1
|
Ding Z, She H, Chen Q, Du YP. Reduction of ringing artifacts induced by diaphragm drifting in free-breathing dynamic pulmonary MRI using 3D koosh-ball acquisition. Magn Reson Med 2024; 92:2021-2036. [PMID: 38968132 DOI: 10.1002/mrm.30207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/07/2024]
Abstract
PURPOSE To reduce the ringing artifacts of the motion-resolved images in free-breathing dynamic pulmonary MRI. METHODS A golden-step based interleaving (GSI) technique was proposed to reduce ringing artifacts induced by diaphragm drifting. The pulmonary MRI data were acquired using a superior-inferior navigated 3D radial UTE sequence in an interleaved manner during free breathing. Successive interleaves were acquired in an incoherent fashion along the polar direction. Four-dimensional images were reconstructed from the motion-resolved k-space data obtained by retrospectively binning. The reconstruction algorithms included standard nonuniform fast Fourier transform (NUFFT), Voronoi-density-compensated NUFFT, extra-dimensional UTE, and motion-state weighted motion-compensation reconstruction. The proposed interleaving technique was compared with a conventional sequential interleaving (SeqI) technique on a phantom and eight subjects. RESULTS The quantified ringing artifacts level in the motion-resolved image is positively correlated with the quantified nonuniformity level of the corresponding k-space. The nonuniformity levels of the end-expiratory and end-inspiratory k-space binned from GSI data (0.34 ± 0.07, 0.33 ± 0.05) are significantly lower with statistical significance (p < 0.05) than that binned from SeqI data (0.44 ± 0.11, 0.42 ± 0.12). Ringing artifacts are substantially reduced in the dynamic images of eight subjects acquired using the proposed technique in comparison with that acquired using the conventional SeqI technique. CONCLUSION Ringing artifacts in the motion-resolved images induced by diaphragm drifting can be reduced using the proposed GSI technique for free-breathing dynamic pulmonary MRI. This technique has the potential to reduce ringing artifacts in free-breathing liver and kidney MRI based on full-echo interleaved 3D radial acquisition.
Collapse
Affiliation(s)
- Zekang Ding
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Central Research Institute, United Imaging Group, Shanghai, China
| | - Huajun She
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qun Chen
- Central Research Institute, United Imaging Group, Shanghai, China
| | - Yiping P Du
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Lee S, Lee HY, Park J, Kim H, Park JY. Assessment of Pulmonary Ventilation Using 3D Ventilation Flow Capacity-Weighted and Ventilation-Weighted Maps From 3D Ultrashort Echo Time (UTE) MRI. J Magn Reson Imaging 2024; 60:483-494. [PMID: 37970646 DOI: 10.1002/jmri.29129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Three-dimensional (3D) ventilation flow capacity-weighted (VFCW) maps together with 3D ventilation-weighted (VW) maps may help to better assess pulmonary function. PURPOSE To investigate the use of 3D VFCW and VW maps for evaluating pulmonary ventilation function. STUDY TYPE Prospective. POPULATION Two patients (one male, 85 years old; one female, 64 years old) with chronic obstructive pulmonary disease (COPD) and nine healthy subjects (all male; 23-27 years). FIELD STRENGTH/SEQUENCE 3-T, 3D radial UTE imaging. ASSESSMENT 3D VFCW and VW maps were calculated from 3D UTE MRI by voxel-wise subtraction of respiratory phase images. Their validation was tested in nine healthy volunteers using slow/deep and fast/shallow breathing conditions. Additional validation was performed by comparison with single photon emission computed tomography (SPECT) ventilation maps of one healthy participant. For comparison, gravity dependence of anterior-posterior regional ventilation was assessed by one-dimensional plot of the mean signal intensity for each coronal slice. Structural similarity index measure was also calculated. Finally, VW maps and VFCW maps of two COPD patients were evaluated for emphysema lesions with reference to CT images. STATISTICAL TESTS Wilcoxon sign-rank tests for regional Ventilation and ventilation flow capacity, analysis of variance, post-hoc t-tests and Bonferroni correction, coefficient of variation, Kullback-Liebler divergence. A P-value <0.05 was considered statistically significant. RESULTS The validation of 3D VFCW and VW maps was shown by statistically significant differences in ventilation flow capacity and ventilation between the breathing conditions. Additionally, UTE-MRI and SPECT-based ventilation maps showed gravitational dependence in the anteroposterior direction. When applied to patients with COPD, the use of 3D VFCW and VW maps was able to differentiate between two patients with different phenotypes. DATA CONCLUSION The use of 3D VFCW and VW maps can provide regional information on ventilation function and potentially contribute to assessment of COPD subtypes and disease progression. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Seokwon Lee
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ho Yun Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Jinil Park
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyeonha Kim
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jang-Yeon Park
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
3
|
Stecker IR, Bdaiwi AS, Niedbalski PJ, Chatterjee N, Hossain MM, Cleveland ZI. Impact of undersampling on preclinical lung T 2* mapping with 3D radial UTE MRI at 7 T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 365:107741. [PMID: 39089222 PMCID: PMC11357708 DOI: 10.1016/j.jmr.2024.107741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 08/03/2024]
Abstract
Lung diseases are almost invariably heterogeneous and progressive, making it imperative to capture temporally and spatially explicit information to understand the disease initiation and progression. Imaging the lung with MRI-particularly in the preclinical setting-has historically been challenging because of relatively low lung tissue density, rapid cardiac and respiratory motion, and rapid transverse (T2*) relaxation. These limitations can largely be mitigated using ultrashort-echo-time (UTE) sequences, which are intrinsically robust to motion and avoid significant T2* decay. A significant disadvantage of common radial UTE sequences is that they require inefficient, center-out k-space sampling, resulting in long acquisition times relative to conventional Cartesian sequences. Therefore, pulmonary images acquired with radial UTE are often undersampled to reduce acquisition time. However, undersampling reduces image SNR, introduces image artifacts, and degrades true image resolution. The level of undersampling is further increased if offline gating techniques like retrospective gating are employed, because only a portion (∼40-50%) of the data is used in the final image reconstruction. Here, we explore the impact of undersampling on SNR and T2* mapping in mouse lung imaging using simulation and in-vivo data. Increased scatter in both metrics was noticeable at around 50% sampling. Parenchymal apparent SNR only decreased slightly (average decrease ∼ 1.4) with as little as 10% sampling. Apparent T2* remained similar across undersampling levels, but it became significantly increased (p < 0.05) below 80% sampling. These trends suggest that undersampling can generate quantifiable, but moderate changes in the apparent value of T2*. Moreover, these approaches to assess the impact of undersampling are straightforward to implement and can readily be expanded to assess the quantitative impact of other MR acquisition and reconstruction parameters.
Collapse
Affiliation(s)
- Ian R Stecker
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States; Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Abdullah S Bdaiwi
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States; Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Peter J Niedbalski
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Neelakshi Chatterjee
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, United States; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Md M Hossain
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - Zackary I Cleveland
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States; Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States; Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.
| |
Collapse
|
4
|
Kwiatkowski G, Czyzynska-Cichon I, Tielemans B, Geerkens L, Jasztal A, Velde GV, Chłopicki S. Retrospectively gated ultrashort-echo-time MRI T 1 mapping reveals compromised pulmonary microvascular NO-dependent function in a murine model of acute lung injury. NMR IN BIOMEDICINE 2024; 37:e5105. [PMID: 38225796 DOI: 10.1002/nbm.5105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/05/2023] [Accepted: 12/22/2023] [Indexed: 01/17/2024]
Abstract
This study sought to develop noninvasive, in vivo imaging schemes that allow for quantitative assessment of pulmonary microvascular functional status based on the combination of pulmonary T1 mapping and dynamic contrast-enhanced (DynCE) imaging. Ultrashort-echo-time (UTE) imaging at 9.4 T of lung parenchyma was performed. Retrospective gating was based on modulation of the first point in each recorded spoke. T1 maps were obtained using a series of five consecutive images with varying RF angles and analyzed with the variable flip angle approach. The obtained mean T1 lung value of 1078 ± 38 ms correlated well with previous reports. Improved intersession variability was observed, as evident from a decreased standard deviation of motion-resolved T1 mapping (F-test = 0.051). Animals received lipopolysaccharide (LPS) and were imaged at t = 2, 6, and 12 h after administration. The nitric oxide (NO)-dependent function was assessed according to changes in lung T1 after L-NAME injection, while microvascular perfusion and oxidant stress were assessed with contrast-enhanced imaging after injection of gadolinium or 3-carbamoyl-proxyl nitroxide radical, respectively. Retrospectivel gated UTE allowed robust, motion-compensated imaging that could be used for T1 mapping of lung parenchyma. Changes in lung T1 after L-NAME injection indicated that LPS induced overproduction of NO at t = 2 and 6 h after LPS, but NO-dependent microvascular function was impaired at t = 12 h after LPS. DynCE imaging at t = 6 h after LPS injection revealed decreased microvascular perfusion, with increased vascular permeability and oxidant stress. MRI allows to visualize and quantify lung microvascular NO-dependent function and its concomitant impairment during acute respiratory distress syndrome development with high sensitivity. UTE T1 mapping appears to be sensitive and useful in probing pulmonary microvascular functional status.
Collapse
Affiliation(s)
- Grzegorz Kwiatkowski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Izabela Czyzynska-Cichon
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Birger Tielemans
- Department of Imaging and Pathology, Biomedical MRI Unit/Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven, Belgium
| | - Lotte Geerkens
- Department of Imaging and Pathology, Biomedical MRI Unit/Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven, Belgium
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Greetje Vande Velde
- Department of Imaging and Pathology, Biomedical MRI Unit/Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven, Belgium
| | - Stefan Chłopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- Faculty of Medicine, Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
5
|
Stecker IR, Freeman MS, Sitaraman S, Hall CS, Niedbalski PJ, Hendricks AJ, Martin EP, Weaver TE, Cleveland ZI. Preclinical MRI to Quantify Pulmonary Disease Severity and Trajectories in Poorly Characterized Mouse Models: A Pedagogical Example Using Data from Novel Transgenic Models of Lung Fibrosis. JOURNAL OF MAGNETIC RESONANCE OPEN 2021; 6-7. [PMID: 34414381 PMCID: PMC8372031 DOI: 10.1016/j.jmro.2021.100013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Structural remodeling in lung disease is progressive and heterogeneous, making temporally and spatially explicit information necessary to understand disease initiation and progression. While mouse models are essential to elucidate mechanistic pathways underlying disease, the experimental tools commonly available to quantify lung disease burden are typically invasive (e.g., histology). This necessitates large cross-sectional studies with terminal endpoints, which increases experimental complexity and expense. Alternatively, magnetic resonance imaging (MRI) provides information noninvasively, thus permitting robust, repeated-measures statistics. Although lung MRI is challenging due to low tissue density and rapid apparent transverse relaxation (T2* <1 ms), various imaging methods have been proposed to quantify disease burden. However, there are no widely accepted strategies for preclinical lung MRI. As such, it can be difficult for researchers who lack lung imaging expertise to design experimental protocols-particularly for novel mouse models. Here, we build upon prior work from several research groups to describe a widely applicable acquisition and analysis pipeline that can be implemented without prior preclinical pulmonary MRI experience. Our approach utilizes 3D radial ultrashort echo time (UTE) MRI with retrospective gating and lung segmentation is facilitated with a deep-learning algorithm. This pipeline was deployed to assess disease dynamics over 255 days in novel, transgenic mouse models of lung fibrosis based on disease-associated, loss-of-function mutations in Surfactant Protein-C. Previously identified imaging biomarkers (tidal volume, signal coefficient of variation, etc.) were calculated semi-automatically from these data, with an objectively-defined high signal volume identified as the most robust metric. Beyond quantifying disease dynamics, we discuss common pitfalls encountered in preclinical lung MRI and present systematic approaches to identify and mitigate these challenges. While the experimental results and specific pedagogical examples are confined to lung fibrosis, the tools and approaches presented should be broadly useful to quantify structural lung disease in a wide range of mouse models.
Collapse
Affiliation(s)
- Ian R Stecker
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Matthew S Freeman
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Sneha Sitaraman
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Chase S Hall
- Division of Pulmonary and Critical Care, University of Kansas Medical Center, Kansas City, KS 66160
| | - Peter J Niedbalski
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
- Division of Pulmonary and Critical Care, University of Kansas Medical Center, Kansas City, KS 66160
| | - Alexandra J Hendricks
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Emily P Martin
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Timothy E Weaver
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45221
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Zackary I Cleveland
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45221
| |
Collapse
|
6
|
Braig M, Menza M, Leupold J, LeVan P, Feng L, Ko CW, von Zur Mühlen C, Krafft AJ, Hennig J, von Elverfeldt D. Analysis of accelerated 4D flow MRI in the murine aorta by radial acquisition and compressed sensing reconstruction. NMR IN BIOMEDICINE 2020; 33:e4394. [PMID: 32815236 DOI: 10.1002/nbm.4394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 07/15/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
Preclinical 4D flow MRI remains challenging and is restricted for parallel imaging acceleration due to the limited number of available receive channels. A radial acquisition with combined parallel imaging and temporal compressed sensing reconstruction was implemented to achieve accelerated preclinical 4D flow MRI. In order to increase the accuracy of the measured velocities, a quantitative evaluation of different temporal regularization weights for the compressed sensing reconstruction based on velocity instead of magnitude data is performed. A 3D radial retrospectively triggered phase contrast sequence with a combined parallel imaging and compressed sensing reconstruction with temporal regularization was developed. It was validated in a phantom and in vivo (C57BL/6 J mice), against an established fully sampled Cartesian sequence. Different undersampling factors (USFs [12, 15, 20, 30, 60]) were evaluated, and the effect of undersampling was analyzed in detail for magnitude and velocity data. Temporal regularization weights λ were evaluated for different USFs. Acceleration factors of up to 20 compared with full Nyquist sampling were achieved. The peak flow differences compared with the Cartesian measurement were the following: USF 12, 3.38%; USF 15, 4.68%; USF 20, 0.95%. The combination of 3D radial center-out trajectories and compressed sensing reconstruction is robust against motion and flow artifacts and can significantly reduce measurement time to 30 min at a resolution of 180 μm3 . Concisely, radial acquisition with combined compressed sensing and parallel imaging proved to be an excellent method for analyzing complex flow patterns in mice.
Collapse
Affiliation(s)
- Moritz Braig
- Department of Radiology Medical Physics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marius Menza
- Department of Radiology Medical Physics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jochen Leupold
- Department of Radiology Medical Physics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pierre LeVan
- Departments of Radiology and Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Li Feng
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York
| | - Cheng-Wen Ko
- Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Constantin von Zur Mühlen
- Department of Cardiology and Angiology I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Axel J Krafft
- Department of Radiology Medical Physics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Juergen Hennig
- Department of Radiology Medical Physics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominik von Elverfeldt
- Department of Radiology Medical Physics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Boucneau T, Fernandez B, Besson FL, Menini A, Wiesinger F, Durand E, Caramella C, Darrasse L, Maître X. AZTEK: Adaptive zero TE k-space trajectories. Magn Reson Med 2020; 85:926-935. [PMID: 32936490 DOI: 10.1002/mrm.28483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/28/2022]
Abstract
PURPOSE Because of short signal lifetimes and respiratory motion, 3D lung MRI is still challenging today. Zero-TE (ZTE) pulse sequences offer promising solutions as they overcome the issue of short T 2 ∗ . Nevertheless, as they rely on continuous readout gradients, the trajectories they follow in k-space are not adapted to retrospective gating and inferred motion correction. THEORY AND METHODS We propose AZTEK (adaptive ZTE k-space trajectories), a set of 3D radial trajectories featuring three tuning parameters, to adapt the acquisition to any moving organ while keeping seamless transitions between consecutive spokes. Standard ZTE and AZTEK trajectories were compared for static and moving phantom acquisitions as well as for human thoracic imaging performed on 3 volunteers (1 healthy and 2 patients with lung cancer). RESULTS For the static phantom, we observe comparable image qualities with standard and AZTEK trajectories. For the moving phantom, spatially coherent undersampling artifacts observed on gated images with the standard trajectory are alleviated with AZTEK. The same improvement in image quality is obtained in human, so details are more delineated in the lung with the use of the adaptive trajectory. CONCLUSION The AZTEK technique opens the possibility for 3D dynamic ZTE lung imaging with retrospective gating. It enables us to uniformly sample the k-space for any arbitrary respiratory motion gate, while preserving static image quality, improving dynamic image quality and guaranteeing continuous readout gradient transitions between spokes, which makes it appropriate to ZTE.
Collapse
Affiliation(s)
- Tanguy Boucneau
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Orsay, France
| | | | - Florent L Besson
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Orsay, France.,Université Paris-Saclay, Department of Biophysics and Nuclear Medicine, Hopitaux Universitaires Paris-Saclay, Le Kremlin Bicêtre, France
| | - Anne Menini
- Applications & Workflow, GE Healthcare, Menlo Park, California, USA
| | | | - Emmanuel Durand
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Orsay, France.,Université Paris-Saclay, Department of Biophysics and Nuclear Medicine, Hopitaux Universitaires Paris-Saclay, Le Kremlin Bicêtre, France
| | | | - Luc Darrasse
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Orsay, France
| | - Xavier Maître
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Orsay, France
| |
Collapse
|
8
|
Lee H, Zhao X, Song HK, Wehrli FW. Self-Navigated Three-Dimensional Ultrashort Echo Time Technique for Motion-Corrected Skull MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:2869-2880. [PMID: 32149683 PMCID: PMC7484857 DOI: 10.1109/tmi.2020.2978405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ultrashort echo time (UTE) MRI is capable of detecting signals from protons with very short T2 relaxation times, and thus has potential for skull-selective imaging as a radiation-free alternative to computed tomography. However, relatively long scan times make the technique vulnerable to artifacts from involuntary subject motion. Here, we developed a self-navigated, three-dimensional (3D) UTE pulse sequence, which builds on dual-RF, dual-echo UTE imaging, and a retrospective motion correction scheme for motion-resistant skull MRI. Full echo signals in the second readout serve as a self-navigator that yields a time-course of center of mass, allowing for adaptive determination of motion states. Furthermore, golden-means based k-space trajectory was employed to achieve a quasi-uniform distribution of sampling views on a spherical k-space surface for any subset of the entire data collected, thereby allowing reconstruction of low-resolution images pertaining to each motion state for subsequent estimation of rigid-motion parameters. Finally, the extracted trajectory of the head was used to make the whole k-space datasets motion-consistent, leading to motion-corrected, high-resolution images. Additionally, we posit that hardware-related k-space trajectory errors, if uncorrected, result in obscured bone contrast. Thus, a calibration scan was performed once to measure k-space encoding locations, subsequently used during image reconstruction of actual imaging data. In vivo studies were performed to evaluate the effectiveness of the proposed correction schemes in combination with approaches to accelerated bone-selective imaging. Results illustrating effective removal of motion artifacts and clear depiction of skull bone voxels suggest that the proposed method is robust to intermittent head motions during scanning.
Collapse
|
9
|
Dong SZ, Zhu M, Bulas D. Techniques for minimizing sedation in pediatric MRI. J Magn Reson Imaging 2019; 50:1047-1054. [PMID: 30869831 DOI: 10.1002/jmri.26703] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/17/2019] [Accepted: 02/19/2019] [Indexed: 12/16/2022] Open
Abstract
MRI is used widely in infants and young children. However, in these young cases deep sedation or general anesthesia is often required to minimize motion artifacts during MRI examinations. Although the benefits of MR typically outweigh the potential risks of sedation when delivered by an experienced team, there are increasing concerns regarding the affect of sedation on young children. There continues to be a push to develop various strategies that can minimize the need for sedation. The present review summarizes several technical and clinical approaches that can help decrease the need for sedation in the pediatric patient. Optimization of the MRI environment, the role of child life specialists, feed-and-bundle and distraction techniques, noise-reduction methods, artificial intelligence, and MRI advances to decrease both scan times and motion artifacts will be discussed. Level of Evidence: 5 Technical Efficacy Stage: 1 J. Magn. Reson. Imaging 2019.
Collapse
Affiliation(s)
- Su-Zhen Dong
- Department of Radiology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Diagnostic Imaging and Radiology, Children's National Health Systems, Washington, DC, USA
| | - Ming Zhu
- Department of Radiology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dorothy Bulas
- Department of Diagnostic Imaging and Radiology, Children's National Health Systems, Washington, DC, USA
| |
Collapse
|
10
|
Stemkens B, Paulson ES, Tijssen RHN. Nuts and bolts of 4D-MRI for radiotherapy. ACTA ACUST UNITED AC 2018; 63:21TR01. [DOI: 10.1088/1361-6560/aae56d] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Yoon SH, Lee C, Park J, Goo JM, Park JY. Gradient-echo-based 3D submillisecond echo time pulmonary MR imaging: a preliminary usability study on clinical and preclinical MR scanners. Br J Radiol 2018; 91:20170796. [PMID: 29569463 DOI: 10.1259/bjr.20170796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE To preliminarily investigate a technical feasibility of a submillisecond echo time concurrent-dephasing-and-excitation (CODE) sequence for pulmonary MRI on clinical and preclinical MR scanners Methods: CODE imaging (echo time, 0.14 ~ 0.18 ms) was performed with American College of Radiology phantom at 3 T, 7 healthy volunteers at 1.5 and 3 T, 10 rabbits at 3 T, and 2 rodents at 9.4 T. Signal-to-noise ratio was compared in phantom. Image quality of human MRI was visually assessed on a 5-point scale for comparison between CODE and conventional lung MRI sequences. Visibility of bronchi, subcentimeter nodules, and MR air-bronchogram were assessed in animal studies. RESULTS In phantom study, signal-to-noise ratio was higher with CODE than with original three-dimensional ultrashort-echo time sequence (106.71 ± 4.32 vs 91.66 ± 3.54; p < 0.001). Image quality of human MRI was better with CODE than with conventional MRI sequences (p ≤ 0.002). Bronchi remained traceable up to the fifth bronchial generation in CODE images in rabbits and rodents. 95.2% of metastatic nodules (diameter, 1.5 ± 0.4 mm) and 93.8% of MR air-bronchogram (diameter, 0.9 ± 0.2 mm) in rabbits. CONCLUSION Submillisecond echo time pulmonary MRI was technically feasible by using CODE on various MR scanners. Advances in knowledge: CODE can be a practical alternative for lung MRI on both clinical and pre-clinical scanners, without challenges of free-induction-decay-based ultrashort-echo time sequences.
Collapse
Affiliation(s)
- Soon Ho Yoon
- 1 Department of Radiology, Seoul National University College of Medicine, Seoul National University Hospital , Seoul , South Korea
| | - Chanhee Lee
- 2 Department of Biomedical Engineering, Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University , Suwon-si , South Korea
| | - Jinil Park
- 2 Department of Biomedical Engineering, Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University , Suwon-si , South Korea
| | - Jin Mo Goo
- 1 Department of Radiology, Seoul National University College of Medicine, Seoul National University Hospital , Seoul , South Korea.,3 Institute of Radiation Medicine, Seoul National University Medical Research Center , Seoul , South Korea
| | - Jang-Yeon Park
- 2 Department of Biomedical Engineering, Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University , Suwon-si , South Korea
| |
Collapse
|
12
|
Kenkel D, Yamada Y, Weiger M, Wurnig MC, Jungraithmayr W, Boss A. Magnetisation transfer as a biomarker for chronic airway fibrosis in a mouse lung transplantation model. Eur Radiol Exp 2018; 2:3. [PMID: 29708209 PMCID: PMC5909363 DOI: 10.1186/s41747-017-0032-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 11/21/2017] [Indexed: 11/25/2022] Open
Abstract
Background Chronic airway fibrosis (CAF) is the most prevalent complication in human lung transplant recipients. The aim of the study is to evaluate magnetisation transfer (MT) as a biomarker of developing CAF of lung transplants in a mouse model. Methods Lung transplantation was performed in 48 mice, applying major or minor histocompatibility mismatches between strains for the induction of CAF. MT measurements were performed in vivo with systematic variation of off-resonance frequencies and flip angle of the MT prepulse. MT ratios (MTRs) were compared for lungs showing CAF and without CAF. Results Seven out of 24 animals (29%) showed a pattern of CAF at histology. All mice developing CAF also showed signs of acute rejection, whereas none of the lungs showed signs of other post-transplant complications. After lung transplantation, pulmonary infiltration was a frequent finding (14 out of 24) exhibiting a higher MTR (24.8% ± 4.5%) compared to well-ventilated lungs (12.3% ± 6.9%, p = 0.001) at 8000 Hz off-resonance frequency, 3000° flip angle. In infiltrated lung tissue exhibiting CAF, lower MTR values (21.8% ± 5.7%) were found compared to infiltrated lungs showing signs of acute rejection alone (26.5% ± 2.9%, p = 0.028), at 8000 Hz, 3000° flip angle. The highest MTR values were observed at 3000° flip angle, using a 1000 Hz off-resonance frequency. Conclusion MTR might serve as a tool for the detection of CAF in infiltrated lung tissue.
Collapse
Affiliation(s)
- David Kenkel
- 1Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Ramistrasse 100, 8091 Zurich, Switzerland
| | - Yoshito Yamada
- 2Division of Thoracic Surgery and Department, University Hospital Zurich, Zurich, Switzerland
| | - Markus Weiger
- 3Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Moritz C Wurnig
- 1Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Ramistrasse 100, 8091 Zurich, Switzerland
| | - Wolfgang Jungraithmayr
- 2Division of Thoracic Surgery and Department, University Hospital Zurich, Zurich, Switzerland.,Department of Thoracic Surgery, Medical University Brandenburg, Neuruppin, Brandenburg Germany
| | - Andreas Boss
- 1Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Ramistrasse 100, 8091 Zurich, Switzerland
| |
Collapse
|
13
|
Kim B, Seo H, Kim D, Park H. Retrospective motion gating in cardiac MRI using a simultaneously acquired navigator. NMR IN BIOMEDICINE 2018; 31:e3874. [PMID: 29266452 DOI: 10.1002/nbm.3874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
A simultaneous acquisition technique of image and navigator signals (simultaneously acquired navigator, SIMNAV) is proposed for cardiac magnetic resonance imaging (CMRI) in Cartesian coordinates. To simultaneously acquire both image and navigator signals, a conventional balanced steady-state free precession (bSSFP) pulse sequence is modified by adding a radiofrequency (RF) pulse, which excites a supplementary slice for the navigator signal. Alternating phases of the RF pulses make it easy to separate the simultaneously acquired magnetic resonance data into image and navigator signals. The navigator signals of the proposed SIMNAV were compared with those of current gating devices and self-gating techniques for seven healthy subjects. In vivo experiments demonstrated that SIMNAV could provide cardiac cine images with sufficient image quality, similar to those from electrocardiogram (ECG) gating with breath-hold. SIMNAV can be used to acquire a cardiac cine image without requiring an ECG device and breath-hold, whilst maintaining feasible imaging time efficiency.
Collapse
Affiliation(s)
- Byungjai Kim
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Guseong-dong, Yuseong-gu, Daejeon, South Korea
| | - Hyunseok Seo
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Guseong-dong, Yuseong-gu, Daejeon, South Korea
| | - Dongchan Kim
- College of Medicine, Gachon University, Hambakmoero 191, Yeonsu-gu, Incheon, South Korea
| | - HyunWook Park
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Guseong-dong, Yuseong-gu, Daejeon, South Korea
| |
Collapse
|
14
|
Delacoste J, Chaptinel J, Beigelman-Aubry C, Piccini D, Sauty A, Stuber M. A double echo ultra short echo time (UTE) acquisition for respiratory motion-suppressed high resolution imaging of the lung. Magn Reson Med 2017; 79:2297-2305. [PMID: 28856720 DOI: 10.1002/mrm.26891] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/04/2017] [Accepted: 08/08/2017] [Indexed: 12/24/2022]
Abstract
PURPOSE Magnetic resonance imaging is a promising alternative to computed tomography for lung imaging. However, organ motion and poor signal-to-noise ratio, arising from short T2*, impair image quality. To alleviate these issues, a new retrospective gating method was implemented and tested with an ultra-short echo time sequence. METHODS A 3D double-echo ultra-short echo time sequence was used to acquire data during free breathing in ten healthy adult subjects. A self-gating method was used to reconstruct respiratory motion suppressed expiratory and inspiratory images. These images were objectively compared to uncorrected data sets using quantitative end-points (pulmonary vessel sharpness, lung-liver interface definition, signal-to-noise ratio). The method was preliminarily tested in two cystic fibrosis patients who underwent computed tomography. RESULTS Vessel sharpness in expiratory ultra-short echo time data sets with second echo motion detection was significantly higher (13% relative increase) than in uncorrected images while the opposite was observed in inspiratory images. The method was successfully applied in patients and some findings (e.g., hypointense areas) were similar to those from computed tomography. CONCLUSION Free breathing ultra-short echo time was successfully implemented, allowing flexible image reconstruction of two different respiratory states. Objective improvements in image quality were obtained with the new method and initial feasibility in a clinical setting was demonstrated. Magn Reson Med 79:2297-2305, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Jean Delacoste
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Jerome Chaptinel
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Catherine Beigelman-Aubry
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Davide Piccini
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Center for Biomedical Imaging (CIBM), Lausanne, Switzerland.,Advanced Clinical Imaging Technology, Siemens Healthcare, Lausanne, Switzerland
| | - Alain Sauty
- Adult CF Multisites Unit, Hospital of Morges, Morges, Switzerland.,Service of Pneumology, Department of Medicine, University Hospital (CHUV), Lausanne, Switzerland
| | - Matthias Stuber
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| |
Collapse
|
15
|
Krämer M, Motaal AG, Herrmann KH, Löffler B, Reichenbach JR, Strijkers GJ, Hoerr V. Cardiac 4D phase-contrast CMR at 9.4 T using self-gated ultra-short echo time (UTE) imaging. J Cardiovasc Magn Reson 2017; 19:39. [PMID: 28359292 PMCID: PMC5374606 DOI: 10.1186/s12968-017-0351-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 03/02/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Time resolved 4D phase contrast (PC) cardiovascular magnetic resonance (CMR) in mice is challenging due to long scan times, small animal ECG-gating and the rapid blood flow and cardiac motion of small rodents. To overcome several of these technical challenges we implemented a retrospectively self-gated 4D PC radial ultra-short echo-time (UTE) acquisition scheme and assessed its performance in healthy mice by comparing the results with those obtained with an ECG-triggered 4D PC fast low angle shot (FLASH) sequence. METHODS Cardiac 4D PC CMR images were acquired at 9.4 T in healthy mice using the proposed self-gated radial center-out UTE acquisition scheme (TE/TR of 0.5 ms/3.1 ms) and a standard Cartesian 4D PC imaging sequence (TE/TR of 2.1 ms/5.0 ms) with a four-point Hadamard flow encoding scheme. To validate the proposed UTE flow imaging technique, experiments on a flow phantom with variable pump rates were performed. RESULTS The anatomical images and flow velocity maps of the proposed 4D PC UTE technique showed reduced artifacts and an improved SNR (left ventricular cavity (LV): 8.9 ± 2.5, myocardium (MC): 15.7 ± 1.9) compared to those obtained using a typical Cartesian FLASH sequence (LV: 5.6 ± 1.2, MC: 10.1 ± 1.4) that was used as a reference. With both sequences comparable flow velocities were obtained in the flow phantom as well as in the ascending aorta (UTE: 132.8 ± 18.3 cm/s, FLASH: 134.7 ± 13.4 cm/s) and pulmonary artery (UTE: 78.5 ± 15.4 cm/s, FLASH: 86.6 ± 6.2 cm/s) of the animals. Self-gated navigator signals derived from information of the oversampled k-space center were successfully extracted for all animals with a higher gating efficiency of time spent on acquiring gated data versus total measurement time (UTE: 61.8 ± 11.5%, FLASH: 48.5 ± 4.9%). CONCLUSIONS The proposed self-gated 4D PC UTE sequence enables robust and accurate flow velocity mapping of the mouse heart in vivo at high magnetic fields. At the same time SNR, gating efficiency, flow artifacts and image quality all improved compared to the images obtained using the well-established, ECG-triggered, 4D PC FLASH sequence.
Collapse
Affiliation(s)
- M. Krämer
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Philosophenweg 3, D-07743 Jena, Germany
| | - A. G. Motaal
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - K-H. Herrmann
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Philosophenweg 3, D-07743 Jena, Germany
| | - B. Löffler
- Institute of Medical Microbiology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - J. R. Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Philosophenweg 3, D-07743 Jena, Germany
- Michael Stifel Center for Data-driven and Simulation Science Jena, Friedrich Schiller University Jena, Jena, Germany
- Abbe School of Photonics, Friedrich Schiller University Jena, Jena, Germany
- Center of Medical Optics and Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - G. J. Strijkers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, Netherlands
| | - V. Hoerr
- Institute of Medical Microbiology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|