular leakiness and tissue hydraulic conductivity. These led to greater solid compression and interstitial pressure in the tumor, respectively, the former of which may promote tumor infiltration of the host. Our findings suggest that vascular leakiness has an important influence on in vivo solid stress, stiffness, and porosity fields in gliomas given their unique mechanical microenvironment.
Collapse
Affiliation(s)
- Julian A Rey
- Department of Mechanical and Aerospace Engineering, University of Florida, PO BOX 116250, Gainesville, FL, 32611, USA
| | - James R Ewing
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Malisa Sarntinoranont
- Department of Mechanical and Aerospace Engineering, University of Florida, PO BOX 116250, Gainesville, FL, 32611, USA.
| |
Collapse
|
12
|
Nagaraja TN, Elmghirbi R, Brown SL, Rey JA, Schultz L, Mukherjee A, Cabral G, Panda S, Lee IY, Sarntinoranont M, Keenan KA, Knight RA, Ewing JR. Imaging acute effects of bevacizumab on tumor vascular kinetics in a preclinical orthotopic model of U251 glioma. NMR IN BIOMEDICINE 2021; 34:e4516. [PMID: 33817893 PMCID: PMC8978145 DOI: 10.1002/nbm.4516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 05/05/2023]
Abstract
The effect of a human vascular endothelial growth factor antibody on the vasculature of human tumor grown in rat brain was studied. Using dynamic contrast-enhanced magnetic resonance imaging, the effects of intravenous bevacizumab (Avastin; 10 mg/kg) were examined before and at postadministration times of 1, 2, 4, 8, 12 and 24 h (N = 26; 4-5 per time point) in a rat model of orthotopic, U251 glioblastoma (GBM). The commonly estimated vascular parameters for an MR contrast agent were: (i) plasma distribution volume (vp ), (ii) forward volumetric transfer constant (Ktrans ) and (iii) reverse transfer constant (kep ). In addition, extracellular distribution volume (VD ) was estimated in the tumor (VD-tumor ), tumor edge (VD-edge ) and the mostly normal tumor periphery (VD-peri ), along with tumor blood flow (TBF), peri-tumoral hydraulic conductivity (K) and interstitial flow (Flux) and tumor interstitial fluid pressure (TIFP). Studied as % changes from baseline, the 2-h post-treatment time point began showing significant decreases in vp , VD-tumor, VD-edge and VD-peri , as well as K, with these changes persisting at 4 and 8 h in vp , K, VD-tumor, -edge and -peri (t-tests; p < 0.05-0.01). Decreases in Ktrans were observed at the 2- and 4-h time points (p < 0.05), while interstitial volume fraction (ve ; = Ktrans /kep ) showed a significant decrease only at the 2-h time point (p < 0.05). Sustained decreases in Flux were observed from 2 to 24 h (p < 0.01) while TBF and TIFP showed delayed responses, increases in the former at 12 and 24 h and a decrease in the latter only at 12 h. These imaging biomarkers of tumor vascular kinetics describe the short-term temporal changes in physical spaces and fluid flows in a model of GBM after Avastin administration.
Collapse
Affiliation(s)
| | - Rasha Elmghirbi
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
- Department of Physics, Oakland University, Rochester, Michigan, USA
| | - Stephen L. Brown
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Julian A. Rey
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida, USA
| | - Lonni Schultz
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Abir Mukherjee
- Department of Pathology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Glauber Cabral
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Swayamprava Panda
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Ian Y. Lee
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Malisa Sarntinoranont
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida, USA
| | - Kelly A. Keenan
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Robert A. Knight
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
- Department of Physics, Oakland University, Rochester, Michigan, USA
| | - James R. Ewing
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
- Department of Physics, Oakland University, Rochester, Michigan, USA
- Department of Neurology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
13
|
LoCastro E, Paudyal R, Mazaheri Y, Hatzoglou V, Oh JH, Lu Y, Konar AS, Vom Eigen K, Ho A, Ewing JR, Lee N, Deasy JO, Shukla-Dave A. Computational Modeling of Interstitial Fluid Pressure and Velocity in Head and Neck Cancer Based on Dynamic Contrast-Enhanced Magnetic Resonance Imaging: Feasibility Analysis. ACTA ACUST UNITED AC 2021; 6:129-138. [PMID: 32548289 PMCID: PMC7289251 DOI: 10.18383/j.tom.2020.00005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We developed and tested the feasibility of computational fluid modeling (CFM) based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for quantitative estimation of interstitial fluid pressure (IFP) and velocity (IFV) in patients with head and neck (HN) cancer with locoregional lymph node metastases. Twenty-two patients with HN cancer, with 38 lymph nodes, underwent pretreatment standard MRI, including DCE-MRI, on a 3-Tesla scanner. CFM simulation was performed with the finite element method in COMSOL Multiphysics software. The model consisted of a partial differential equation (PDE) module to generate 3D parametric IFP and IFV maps, using the Darcy equation and Ktrans values (min−1, estimated from the extended Tofts model) to reflect fluid influx into tissue from the capillary microvasculature. The Spearman correlation (ρ) was calculated between total tumor volumes and CFM estimates of mean tumor IFP and IFV. CFM-estimated tumor IFP and IFV mean ± standard deviation for the neck nodal metastases were 1.73 ± 0.39 (kPa) and 1.82 ± 0.9 × (10−7 m/s), respectively. High IFP estimates corresponds to very low IFV throughout the tumor core, but IFV rises rapidly near the tumor boundary where the drop in IFP is precipitous. A significant correlation was found between pretreatment total tumor volume and CFM estimates of mean tumor IFP (ρ = 0.50, P = 0.004). Future studies can validate these initial findings in larger patients with HN cancer cohorts using CFM of the tumor in concert with DCE characterization, which holds promise in radiation oncology and drug-therapy clinical trials.
Collapse
Affiliation(s)
| | | | - Yousef Mazaheri
- Departments of Medical Physics and.,Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Vaios Hatzoglou
- Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Yonggang Lu
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI
| | | | | | - Alan Ho
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - James R Ewing
- Departments of Neurology and.,Neurosurgery, Henry Ford Hospital, Detroit, MI; and
| | - Nancy Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Amita Shukla-Dave
- Departments of Medical Physics and.,Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
14
|
Chatterjee K, Atay N, Abler D, Bhargava S, Sahoo P, Rockne RC, Munson JM. Utilizing Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) to Analyze Interstitial Fluid Flow and Transport in Glioblastoma and the Surrounding Parenchyma in Human Patients. Pharmaceutics 2021; 13:pharmaceutics13020212. [PMID: 33557069 PMCID: PMC7913790 DOI: 10.3390/pharmaceutics13020212] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 01/04/2023] Open
Abstract
Background: Glioblastoma (GBM) is the deadliest and most common brain tumor in adults, with poor survival and response to aggressive therapy. Limited access of drugs to tumor cells is one reason for such grim clinical outcomes. A driving force for therapeutic delivery is interstitial fluid flow (IFF), both within the tumor and in the surrounding brain parenchyma. However, convective and diffusive transport mechanisms are understudied. In this study, we examined the application of a novel image analysis method to measure fluid flow and diffusion in GBM patients. Methods: Here, we applied an imaging methodology that had been previously tested and validated in vitro, in silico, and in preclinical models of disease to archival patient data from the Ivy Glioblastoma Atlas Project (GAP) dataset. The analysis required the use of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), which is readily available in the database. The analysis results, which consisted of IFF flow velocity and diffusion coefficients, were then compared to patient outcomes such as survival. Results: We characterized IFF and diffusion patterns in patients. We found strong correlations between flow rates measured within tumors and in the surrounding parenchymal space, where we hypothesized that velocities would be higher. Analyzing overall magnitudes indicated a significant correlation with both age and survival in this patient cohort. Additionally, we found that neither tumor size nor resection significantly altered the velocity magnitude. Lastly, we mapped the flow pathways in patient tumors and found a variability in the degree of directionality that we hypothesize may lead to information concerning treatment, invasive spread, and progression in future studies. Conclusions: An analysis of standard DCE-MRI in patients with GBM offers more information regarding IFF and transport within and around the tumor, shows that IFF is still detected post-resection, and indicates that velocity magnitudes correlate with patient prognosis.
Collapse
Affiliation(s)
- Krishnashis Chatterjee
- Department of Biomedical Engineering & Mechanics, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA; (K.C.); (N.A.); (S.B.)
| | - Naciye Atay
- Department of Biomedical Engineering & Mechanics, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA; (K.C.); (N.A.); (S.B.)
| | - Daniel Abler
- Department of Computational and Quantitative Medicine, Division of Mathematical Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (D.A.); (P.S.); (R.C.R.)
- ARTORG Center for Biomedical Engineering Research, University of Bern, 3008 Bern, Switzerland
| | - Saloni Bhargava
- Department of Biomedical Engineering & Mechanics, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA; (K.C.); (N.A.); (S.B.)
| | - Prativa Sahoo
- Department of Computational and Quantitative Medicine, Division of Mathematical Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (D.A.); (P.S.); (R.C.R.)
| | - Russell C. Rockne
- Department of Computational and Quantitative Medicine, Division of Mathematical Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (D.A.); (P.S.); (R.C.R.)
| | - Jennifer M. Munson
- Department of Biomedical Engineering & Mechanics, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA; (K.C.); (N.A.); (S.B.)
- Correspondence: ; Tel.: +1-(540)-532-6392
| |
Collapse
|
15
|
Nagaraja TN, Lee IY. Cerebral microcirculation in glioblastoma: A major determinant of diagnosis, resection, and drug delivery. Microcirculation 2021; 28:e12679. [PMID: 33474805 DOI: 10.1111/micc.12679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/12/2021] [Indexed: 12/25/2022]
Abstract
Glioblastoma (GBM) is the most common primary brain tumor with a dismal prognosis. Current standard of treatment is safe maximal tumor resection followed by chemotherapy and radiation. Altered cerebral microcirculation and elevated blood-tumor barrier (BTB) permeability in tumor periphery due to glioma-induced vascular dysregulation allow T1 contrast-enhanced visualization of resectable tumor boundaries. Newer tracers that label the tumor and its vasculature are being increasingly used for intraoperative delineation of glioma boundaries for even more precise resection. Fluorescent 5-aminolevulinic acid (5-ALA) and indocyanine green (ICG) are examples of such intraoperative tracers. Recently, magnetic resonance imaging (MRI)-based MR thermometry is being employed for laser interstitial thermal therapy (LITT) for glioma debulking. However, aggressive, fatal recurrence always occurs. Postsurgical chemotherapy is hampered by the inability of most drugs to cross the blood-brain barrier (BBB). Understanding postsurgical changes in brain microcirculation and permeability is crucial to improve chemotherapy delivery. It is important to understand whether any microcirculatory indices can differentiate between true recurrence and radiation necrosis. LITT leads to peri-ablation BBB opening that persists for several weeks. Whether it can be a conduit for chemotherapy delivery is yet to be explored. This review will address the role of cerebral microcirculation in such emerging ideas in GBM diagnosis and therapy.
Collapse
Affiliation(s)
| | - Ian Y Lee
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
16
|
Nagaraja TN, deCarvalho AC, Brown SL, Griffith B, Farmer K, Irtenkauf S, Hasselbach L, Mukherjee A, Bartlett S, Valadie OG, Cabral G, Knight RA, Lee IY, Divine GW, Ewing JR. The impact of initial tumor microenvironment on imaging phenotype. Cancer Treat Res Commun 2021; 27:100315. [PMID: 33571801 PMCID: PMC8127413 DOI: 10.1016/j.ctarc.2021.100315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 11/13/2022]
Abstract
Models of human cancer, to be useful, must replicate human disease with high fidelity. Our focus in this study is rat xenograft brain tumors as a model of human embedded cerebral tumors. A distinguishing signature of such tumors in humans, that of contrast-enhancement on imaging, is often not present when the human cells grow in rodents, despite the xenografts having nearly identical DNA signatures to the original tumor specimen. Although contrast enhancement was uniformly evident in all the human tumors from which the xenografts’ cells were derived, we show that long-term contrast enhancement in the model tumors may be determined conditionally by the tumor microenvironment at the time of cell implantation. We demonstrate this phenomenon in one of two patient-derived orthotopic xenograft (PDOX) models using cancer stem-like cell (CSC)-enriched neurospheres from human tumor resection specimens, transplanted to groups of immune-compromised rats in the presence or absence of a collagen/fibrin scaffolding matrix, Matrigel. The rats were imaged by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and their brains were examined by histopathology. Targeted proteomics of the PDOX tumor specimens grown from CSC implanted with and without Matrigel showed that while the levels of the majority of proteins and post-translational modifications were comparable between contrast-enhancing and non-enhancing tumors, phosphorylation of Fox038 showed a differential expression. The results suggest key proteins determine contrast enhancement and suggest a path toward the development of better animal models of human glioma. Future work is needed to elucidate fully the molecular determinants of contrast-enhancement.
Collapse
Affiliation(s)
| | | | - Stephen L Brown
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, MI, United States; Department of Public Health, Henry Ford Hospital, Detroit, MI, United States
| | - Brent Griffith
- Department of Radiology, Henry Ford Hospital, Detroit, MI, United States
| | - Katelynn Farmer
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, United States
| | - Susan Irtenkauf
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI
| | | | - Abir Mukherjee
- Department of Pathology, Henry Ford Hospital, Detroit, MI, United States
| | - Seamus Bartlett
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI; School of Medicine, Wayne State University, Detroit, MI, United States
| | - O Grahm Valadie
- Department of Radiation Oncology, Wayne State University, Detroit, MI, United States
| | - Glauber Cabral
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Robert A Knight
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States; Department of Physics, Oakland University, Rochester, MI, United States
| | - Ian Y Lee
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI
| | - George W Divine
- Department of Public Health, Henry Ford Hospital, Detroit, MI, United States
| | - James R Ewing
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI; Department of Neurology, Henry Ford Hospital, Detroit, MI, United States; Department of Physics, Oakland University, Rochester, MI, United States; Department of Neurology, Wayne State University, Detroit, MI, United States
| |
Collapse
|
17
|
Swinburne N, LoCastro E, Paudyal R, Oh JH, Taunk NK, Shah A, Beal K, Vachha B, Young RJ, Holodny AI, Shukla-Dave A, Hatzoglou V. Computational Modeling of Interstitial Fluid Pressure and Velocity in Non-small Cell Lung Cancer Brain Metastases Treated With Stereotactic Radiosurgery. Front Neurol 2020; 11:402. [PMID: 32547470 PMCID: PMC7271672 DOI: 10.3389/fneur.2020.00402] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Early imaging-based treatment response assessment of brain metastases following stereotactic radiosurgery (SRS) remains challenging. The aim of this study is to determine whether early (within 12 weeks) intratumoral changes in interstitial fluid pressure (IFP) and velocity (IFV) estimated from computational fluid modeling (CFM) using dynamic contrast-enhanced (DCE) MRI can predict long-term outcomes of lung cancer brain metastases (LCBMs) treated with SRS. Methods: Pre- and post-treatment T1-weighted DCE-MRI data were obtained in 41 patients treated with SRS for intact LCBMs. The imaging response was assessed using RANO-BM criteria. For each lesion, extravasation of contrast agent measured from Extended Tofts pharmacokinetic Model (volume transfer constant, Ktrans) was incorporated into a computational fluid model to estimate tumor IFP and IFV. Estimates of mean IFP and IFV and heterogeneity (skewness and kurtosis) were calculated for each lesion from pre- and post-SRS imaging. The Wilcoxon rank-sum test was utilized to assess for significant differences in IFP, IFV, and IFP/IFV change (Δ) between response groups. Results: Fifty-three lesions from 41 patients were included. Median follow-up time after SRS was 11 months. The objective response (OR) rate (partial or complete response) was 79%, with 21% demonstrating stable disease (SD) or progressive disease (PD). There were significant response group differences for multiple posttreatment and Δ CFM parameters: post-SRS IFP skewness (mean −0.405 vs. −0.691, p = 0.022), IFP kurtosis (mean 2.88 vs. 3.51, p = 0.024), and IFV mean (5.75e-09 vs. 4.19e-09 m/s, p = 0.027); and Δ IFP kurtosis (mean −2.26 vs. −0.0156, p = 0.017) and IFV mean (1.91e-09 vs. 2.38e-10 m/s, p = 0.013). Posttreatment and Δ thresholds predicted non-OR with high sensitivity (sens): post-SRS IFP skewness (−0.432, sens 84%), kurtosis (2.89, sens 84%), and IFV mean (4.93e-09 m/s, sens 79%); and Δ IFP kurtosis (−0.469, sens 74%) and IFV mean (9.90e-10 m/s, sens 74%). Conclusions: Objective response was associated with lower post-treatment tumor heterogeneity, as represented by reductions in IFP skewness and kurtosis. These results suggest that early post-treatment assessment of IFP and IFV can be used to predict long-term response of lung cancer brain metastases to SRS, allowing a timelier treatment modification.
Collapse
Affiliation(s)
- Nathaniel Swinburne
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Eve LoCastro
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ramesh Paudyal
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jung Hun Oh
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Neil K Taunk
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Akash Shah
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Kathryn Beal
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Behroze Vachha
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Robert J Young
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Andrei I Holodny
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Amita Shukla-Dave
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Vaios Hatzoglou
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
18
|
Elkin R, Nadeem S, LoCastro E, Paudyal R, Hatzoglou V, Lee NY, Shukla-Dave A, Deasy JO, Tannenbaum A. Optimal mass transport kinetic modeling for head and neck DCE-MRI: Initial analysis. Magn Reson Med 2019; 82:2314-2325. [PMID: 31273818 DOI: 10.1002/mrm.27897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE Current state-of-the-art models for estimating the pharmacokinetic parameters do not account for intervoxel movement of the contrast agent (CA). We introduce an optimal mass transport (OMT) formulation that naturally handles intervoxel CA movement and distinguishes between advective and diffusive flows. METHOD Ten patients with head and neck squamous cell carcinoma (HNSCC) were enrolled in the study between June 2014 and October 2015 and underwent DCE MRI imaging prior to beginning treatment. The CA tissue concentration information was taken as the input in the data-driven OMT model. The OMT approach was tested on HNSCC DCE data that provides quantitative information for forward flux ( Φ F ) and backward flux ( Φ B ). OMT-derived Φ F was compared with the volume transfer constant for CA, K trans , derived from the Extended Tofts Model (ETM). RESULTS The OMT-derived flows showed a consistent jump in the CA diffusive behavior across the images in accordance with the known CA dynamics. The mean forward flux was 0.0082 ± 0.0091 ( min - 1 ) whereas the mean advective component was 0.0052 ± 0.0086 ( min - 1 ) in the HNSCC patients. The diffusive percentages in forward and backward flux ranged from 8.67% to 18.76% and 12.76% to 30.36%, respectively. The OMT model accounts for intervoxel CA movement and results show that the forward flux ( Φ F ) is comparable with the ETM-derived K trans . CONCLUSIONS This is a novel data-driven study based on optimal mass transport principles applied to patient DCE imaging to analyze CA flow in HNSCC.
Collapse
Affiliation(s)
- Rena Elkin
- Applied Mathematics & Statistics, Stony Brook University, Stony Brook, New York
| | - Saad Nadeem
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eve LoCastro
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ramesh Paudyal
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vaios Hatzoglou
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nancy Y Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Amita Shukla-Dave
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joseph O Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Allen Tannenbaum
- Computer Science and Applied Mathematics & Statistics, Stony Brook University, Stony Brook, New York
| |
Collapse
|
19
|
Elmghirbi R, Nagaraja TN, Brown SL, Keenan KA, Panda S, Cabral G, Bagher-Ebadian H, Divine GW, Lee IY, Ewing JR. Toward a noninvasive estimate of interstitial fluid pressure by dynamic contrast-enhanced MRI in a rat model of cerebral tumor. Magn Reson Med 2018. [PMID: 29524243 DOI: 10.1002/mrm.27163] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE This study demonstrates a DCE-MRI estimate of tumor interstitial fluid pressure (TIFP) and hydraulic conductivity in a rat model of glioblastoma, with validation against an invasive wick-in-needle (WIN) technique. An elevated TIFP is considered a mark of aggressiveness, and a decreased TIFP a predictor of response to therapy. METHODS The DCE-MRI studies were conducted in 36 athymic rats (controls and posttreatment animals) with implanted U251 cerebral tumors, and with TIFP measured using a WIN method. Using a model selection paradigm and a novel application of Patlak and Logan plots to DCE-MRI data, the MRI parameters required for estimating TIFP noninvasively were estimated. Two models, a fluid-mechanical model and a multivariate empirical model, were used for estimating TIFP, as verified against WIN-TIFP. RESULTS Using DCE-MRI, the mean estimated hydraulic conductivity (MRI-K) in U251 tumors was (2.3 ± 3.1) × 10-5 (mm2 /mmHg-s) in control studies. Significant positive correlations were found between WIN-TIFP and MRI-TIFP in both mechanical and empirical models. For instance, in the control group of the fluid-mechanical model, MRI-TIFP was a strong predictor of WIN-TIFP (R2 = 0.76, p < .0001). A similar result was found in the bevacizumab-treated group of the empirical model (R2 = 0.93, p = .014). CONCLUSION This research suggests that MRI dynamic studies contain enough information to noninvasively estimate TIFP in this, and possibly other, tumor models, and thus might be used to assess tumor aggressiveness and response to therapy.
Collapse
Affiliation(s)
- Rasha Elmghirbi
- Department of Physics, Oakland University, Rochester, Michigan.,Department of Neurology, Henry Ford Health System, Detroit, Michigan
| | | | - Stephen L Brown
- Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan
| | - Kelly A Keenan
- Department of Neurosurgery, Henry Ford Health System, Detroit, Michigan
| | - Swayamprava Panda
- Department of Neurology, Henry Ford Health System, Detroit, Michigan
| | - Glauber Cabral
- Department of Neurology, Henry Ford Health System, Detroit, Michigan
| | - Hassan Bagher-Ebadian
- Department of Physics, Oakland University, Rochester, Michigan.,Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan
| | - George W Divine
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan
| | - Ian Y Lee
- Department of Neurosurgery, Henry Ford Health System, Detroit, Michigan
| | - James R Ewing
- Department of Physics, Oakland University, Rochester, Michigan.,Department of Neurology, Henry Ford Health System, Detroit, Michigan.,Department of Neurology, Wayne State University, Detroit, Michigan
| |
Collapse
|
20
|
Reproducibility and relative stability in magnetic resonance imaging indices of tumor vascular physiology over a period of 24h in a rat 9L gliosarcoma model. Magn Reson Imaging 2017; 44:131-139. [PMID: 28887206 DOI: 10.1016/j.mri.2017.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 08/03/2017] [Accepted: 09/01/2017] [Indexed: 02/06/2023]
Abstract
PURPOSE The objective was to study temporal changes in tumor vascular physiological indices in a period of 24h in a 9L gliosarcoma rat model. METHODS Fischer-344 rats (N=14) were orthotopically implanted with 9L cells. At 2weeks post-implantation, they were imaged twice in a 24h interval using dynamic contrast enhanced magnetic resonance imaging (DCE-MRI). Data-driven model-selection-based analysis was used to segment tumor regions with varying vascular permeability characteristics. The region with the maximum number of estimable parameters of vascular kinetics was chosen for comparison across the two time points. It provided estimates of three parameters for an MR contrast agent (MRCA): i) plasma volume (vp), ii) forward volumetric transfer constant (Ktrans) and interstitial volume fraction (ve, ratio of Ktrans to reverse transfer constant, kep). In addition, MRCA extracellular distribution volume (VD) was estimated in the tumor and its borders, along with tumor blood flow (TBF) and peritumoral MRCA flux. Descriptors of parametric distributions were compared between the two times. Tumor extent was examined by hematoxylin and eosin (H&E) staining. Picrosirus red staining of secreted collagen was performed as an additional index for 9L cells. RESULTS Test-retest differences between population summaries for any parameter were not significant (paired t and Wilcoxon signed rank tests). Bland-Altman plots showed no apparent trends between the differences and averages of the test-retest measures for all indices. The intraclass correlation coefficients showed moderate to almost perfect reproducibility for all of the parameters, except vp. H&E staining showed tumor infiltration in parenchyma, perivascular space and white matter tracts. Collagen staining was observed along the outer edges of main tumor mass. CONCLUSION The data suggest the relative stability of these MR indices of tumor microenvironment over a 24h duration in this gliosarcoma model.
Collapse
|