1
|
Pappa O, Astrakas L, Anagnostou N, Bougia CΚ, Maliakas V, Sofikitis N, Argyropoulou MI, Tsili AC. 3.0 T diffusion tensor imaging and fiber tractography of the testes in nonobstructive azoospermia. Abdom Radiol (NY) 2024; 49:4543-4555. [PMID: 38940912 DOI: 10.1007/s00261-024-04457-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
PURPOSE To assess the role of 3.0 T Diffusion Tensor Imaging (DTI) and Fiber Tractography (FT) of the testes in the work-up of nonobstructive azoospermia (NOA). METHODS This prospective study included consecutive NOA men and controls. A 3.0 T scrotal MRI was performed, including DTI. The testicular apparent diffusion coefficient (ADC) and fractional anisotropy (FA) were calculated. FT reconstructions were created. The Kruskal-Wallis test, followed by pairwise comparisons, assessed differences in testicular ADC and FA between NOA histologic phenotypes (group 1: hypospermatogenesis; group 2: maturation arrest; and group 3: Sertoli cell-only syndrome) and normal testes. The Mann-Whitney-U test compared ADC and FA between NOA testes with positive and negative sperm retrieval. Visual assessment of the testicular fiber tracts was performed. Fiber tracts fewer in number, of reduced thickness, disrupted and/or disorganized were considered "abnormal". Chi-square tests and binary logistic regression analysis assessed variations in testicular fiber tracts morphology. RESULTS Twenty-nine NOA men (mean age: 39 ± 5.93 years) and 20 controls (mean age: 26 ± 5.83 years) were included for analysis. Higher ADC (p < 0.001) and FA (p < 0.001) was observed in NOA testes compared to controls. Differences in FA were found between groups 1 and 3 (0.07 vs 0.10, p = 0.26) and groups 2 and 3 (0.07 vs 0.10, p = 0.03), but not between groups 1 and 2 (p = 0.66). An increase in FA was observed in NOA testes with Sertoli cell-only syndrome compared to hypospermatogenesis and maturation arrest. FA was higher in NOA testes with negative results for the presence of sperm compared to those with positive results (0.09 vs 0.07, p = 0.006). FT showed "abnormal" fiber tracts in NOA testes (p < 0.001). CONCLUSION 3.0 T DTI and FT provide an insight into deranged spermatogenesis in NOA testes.
Collapse
Affiliation(s)
- Ourania Pappa
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, University Campus, 45110, Ioannina, Greece
| | - Loukas Astrakas
- Department of Medical Physics, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110, Ioannina, Greece
| | - Nikoletta Anagnostou
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, University Campus, 45110, Ioannina, Greece
| | - Christina Κ Bougia
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, University Campus, 45110, Ioannina, Greece
| | - Vasileios Maliakas
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, University Campus, 45110, Ioannina, Greece
- Department of Clinical Radiology, University Hospital of Ioannina, St. Niarchos 45500, Ioannina, Greece
| | - Nikolaos Sofikitis
- Department of Urology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110, Ioannina, Greece
| | - Maria I Argyropoulou
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, University Campus, 45110, Ioannina, Greece
| | - Athina C Tsili
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, University Campus, 45110, Ioannina, Greece.
| |
Collapse
|
2
|
Bougia CΚ, Astrakas L, Pappa O, Maliakas V, Sofikitis N, Argyropoulou MI, Tsili AC. Diffusion tensor imaging and fiber tractography of the normal epididymis. Abdom Radiol (NY) 2024; 49:2932-2941. [PMID: 38836882 DOI: 10.1007/s00261-024-04372-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE To evaluate the feasibility of diffusion tensor imaging (DTI) and fiber tractography (FT) of the normal epididymis and to determine normative apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values. METHODS Twenty-eight healthy volunteers underwent MRI of the scrotum, including DTI on a 3.0 T system. For each anatomic part of the epididymis (head, body and tail) free-hand regions of interest were drawn and the mean ADC and FA were measured by two radiologists in consensus. Parametric statistical tests were used to determine intersubject differences in ADC and FA between the anatomic parts of each normal epididymis and between bilateral epididymides. Fiber tracts of the epididymis were reconstructed using the MR Diffusion tool. RESULTS The mean ADC and FA of the normal epididymis was 1.31 × 10-3 mm2/s and 0.20, respectively. No differences in ADC (p = 0.736) and FA (p = 0.628) between the anatomic parts of each normal epididymis were found. Differences (p = 0.020) were observed in FA of the body between the right and the left epididymis. FT showed the fiber tracts of the normal epididymis. Main study's limitations include the following: small number of participants with narrow age range, absence of histologic confirmation and lack of quantitative assessment of the FT reconstructions. CONCLUSION DTI and FT of the normal epididymis is feasible and allow the noninvasive assessment of the structural and geometric organization of the organ.
Collapse
Affiliation(s)
- Christina Κ Bougia
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110, Ioannina, Greece
| | - Loukas Astrakas
- Department of Medical Physics, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110, Ioannina, Greece
| | - Ourania Pappa
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110, Ioannina, Greece
| | - Vasileios Maliakas
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110, Ioannina, Greece
- Department of Clinical Radiology, University Hospital of Ioannina, St. Niarchos, 45500, Ioannina, Greece
| | - Nikolaos Sofikitis
- Department of Urology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110, Ioannina, Greece
| | - Maria I Argyropoulou
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110, Ioannina, Greece
| | - Athina C Tsili
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110, Ioannina, Greece.
| |
Collapse
|
3
|
Qin SZ, Jiang Y, Wang YL, Liu N, Lin ZY, Jia Q, Fang J, Huang XH. Predicting the efficacy of high-intensity focused ultrasound (HIFU) ablation for uterine leiomyomas based on DTI indicators and imaging features. Abdom Radiol (NY) 2024; 49:2017-2026. [PMID: 36912910 DOI: 10.1007/s00261-023-03865-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/14/2023]
Abstract
PURPOSE To predict the efficacy of high-intensity focused ultrasound (HIFU) ablation for uterine leiomyomas based on diffusion tensor imaging (DTI) indicators and imaging features. METHODS Sixty-two patients with 85 uterine leiomyomas were consecutively enrolled in this retrospective study and underwent DTI scanning before HIFU treatment. Based on whether the non-perfused volume ratio (NPVR) was greater than 70%, all patients were assigned to sufficient ablation (NPVR ≥ 70%) or insufficient ablation (NPVR < 70%) groups. The selected DTI indicators and imaging features were incorporated to construct a combined model. The predictive performance of DTI indicators and the combined model were assessed using receiver operating characteristic (ROC) curves. RESULTS There were 42 leiomyomas in the sufficient ablation group (NPVR ≥ 70%) and 43 leiomyomas in the insufficient ablation group (NPVR < 70%). The fractional anisotropy (FA) and relative anisotropy (RA) values were higher in the sufficient ablation group than in the insufficient ablation group (p < 0.05). Conversely, the volume ratio (VR) and mean diffusivity (MD) values were lower in the sufficient ablation group than those in the insufficient ablation group (p < 0.05). Notably, the combined model composed of the RA and enhancement degree values had high predictive efficiency, with an AUC of 0.915. The combined model demonstrated higher predictive performance than FA and MD alone (p = 0.032 and p < 0.001, respectively) but showed no significant improvement compared with RA and VR (p > 0.05). CONCLUSION DTI indicators, especially the combined model incorporating DTI indicators and imaging features, can be a promising imaging tool to assist clinicians in predicting HIFU efficacy for uterine leiomyomas.
Collapse
Affiliation(s)
- Shi-Ze Qin
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, No. 1, Maoyuan South Road, Shunqing District, Nanchong, 637000, China
| | - Yu Jiang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, No. 1, Maoyuan South Road, Shunqing District, Nanchong, 637000, China
| | - Yan-Lin Wang
- School of Clinical Medicine, North Sichuan Medical College, No. 234, Fujiang Road, Shunqing District, Nanchong, 637000, China
| | - Nian Liu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, No. 1, Maoyuan South Road, Shunqing District, Nanchong, 637000, China
| | - Zhen-Yang Lin
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, No. 1, Maoyuan South Road, Shunqing District, Nanchong, 637000, China
| | - Qing Jia
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, No. 1, Maoyuan South Road, Shunqing District, Nanchong, 637000, China
| | - Jie Fang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, No. 1, Maoyuan South Road, Shunqing District, Nanchong, 637000, China
| | - Xiao-Hua Huang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, No. 1, Maoyuan South Road, Shunqing District, Nanchong, 637000, China.
| |
Collapse
|
4
|
Duong PT, Santos L, Hsu HY, Jambawalikar S, Mutasa S, Nguyen MK, Guariento A, Jaramillo D. Deep Learning-Assisted Diffusion Tensor Imaging for Evaluation of the Physis and Metaphysis. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:756-765. [PMID: 38321313 PMCID: PMC11031540 DOI: 10.1007/s10278-024-00993-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 02/08/2024]
Abstract
Diffusion tensor imaging of physis and metaphysis can be used as a biomarker to predict height change in the pediatric population. Current application of this technique requires manual segmentation of the physis which is time-consuming and introduces interobserver variability. UNET Transformers (UNETR) can be used for automatic segmentation to optimize workflow. Three hundred and eighty-five DTI scans from 191 subjects with mean age of 12.6 years ± 2.01 years were retrospectively used for training and validation. The mean Dice correlation coefficient was 0.81 for the UNETR model and 0.68 for the UNET. Manual extraction and segmentation took 15 min per volume, whereas both deep learning segmentation techniques took < 1 s per volume and were deterministic, always producing the same result for a given input. Intraclass correlation coefficient (ICC) for ROI-derived femur diffusion metrics was excellent for tract count (0.95), volume (0.95), and FA (0.97), and good for tract length (0.87). The results support the hypothesis that a hybrid UNETR model can be trained to replace the manual segmentation of physeal DTI images, therefore automating the process.
Collapse
Affiliation(s)
- Phuong T Duong
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA.
| | - Laura Santos
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Hao-Yun Hsu
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sachin Jambawalikar
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Michael K Nguyen
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Diego Jaramillo
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
5
|
Kalage D, Gupta P, Gulati A, Yadav TD, Gupta V, Kaman L, Nada R, Singh H, Irrinki S, Gupta P, Das C, Dutta U, Sandhu M. Multiparametric MR imaging with diffusion-weighted, intravoxel incoherent motion, diffusion tensor, and dynamic contrast-enhanced perfusion sequences to assess gallbladder wall thickening: a prospective study based on surgical histopathology. Eur Radiol 2023:10.1007/s00330-023-09455-w. [PMID: 36826499 DOI: 10.1007/s00330-023-09455-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/01/2023] [Accepted: 01/30/2023] [Indexed: 02/25/2023]
Abstract
OBJECTIVE To investigate the diagnostic performance of a multiparametric magnetic resonance imaging (MRI) protocol comprising quantitative MRI (diffusion-weighted imaging (DWI), intravoxel incoherent motion (IVIM), diffusion tensor imaging (DTI), and dynamic contrast-enhanced (DCE) perfusion MRI) and conventional MRI in the characterization of gallbladder wall thickening (GWT). METHODS This prospective study comprised consecutive adults with GWT who underwent multiparametric MRI between July 2020 and April 2022. Two radiologists evaluated the MRI independently. The final diagnosis was based on surgical histopathology. The association of MRI parameters with malignant GWT was evaluated. The area under the curve (AUC) for the quantitative MRI parameters and diagnostic performance of conventional, and multiparametric MRI were compared. The interobserver agreement between two radiologists was calculated. RESULTS Thirty-five patients (mean age, 56 years, 23 females) with GWT (25 benign and ten malignant) were evaluated. The quantitative MRI parameters significantly associated with malignant GWT were apparent diffusion coefficient on DWI (p = 0.007) and mean diffusivity (MD) on DTI (p = 0.013), perfusion fraction (f) on IVIM (p = 0.033), time to peak enhancement (TTP, p = 0.008), and wash in rate (p = 0.049) on DCE-MRI. TTP had the highest AUC of 0.790, followed by MD (0.782) and f (0.742) (p = 0.213) for predicting malignant GWT. Multiparametric MRI had significantly higher sensitivity (90% vs. 80%, p = 0.045) than conventional MRI for diagnosing malignant GWT. The two radiologists' reading had substantial to near-perfect agreement (kappa = 0.639-1) and moderate to strong correlation (interclass correlation coefficient = 0.5-0.88). CONCLUSION Multiparametric protocol incorporating advanced sequences improved the diagnostic performance of MRI for differentiating benign and malignant GWT. KEY POINTS • Multiparametric MRI had 90% sensitivity and 88% specificity for diagnosing malignant GWT, compared to 80% sensitivity and 88% specificity for conventional CE-MRI. • Among the quantitative MRI parameters, TTP (perfusion-MRI) had the highest AUC of 0.790, followed by MD (0.782) and IVIM-f (0.742). • For most quantitative MRI parameters, there was moderate to strong agreement (ICC = 0.5-0.88).
Collapse
Affiliation(s)
- Daneshwari Kalage
- Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pankaj Gupta
- Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Ajay Gulati
- Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Thakur Deen Yadav
- Department of Surgical Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vikas Gupta
- Department of Surgical Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Lileswar Kaman
- Department of General Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ritambhra Nada
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Harjeet Singh
- Department of Surgical Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Santosh Irrinki
- Department of General Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Parikshaa Gupta
- Department of Cytology and Gynaecological Pathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Chandan Das
- Department of Clinical Haematology and Medical Oncology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Usha Dutta
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manavjit Sandhu
- Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
6
|
Kanahashi T, Imai H, Otani H, Yamada S, Yoneyama A, Takakuwa T. Three-dimensional morphogenesis of the human diaphragm during the late embryonic and early fetal period: Analysis using T1-weighted and diffusion tensor imaging. J Anat 2023; 242:174-190. [PMID: 36053545 PMCID: PMC9877484 DOI: 10.1111/joa.13760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/01/2022] [Accepted: 08/18/2022] [Indexed: 02/01/2023] Open
Abstract
A precise understanding of human diaphragm development is essential in fetal medicine. To our knowledge, no previous study has attempted a three-dimensional (3-D) analysis and evaluation of diaphragmatic morphogenesis and development from the embryonic to the early fetal period. This study aimed to evaluate the morphogenesis and fibrous architecture of the developing human diaphragm during the late embryonic and early fetal periods. Fifty-seven human embryos and fetuses (crown-rump length [CRL] = 8-88 mm) preserved at the Congenital Anomaly Research Center of Kyoto University and Shimane University were analyzed. 3-D morphogenesis and fiber orientation of the diaphragm were assessed using phase-contrast X-ray computed tomography, T1-weighted magnetic resonance imaging (T1W MRI), and diffusion tensor imaging (DTI). T1W MR images and DTI scans were obtained using a 7-T MR system. The diaphragm was completely closed at Carnegie stage (CS) 20 and gradually developed a dome-like shape. The diaphragm was already in contact with the heart and liver ventrally in the earliest CS16 specimen observed, and the adrenal glands dorsally at CS19 or later. In the fetal period, the diaphragm contacted the gastric fundus in samples with a CRL ≥41 mm, and the spleen in samples with a CRL ≥70 mm. The relative position of the diaphragm with reference to the vertebrae changed rapidly from CS16 to CS19. The most cranial point of the diaphragm was located between the 4th and 8th thoracic vertebrae, regardless of fetal growth, in samples with a CRL of ≥16 mm. Diaphragmatic thickness was nearly uniform (0.15-0.2 mm) across samples with a CRL of 8-41 mm. The sternal, costal, lumbar parts, and the area surrounding the esophageal hiatus thickened with growth in samples with a CRL of ≥46 mm. The thickness at the center of the diaphragm and the left and right hemidiaphragmatic domes did not increase with growth. Tractography showed that the fiber orientation of the sternal, costal, and lumbar parts became more distinct as growth progressed in CS19 or later. All fibers in the costal and lumbar regions ran toward the left and right hemidiaphragmatic domes, except for those running to the caval opening and esophageal hiatus. The fiber orientation patterns from the right and left crura surrounding the esophageal hiatus were classified into three types. Distinct fiber directions between the costal and sternal and between the costal and lumbar diaphragmatic parts were observable in samples with a CRL of ≥46 mm. Anterior costal and sternal fibers ran toward the center. Fiber tracts around the center and the left and right hemidiaphragmatic domes; between the costal and lumbar orientations; and between the costal and sternal orientations showed a tendency for decreasing fractional anisotropy values with fetal growth and showed less density than other areas. In conclusion, we used 3-D thickness assessment and DTI tractography to identify qualitative changes in the muscular and tendonous regions of the diaphragm during the embryonic and early fetal periods. This study provides information on normal human diaphragm development for the progression of fetal medicine and furthering the understanding of congenital anomalies.
Collapse
Affiliation(s)
- Toru Kanahashi
- Human Health Science, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Hirohiko Imai
- Department of Systems Science, Graduate School of InformaticsKyoto UniversityKyotoJapan
| | - Hiroki Otani
- Faculty of Medicine, Department of Developmental BiologyShimane UniversityShimaneJapan
| | - Shigehito Yamada
- Human Health Science, Graduate School of MedicineKyoto UniversityKyotoJapan
- Congenital Anomaly Research Center, Graduate School of MedicineKyoto UniversityKyotoJapan
| | | | - Tetsuya Takakuwa
- Human Health Science, Graduate School of MedicineKyoto UniversityKyotoJapan
| |
Collapse
|
7
|
Mahmoud BE, Metwally LIA, Salama RM, Yehia M, Ibrahim IMH, Mikhael HSW. Does liver diffusion tensor imaging (L-DTI) has a role in differentiation of hepatic focal lesions? Analytic study for assessment of the value of L-DTI in differentiating hepatic focal lesions according to LI-RADS. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2022. [DOI: 10.1186/s43055-022-00830-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Magnetic resonance imaging (MRI) plays an important role in the differentiation of hepatic focal lesions and diagnosis of hepatic malignancy, especially hepatocellular carcinoma which is a major health problem worldwide. Diffusion imaging is a functional MRI technique that became an essential part of MRI study of the liver. Recently, diffusion tensor imaging (DTI) is diffusion variant that can provide more information than conventional diffusion imaging based on the tissue anisotropy. The aim of this study was to present the role of DTI in the assessment and differentiation between hepatic focal lesions.
Results
Fifty-one patients having 95 hepatic focal lesions who underwent dynamic MRI with conventional diffusion imaging and DTI acquisition were included in the study. A positive moderate significant correlation was found between Fractional anisotropy (FA) values and Liver Imaging Reporting and Data System (LI-RADS) category while substantial negative significant correlation and moderate negative significant correlation were found between DTI-ADC and DWI-ADC values, respectively, with the LI-RADS category. There was a significant negative correlation between DTI-ADC and FA values. DTI-ADC showed a significant role in differentiation of benign from malignant lesions with cut-off value 0.905 × 10−3 having 88.7% sensitivity and 88.3% specificity compared to 78.5% and 68.7% for DWI-ADC, respectively. Also, it was found that FA value had a significant role in differentiation between benign and malignant lesions with cut-off value 0.34 having 87.1% sensitivity and 73.9% specificity.
Conclusions
DTI can be included in liver MRI studies for better tissue characterization as it may perform better than conventional DWI with higher sensitivity and specificity of DTI-ADC and FA values than conventional DWI-ADC.
Collapse
|
8
|
Tsili AC, Sofikitis N, Pappa O, Bougia CK, Argyropoulou MI. An Overview of the Role of Multiparametric MRI in the Investigation of Testicular Tumors. Cancers (Basel) 2022; 14:cancers14163912. [PMID: 36010905 PMCID: PMC9405843 DOI: 10.3390/cancers14163912] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/07/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Although conventional ultrasonography remains the primary imaging modality for the assessment of testicular tumors, multiparametric MRI of the scrotum, which combines morphologic and functional data, serves as a powerful adjunct. Based on the recommendations issued by the Scrotal and Penile Imaging Working Group of the European Society of Urogenital Radiology, scrotal MRI is strongly recommended after equivocal US findings. In cases of testicular masses, the main clinical indications are as follows: lesion characterization when sonographic findings are non-diagnostic, discrimination between germ-cell and non-germ-cell testicular tumors, local staging of testicular tumors in patients who are candidates for testis-sparing surgery, and preoperative histological characterization of testicular germ-cell tumors in selected cases. This article aims to provide an overview of the role of multiparametric MRI in the investigation of testicular tumors. Abstract Conventional ultrasonography represents the mainstay of testis imaging. In cases in which ultrasonography is inconclusive, scrotal MRI using a multiparametric protocol may be used as a useful problem-solving tool. MRI of the scrotum is primarily recommended for differentiating between benign and malignant testicular masses when sonographic findings are ambiguous. This technique is also accurate in the preoperative local staging of testicular tumors and, therefore, is recommended in patients scheduled for testis-sparing surgery. In addition, MRI may provide valuable information regarding the histological characterization of testicular germ-cell tumors, in selected cases. Scrotal MRI may also help in the differentiation between testicular germ-cell neoplasms and non-germ-cell neoplasms. Axial T1-weighted imaging, axial and coronal T2-weighted imaging, axial diffusion-weighted imaging, and coronal subtracted dynamic contrast-enhanced imaging are the minimum requirements for scrotal MRI. A variety of MRI techniques—including diffusion tensor imaging, magnetization transfer imaging, proton MR spectroscopy, volumetric apparent diffusion coefficient histogram analysis, and MRI-based radiomics—are being investigated for testicular mass characterization, providing valuable supplementary diagnostic information. In the present review, we aim to discuss clinical indications for scrotal MRI in cases of testicular tumors, along with MRI findings of common testicular malignancies.
Collapse
Affiliation(s)
- Athina C. Tsili
- Department of Clinical Radiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, University Campus, 451 10 Ioannina, Greece
- Correspondence: or
| | - Nikolaos Sofikitis
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, University Campus, 451 10 Ioannina, Greece
| | - Ourania Pappa
- Department of Clinical Radiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, University Campus, 451 10 Ioannina, Greece
| | - Christina K. Bougia
- Department of Clinical Radiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, University Campus, 451 10 Ioannina, Greece
| | - Maria I. Argyropoulou
- Department of Clinical Radiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, University Campus, 451 10 Ioannina, Greece
| |
Collapse
|
9
|
Garrett A, Rakhilin N, Wang N, McKey J, Cofer G, Anderson RB, Capel B, Johnson GA, Shen X. Mapping the peripheral nervous system in the whole mouse via compressed sensing tractography. J Neural Eng 2021; 18. [PMID: 33979784 DOI: 10.1088/1741-2552/ac0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/12/2021] [Indexed: 11/12/2022]
Abstract
Objective.The peripheral nervous system (PNS) connects the central nervous system with the rest of the body to regulate many physiological functions and is therapeutically targeted to treat diseases such as epilepsy, depression, intestinal dysmotility, chronic pain, and more. However, we still lack understanding of PNS innervation in most organs because the large span, diffuse nature, and small terminal nerve bundle fibers have precluded whole-organism, high resolution mapping of the PNS. We sought to produce a comprehensive peripheral nerve atlas for use in future interrogation of neural circuitry and selection of targets for neuromodulation.Approach.We used diffusion tensor magnetic resonance imaging (DT-MRI) with high-speed compressed sensing to generate a tractogram of the whole mouse PNS. The tractography generated from the DT-MRI data is validated using lightsheet microscopy on optically cleared, antibody stained tissue.Main results.Herein we demonstrate the first comprehensive PNS tractography in a whole mouse. Using this technique, we scanned the whole mouse in 28 h and mapped PNS innervation and fiber network in multiple organs including heart, lung, liver, kidneys, stomach, intestines, and bladder at 70µm resolution. This whole-body PNS tractography map has provided unparalleled information; for example, it delineates the innervation along the gastrointestinal tract by multiple sacral levels and by the vagal nerves. The map enabled a quantitative tractogram that revealed relative innervation of the major organs by each vertebral foramen as well as the vagus nerve.Significance.This novel high-resolution nerve atlas provides a potential roadmap for future neuromodulation therapies and other investigations into the neural circuits which drive homeostasis and disease throughout the body.
Collapse
Affiliation(s)
- Aliesha Garrett
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States of America
| | - Nikolai Rakhilin
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States of America
| | - Nian Wang
- Duke Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States of America
| | - Jennifer McKey
- Department of Cell Biology, School of Medicine, Duke University, Durham, NC, United States of America
| | - Gary Cofer
- Duke Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States of America
| | - Robert Bj Anderson
- Duke Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States of America
| | - Blanche Capel
- Department of Cell Biology, School of Medicine, Duke University, Durham, NC, United States of America
| | - G Allan Johnson
- Duke Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States of America
| | - Xiling Shen
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States of America
| |
Collapse
|
10
|
Razek AAKA, Hafez MM, Mahmoud W, Ismail AR, Ali KM, Barakat TE. Diffusion tensor imaging of the spleen in prediction and grading of esophageal varices in cirrhotic children with portal hypertension. Jpn J Radiol 2021; 39:907-913. [PMID: 33914254 DOI: 10.1007/s11604-021-01123-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE To assess diffusion tensor imaging (DTI) of spleen in prediction and grading of esophageal varices (OV) in cirrhotic children. METHODS This prospective study was conducted upon 30 children with cirrhotic children with OV and 10 age-gender matched controls that underwent DTI of abdomen. Mean diffusivity (MD) and fractional anisotropy (FA) of spleen were calculated and matched with the grading of OV at endoscopy and laboratory biomarkers of portal hypertension. RESULTS Mean ADC of spleen in patient was significantly different (p = 0.001) from that of controls by both reviewers respectively. The cutoff ADC measurement of the spleen used for prediction of OV was ≥ 0.75 and ≥ 0.76 × 10-3mm2/s with AUC was 0.993 and 0.997 for both reviewers respectively. The FA of the spleen in patient was different (p = 0.01) from of controls of both reviewers respectively. Cutoff FA of spleen used for prediction of OV was ≤ 0.35 and ≤ 0.36 for both observers respectively. ADC and FA of spleen was correlated with platelets count (r = - 0.713, 0.392; p = 0.001, 0.012) and prothrombin time (r = 0.518, - 0.380; p = 0.001, 0.016). CONCLUSION DTI metrics of spleen can predict and grade OV and correlated with laboratory biomarkers of portal hypertension.
Collapse
Affiliation(s)
| | - Mona Mohamed Hafez
- Cardiology Unit, Department of Pediatrics, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Walaa Mahmoud
- Department of Diagnostic Radiology, Mansoura Faculty of Medicine, Mansoura University, Mansoura, 13551, Egypt
| | - Ahmed Ramadan Ismail
- Gastroenterology and Hepatology Unit, Department of Pediatrics, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Khadiga M Ali
- Department of Pathology, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Tarek Elsayed Barakat
- Gastroenterology and Hepatology Unit, Department of Pediatrics, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
11
|
Shenhar C, Degani H, Ber Y, Baniel J, Tamir S, Benjaminov O, Rosen P, Furman-Haran E, Margel D. Diffusion Is Directional: Innovative Diffusion Tensor Imaging to Improve Prostate Cancer Detection. Diagnostics (Basel) 2021; 11:diagnostics11030563. [PMID: 33804783 PMCID: PMC8003841 DOI: 10.3390/diagnostics11030563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 12/15/2022] Open
Abstract
In the prostate, water diffusion is faster when moving parallel to duct and gland walls than when moving perpendicular to them, but these data are not currently utilized in multiparametric magnetic resonance imaging (mpMRI) for prostate cancer (PCa) detection. Diffusion tensor imaging (DTI) can quantify the directional diffusion of water in tissue and is applied in brain and breast imaging. Our aim was to determine whether DTI may improve PCa detection. We scanned patients undergoing mpMRI for suspected PCa with a DTI sequence. We calculated diffusion metrics from DTI and diffusion weighted imaging (DWI) for suspected lesions and normal-appearing prostate tissue, using specialized software for DTI analysis, and compared predictive values for PCa in targeted biopsies, performed when clinically indicated. DTI scans were performed on 78 patients, 42 underwent biopsy and 16 were diagnosed with PCa. The median age was 62 (IQR 54.4–68.4), and PSA 4.8 (IQR 1.3–10.7) ng/mL. DTI metrics distinguished PCa lesions from normal tissue. The prime diffusion coefficient (λ1) was lower in both peripheral-zone (p < 0.0001) and central-gland (p < 0.0001) cancers, compared to normal tissue. DTI had higher negative and positive predictive values than mpMRI to predict PCa (positive predictive value (PPV) 77.8% (58.6–97.0%), negative predictive value (NPV) 91.7% (80.6–100%) vs. PPV 46.7% (28.8–64.5%), NPV 83.3% (62.3–100%)). We conclude from this pilot study that DTI combined with T2-weighted imaging may have the potential to improve PCa detection without requiring contrast injection.
Collapse
Affiliation(s)
- Chen Shenhar
- Department of Urology, Rabin Medical Center, 39 Ze’ev Jabotinsky St, Petah Tikva 4941492, Israel; (Y.B.); (J.B.); (D.M.)
- Correspondence: ; Tel.: +972-3-937-6558
| | - Hadassa Degani
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - Yaara Ber
- Department of Urology, Rabin Medical Center, 39 Ze’ev Jabotinsky St, Petah Tikva 4941492, Israel; (Y.B.); (J.B.); (D.M.)
| | - Jack Baniel
- Department of Urology, Rabin Medical Center, 39 Ze’ev Jabotinsky St, Petah Tikva 4941492, Israel; (Y.B.); (J.B.); (D.M.)
| | - Shlomit Tamir
- Department of Imaging, Rabin Medical Center, 39 Ze’ev Jabotinsky St, Petah Tikva 4941492, Israel; (S.T.); (O.B.); (P.R.)
| | - Ofer Benjaminov
- Department of Imaging, Rabin Medical Center, 39 Ze’ev Jabotinsky St, Petah Tikva 4941492, Israel; (S.T.); (O.B.); (P.R.)
- Department of Imaging, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - Philip Rosen
- Department of Imaging, Rabin Medical Center, 39 Ze’ev Jabotinsky St, Petah Tikva 4941492, Israel; (S.T.); (O.B.); (P.R.)
| | - Edna Furman-Haran
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - David Margel
- Department of Urology, Rabin Medical Center, 39 Ze’ev Jabotinsky St, Petah Tikva 4941492, Israel; (Y.B.); (J.B.); (D.M.)
| |
Collapse
|
12
|
Diffusion Tensor Imaging of the Kidney: Design and Evaluation of a Reliable Processing Pipeline. Sci Rep 2019; 9:12789. [PMID: 31484949 PMCID: PMC6726597 DOI: 10.1038/s41598-019-49170-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/15/2019] [Indexed: 12/14/2022] Open
Abstract
Diffusion tensor imaging (DTI) is particularly suitable for kidney studies due to tubules, collector ducts and blood vessels in the medulla that produce spatially restricted diffusion of water molecules, thus reflecting the high grade of anisotropy detectable by DTI. Kidney DTI is still a challenging technique where the off-resonance susceptibility artefacts and subject motion can severely affect the reproducibility of results. The aim of this study is to design a reliable processing pipeline by assessing different image processing approaches in terms of reproducibility and image artefacts correction. The results of four different processing pipelines (eddy: correction of eddy-currents and motion between DTI volume; eddy-s2v: eddy and within DTI volume motion correction; topup: eddy and geometric distortion correction; topup-s2v: topup and within DTI volume motion correction) are compared in terms of reproducibility by test-retest analysis in 14 healthy subjects. Within-subject coefficient of variation (wsCV) and intra-class correlation coefficient (ICC) are measured to assess the reproducibility and Dice similarity index is evaluated for the spatial alignment between DTI and anatomical images. Topup-s2v pipeline provides highest reproducibility (wsCV = 0.053, ICC = 0.814) and best correction of image distortion (Dice = 0.83). This study definitely provides a recipe for data processing, enabling for a clinical suitability of kidney DTI.
Collapse
|
13
|
Nissan N. Modifications of pancreatic diffusion MRI by tissue characteristics: what are we weighting for? NMR IN BIOMEDICINE 2017; 30:e3728. [PMID: 28470823 DOI: 10.1002/nbm.3728] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/10/2017] [Accepted: 03/13/2017] [Indexed: 06/07/2023]
Abstract
Diffusion-weighted imaging holds the potential to improve the diagnosis and biological characterization of pancreatic disease, and in particular pancreatic cancer, which exhibits decreased values of the apparent diffusion coefficient (ADC). Yet, variable and overlapping ADC values have been reported for the healthy and the pathological pancreas, including for cancer and other benign conditions. This controversy reflects the complexity of probing the water-diffusion process in the pancreas, which is dependent upon multiple biological factors within this organ's unique physiological environment. In recent years, extensive studies have investigated the correlation between tissue properties including cellularity, vascularity, fibrosis, secretion and microstructure and pancreatic diffusivity. Understanding how the various physiological and pathological features and the underlying functional processes affect the diffusion measurement may serve to optimize the method for improved diagnostic gain. Therefore, the aim of the present review article is to elucidate the relationship between pancreatic tissue characteristics and diffusion MRI measurement.
Collapse
Affiliation(s)
- Noam Nissan
- Department of Diagnostic Imaging, Chaim Sheba Medical Center, Tel HaShomer 5265601, Israel
| |
Collapse
|
14
|
Hectors SJ, Wagner M, Corcuera-Solano I, Kang M, Stemmer A, Boss MA, Taouli B. Comparison Between 3-Scan Trace and Diagonal Body Diffusion-Weighted Imaging Acquisitions: A Phantom and Volunteer Study. ACTA ACUST UNITED AC 2016; 2:411-420. [PMID: 28480331 PMCID: PMC5416814 DOI: 10.18383/j.tom.2016.00229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Diagonal diffusion-weighted imaging (dDWI) uses simultaneous maximized application of 3 orthogonal gradient systems as opposed to sequential acquisition in 3 directions in conventional 3-scan trace DWI (tDWI). Several theoretical advantages of dDWI vs. tDWI include reduced artifacts and increased sharpness. We compared apparent diffusion coefficient (ADC) quantification and image quality between monopolar dDWI and tDWI in a dedicated diffusion phantom (b = 0/500/900/2000 s/mm2) and in the abdomen (b = 50/400/800 s/mm2) and pelvis (b = 50/1000/1600 s/mm2) of 2 male volunteers at 1.5 T and 3.0 T. Phantom estimated signal-to-noise ratio (eSNR) was also measured. Two independent observers assessed the image quality on a 5-point scale. In the phantom, image quality was similar between tDWI and dDWI, with equivalent ADC quantification (mean coefficient of variation [CV] between sequences: 1.4% ± 1.2% at 1.5 T and 0.7% ± 0.7% at 3.0 T). Phantom eSNR was similar for both tDWI and dDWI, except for a significantly lower eSNR for b900 of dDWI at 3.0 T (P = .006). In the volunteers, the CV values between tDWI and dDWI were higher than those in the phantom (CV range: abdominal organs, 1.3%-13.3%; pelvic organs, 0.6%-5.7%). A trend toward significant better image quality for dDWI compared with tDWI was observed for b800 (abdomen) at 3.0 T and for b1000 and b1600 (pelvis) at 1.5 T (P = .063 to .066). Our data suggest that dDWI may provide better image quality than tDWI without affecting ADC quantification, needing confirmation in a future clinical study.
Collapse
Affiliation(s)
- Stefanie J Hectors
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mathilde Wagner
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Idoia Corcuera-Solano
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Martin Kang
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alto Stemmer
- Siemens AG, Medical Solutions, Magnetic Resonance, Erlangen, Germany
| | - Michael A Boss
- Applied Physics Division, National Institute of Standards and Technology, Boulder, Colorado
| | - Bachir Taouli
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
15
|
Hilbert F, Bock M, Neubauer H, Veldhoen S, Wech T, Bley TA, Köstler H. An intravoxel oriented flow model for diffusion-weighted imaging of the kidney. NMR IN BIOMEDICINE 2016; 29:1403-1413. [PMID: 27488570 DOI: 10.1002/nbm.3584] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/06/2016] [Accepted: 06/21/2016] [Indexed: 06/06/2023]
Abstract
By combining intravoxel incoherent motion (IVIM) and diffusion tensor imaging (DTI) we introduce a new diffusion model called intravoxel oriented flow (IVOF) that accounts for anisotropy of diffusion and the flow-related signal. An IVOF model using a simplified apparent flow fraction tensor (IVOFf ) is applied to diffusion-weighted imaging of human kidneys. The kidneys of 13 healthy volunteers were examined on a 3 T scanner. Diffusion-weighted images were acquired with six b values between 0 and 800 s/mm(2) and 30 diffusion directions. Diffusivity and flow fraction were calculated for different diffusion models. The Akaike information criterion was used to compare the model fit of the proposed IVOFf model to IVIM and DTI. In the majority of voxels the proposed IVOFf model with a simplified apparent flow fraction tensor performs better than IVIM and DTI. Mean diffusivity is significantly higher in DTI compared with models that account for the flow-related signal. The fractional anisotropy of diffusion is significantly reduced when flow fraction is considered to be anisotropic. Anisotropy of the apparent flow fraction tensor is significantly higher in the renal medulla than in the cortex region. The IVOFf model describes diffusion-weighted data in the human kidney more accurately than IVIM or DTI. The apparent flow fraction in the kidney proved to be anisotropic.
Collapse
Affiliation(s)
- Fabian Hilbert
- Department of Diagnostic and Interventional Radiology, University of Würzburg, Würzburg, Germany.
| | - Maximilian Bock
- Department of Diagnostic and Interventional Radiology, University of Würzburg, Würzburg, Germany
| | - Henning Neubauer
- Department of Diagnostic and Interventional Radiology, University of Würzburg, Würzburg, Germany
| | - Simon Veldhoen
- Department of Diagnostic and Interventional Radiology, University of Würzburg, Würzburg, Germany
| | - Tobias Wech
- Department of Diagnostic and Interventional Radiology, University of Würzburg, Würzburg, Germany
| | - Thorsten Alexander Bley
- Department of Diagnostic and Interventional Radiology, University of Würzburg, Würzburg, Germany
| | - Herbert Köstler
- Department of Diagnostic and Interventional Radiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|