1
|
Ma X, Seres P, Kinnaird A, Fung C, Feiweier T, Beaulieu C. Diffusion time effects over the adult lifespan indicates persistent zone-specific microstructural alterations in the human prostate with aging. Magn Reson Med 2024. [PMID: 39734280 DOI: 10.1002/mrm.30408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/30/2024] [Accepted: 12/03/2024] [Indexed: 12/31/2024]
Abstract
PURPOSE The purpose of this study was to investigate microstructural changes in the aging adult prostate by comparing the effects of varying diffusion times using diffusion MRI, and to provide an age-related benchmark for future prostate cancer studies. METHODS The prostates of normal male volunteers (n = 70, 19-69 years) were scanned at 3 T with an oscillating gradient spin echo (OGSE: 6 ms), pulsed gradient spin echo (PGSE: 40 ms) and pulsed gradient stimulated echo (PGSTE: 100 ms), and anatomical T2-weighted image. Volume and mean diffusivity (MD) were measured in the peripheral (PZ) and transition zones (TZ), which were assessed versus age. RESULTS PZ and TZ showed quadratic age trajectories for all diffusion scans, with MD decreasing from 19 years to a minimum ˜30-40 years followed by a greater increase at older ages. Short (OGSE) and medium (PGSE) diffusion time MD had similar age trajectories, whereas long diffusion time (PGSTE) MD was significantly lower, particularly in PZ (22%). MD difference (∆MD) of OGSE-PGSTE and PGSE-PGSTE showed significant positive linear correlations with age for both PZ (larger slope) and TZ, resulting in ˜3.3x (PZ) and 1.8x (TZ) greater ∆MD from 19 to 69 years. MD and ∆MD versus age relationships differed from volume, which conversely had greater proportional growth in TZ than PZ. CONCLUSION The diffusion time effects suggest age-related microstructural changes consistent with development of persistently larger cell dimensions mainly in the prostate peripheral zone over the adult lifespan. This normative data can be used for comparison to prostate cancer factoring in age.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Peter Seres
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada
| | - Adam Kinnaird
- Division of Urology, University of Alberta, Edmonton, Alberta, Canada
| | - Christopher Fung
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada
| | | | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Zhang Z, Aygun E, Shih SF, Raman SS, Sung K, Wu HH. High-resolution prostate diffusion MRI using eddy current-nulled convex optimized diffusion encoding and random matrix theory-based denoising. MAGMA (NEW YORK, N.Y.) 2024; 37:603-619. [PMID: 38349453 PMCID: PMC11323217 DOI: 10.1007/s10334-024-01147-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024]
Abstract
OBJECTIVE To develop and evaluate a technique combining eddy current-nulled convex optimized diffusion encoding (ENCODE) with random matrix theory (RMT)-based denoising to accelerate and improve the apparent signal-to-noise ratio (aSNR) and apparent diffusion coefficient (ADC) mapping in high-resolution prostate diffusion-weighted MRI (DWI). MATERIALS AND METHODS: Eleven subjects with clinical suspicion of prostate cancer were scanned at 3T with high-resolution (HR) (in-plane: 1.0 × 1.0 mm2) ENCODE and standard-resolution (1.6 × 2.2 mm2) bipolar DWI sequences (both had 7 repetitions for averaging, acquisition time [TA] of 5 min 50 s). HR-ENCODE was retrospectively analyzed using three repetitions (accelerated effective TA of 2 min 30 s). The RMT-based denoising pipeline utilized complex DWI signals and Marchenko-Pastur distribution-based principal component analysis to remove additive Gaussian noise in images from multiple coils, b-values, diffusion encoding directions, and repetitions. HR-ENCODE with RMT-based denoising (HR-ENCODE-RMT) was compared with HR-ENCODE in terms of aSNR in prostate peripheral zone (PZ) and transition zone (TZ). Precision and accuracy of ADC were evaluated by the coefficient of variation (CoV) between repeated measurements and mean difference (MD) compared to the bipolar ADC reference, respectively. Differences were compared using two-sided Wilcoxon signed-rank tests (P < 0.05 considered significant). RESULTS HR-ENCODE-RMT yielded 62% and 56% higher median aSNR than HR-ENCODE (b = 800 s/mm2) in PZ and TZ, respectively (P < 0.001). HR-ENCODE-RMT achieved 63% and 70% lower ADC-CoV than HR-ENCODE in PZ and TZ, respectively (P < 0.001). HR-ENCODE-RMT ADC and bipolar ADC had low MD of 22.7 × 10-6 mm2/s in PZ and low MD of 90.5 × 10-6 mm2/s in TZ. CONCLUSIONS HR-ENCODE-RMT can shorten the acquisition time and improve the aSNR of high-resolution prostate DWI and achieve accurate and precise ADC measurements in the prostate.
Collapse
Affiliation(s)
- Zhaohuan Zhang
- Department of Radiological Sciences, University of California Los Angeles, 300 UCLA Medical Plaza, Suite B119, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Elif Aygun
- Department of Radiological Sciences, University of California Los Angeles, 300 UCLA Medical Plaza, Suite B119, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Shu-Fu Shih
- Department of Radiological Sciences, University of California Los Angeles, 300 UCLA Medical Plaza, Suite B119, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Steven S Raman
- Department of Radiological Sciences, University of California Los Angeles, 300 UCLA Medical Plaza, Suite B119, Los Angeles, CA, 90095, USA
| | - Kyunghyun Sung
- Department of Radiological Sciences, University of California Los Angeles, 300 UCLA Medical Plaza, Suite B119, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Holden H Wu
- Department of Radiological Sciences, University of California Los Angeles, 300 UCLA Medical Plaza, Suite B119, Los Angeles, CA, 90095, USA.
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Caporale AS, Nezzo M, Di Trani MG, Maiuro A, Miano R, Bove P, Mauriello A, Manenti G, Capuani S. Acquisition Parameters Influence Diffusion Metrics Effectiveness in Probing Prostate Tumor and Age-Related Microstructure. J Pers Med 2023; 13:jpm13050860. [PMID: 37241031 DOI: 10.3390/jpm13050860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
This study aimed to investigate the Diffusion-Tensor-Imaging (DTI) potential in the detection of microstructural changes in prostate cancer (PCa) in relation to the diffusion weight (b-value) and the associated diffusion length lD. Thirty-two patients (age range = 50-87 years) with biopsy-proven PCa underwent Diffusion-Weighted-Imaging (DWI) at 3T, using single non-zero b-value or groups of b-values up to b = 2500 s/mm2. The DTI maps (mean-diffusivity, MD; fractional-anisotropy, FA; axial and radial diffusivity, D// and D┴), visual quality, and the association between DTI-metrics and Gleason Score (GS) and DTI-metrics and age were discussed in relation to diffusion compartments probed by water molecules at different b-values. DTI-metrics differentiated benign from PCa tissue (p ≤ 0.0005), with the best discriminative power versus GS at b-values ≥ 1500 s/mm2, and for b-values range 0-2000 s/mm2, when the lD is comparable to the size of the epithelial compartment. The strongest linear correlations between MD, D//, D┴, and GS were found at b = 2000 s/mm2 and for the range 0-2000 s/mm2. A positive correlation between DTI parameters and age was found in benign tissue. In conclusion, the use of the b-value range 0-2000 s/mm2 and b-value = 2000 s/mm2 improves the contrast and discriminative power of DTI with respect to PCa. The sensitivity of DTI parameters to age-related microstructural changes is worth consideration.
Collapse
Affiliation(s)
- Alessandra Stella Caporale
- Department of Neuroscience, Imaging and Clinical Sciences, 'G. d'Annunzio' University of Chieti-Pescara, 66100 Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), 'G. d'Annunzio' University of Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Nezzo
- Interventional Radiology Unit, Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Maria Giovanna Di Trani
- Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, 00184 Rome, Italy
| | - Alessandra Maiuro
- CNR ISC, c/o Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Roberto Miano
- Division of Urology, Department of Surgical Sciences, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Pierluigi Bove
- Division of Urology, Department of Surgical Sciences, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Alessandro Mauriello
- Anatomic Pathology, Department of Experimental Medicine, PTV Foundation, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Guglielmo Manenti
- Department of Biomedicine and Prevention, UOC Radiology PTV Foundation, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Silvia Capuani
- CNR ISC, c/o Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
4
|
Slator PJ, Palombo M, Miller KL, Westin C, Laun F, Kim D, Haldar JP, Benjamini D, Lemberskiy G, de Almeida Martins JP, Hutter J. Combined diffusion-relaxometry microstructure imaging: Current status and future prospects. Magn Reson Med 2021; 86:2987-3011. [PMID: 34411331 PMCID: PMC8568657 DOI: 10.1002/mrm.28963] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/25/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022]
Abstract
Microstructure imaging seeks to noninvasively measure and map microscopic tissue features by pairing mathematical modeling with tailored MRI protocols. This article reviews an emerging paradigm that has the potential to provide a more detailed assessment of tissue microstructure-combined diffusion-relaxometry imaging. Combined diffusion-relaxometry acquisitions vary multiple MR contrast encodings-such as b-value, gradient direction, inversion time, and echo time-in a multidimensional acquisition space. When paired with suitable analysis techniques, this enables quantification of correlations and coupling between multiple MR parameters-such as diffusivity, T 1 , T 2 , and T 2 ∗ . This opens the possibility of disentangling multiple tissue compartments (within voxels) that are indistinguishable with single-contrast scans, enabling a new generation of microstructural maps with improved biological sensitivity and specificity.
Collapse
Affiliation(s)
- Paddy J. Slator
- Centre for Medical Image ComputingDepartment of Computer ScienceUniversity College LondonLondonUK
| | - Marco Palombo
- Centre for Medical Image ComputingDepartment of Computer ScienceUniversity College LondonLondonUK
| | - Karla L. Miller
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Carl‐Fredrik Westin
- Department of RadiologyBrigham and Women’s HospitalHarvard Medical SchoolBostonMAUSA
| | - Frederik Laun
- Institute of RadiologyUniversity Hospital ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Daeun Kim
- Ming Hsieh Department of Electrical and Computer EngineeringUniversity of Southern CaliforniaLos AngelesCAUSA
- Signal and Image Processing InstituteUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Justin P. Haldar
- Ming Hsieh Department of Electrical and Computer EngineeringUniversity of Southern CaliforniaLos AngelesCAUSA
- Signal and Image Processing InstituteUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Dan Benjamini
- The Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaMDUSA
- The Center for Neuroscience and Regenerative MedicineUniformed Service University of the Health SciencesBethesdaMDUSA
| | | | - Joao P. de Almeida Martins
- Division of Physical Chemistry, Department of ChemistryLund UniversityLundSweden
- Department of Radiology and Nuclear MedicineSt. Olav’s University HospitalTrondheimNorway
| | - Jana Hutter
- Centre for Biomedical EngineeringSchool of Biomedical Engineering and ImagingKing’s College LondonLondonUK
- Centre for the Developing BrainSchool of Biomedical Engineering and ImagingKing’s College LondonLondonUK
| |
Collapse
|
5
|
Accelerated Segmented Diffusion-Weighted Prostate Imaging for Higher Resolution, Higher Geometric Fidelity, and Multi-b Perfusion Estimation. Invest Radiol 2019; 54:238-246. [PMID: 30601292 DOI: 10.1097/rli.0000000000000536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE The aim of this study was to improve the geometric fidelity and spatial resolution of multi-b diffusion-weighted magnetic resonance imaging of the prostate. MATERIALS AND METHODS An accelerated segmented diffusion imaging sequence was developed and evaluated in 25 patients undergoing multiparametric magnetic resonance imaging examinations of the prostate. A reduced field of view was acquired using an endorectal coil. The number of sampled diffusion weightings, or b-factors, was increased to allow estimation of tissue perfusion based on the intravoxel incoherent motion (IVIM) model. Apparent diffusion coefficients measured with the proposed segmented method were compared with those obtained with conventional single-shot echo-planar imaging (EPI). RESULTS Compared with single-shot EPI, the segmented method resulted in faster acquisition with 2-fold improvement in spatial resolution and a greater than 3-fold improvement in geometric fidelity. Apparent diffusion coefficient values measured with the novel sequence demonstrated excellent agreement with those obtained from the conventional scan (R = 0.91 for bmax = 500 s/mm and R = 0.89 for bmax = 1400 s/mm). The IVIM perfusion fraction was 4.0% ± 2.7% for normal peripheral zone, 6.6% ± 3.6% for normal transition zone, and 4.4% ± 2.9% for suspected tumor lesions. CONCLUSIONS The proposed accelerated segmented prostate diffusion imaging sequence achieved improvements in both spatial resolution and geometric fidelity, along with concurrent quantification of IVIM perfusion.
Collapse
|
6
|
Ni J, Bongers A, Chamoli U, Bucci J, Graham P, Li Y. In Vivo 3D MRI Measurement of Tumour Volume in an Orthotopic Mouse Model of Prostate Cancer. Cancer Control 2019; 26:1073274819846590. [PMID: 31032634 PMCID: PMC6488786 DOI: 10.1177/1073274819846590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer (CaP) is the most commonly diagnosed cancer in males in western
countries. Orthotopic implantation is considered as an ideal xenograft model for
CaP study, and noninvasive measurement of tumor volume changes is important for
monitoring responses to anticancer therapies. In this study, the T2-weighted
fast spin echo sequence magnetic resonance imaging (MRI) was performed on a CaP
orthotopic non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mouse
model weekly for 6 weeks post PC-3 CaP cell inoculation, and the fat signal was
suppressed using a chemical shift-selective pulse. Subsequently, the MRI data
were imported into the image processing software Avizo Standard and stacked into
three-dimensional (3D) volumes. Our results demonstrate that MRI, combined with
3D reconstruction, is a feasible and sensitive method to assess tumor growth in
a PC-3 orthotopic CaP mouse model and this established monitoring approach is
promising for longitudinal observation of CaP xenograft development after
anticancer therapy in vivo. Further investigation is needed to
validate this protocol in a larger cohort of mice to generate enough statistical
power.
Collapse
Affiliation(s)
- Jie Ni
- 1 Cancer Care Centre, St George Hospital, Kogarah, New South Wales, Australia.,2 St George and Sutherland Clinical School, UNSW Sydney, New South Wales, Australia
| | - Andre Bongers
- 3 Biological Resource Imaging Laboratory, UNSW Sydney, New South Wales, Australia
| | - Uphar Chamoli
- 4 Spine Service, Department of Orthopaedic Surgery, St George and Sutherland Clinical School, UNSW Sydney, Kogarah, New South Wales, Australia.,5 School of Biomedical Engineering, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Joseph Bucci
- 1 Cancer Care Centre, St George Hospital, Kogarah, New South Wales, Australia.,2 St George and Sutherland Clinical School, UNSW Sydney, New South Wales, Australia
| | - Peter Graham
- 1 Cancer Care Centre, St George Hospital, Kogarah, New South Wales, Australia.,2 St George and Sutherland Clinical School, UNSW Sydney, New South Wales, Australia
| | - Yong Li
- 1 Cancer Care Centre, St George Hospital, Kogarah, New South Wales, Australia.,2 St George and Sutherland Clinical School, UNSW Sydney, New South Wales, Australia.,6 School of Basic Medical Sciences, Zhengzhou University, Henan, China
| |
Collapse
|
7
|
Brancato V, Cavaliere C, Salvatore M, Monti S. Non-Gaussian models of diffusion weighted imaging for detection and characterization of prostate cancer: a systematic review and meta-analysis. Sci Rep 2019; 9:16837. [PMID: 31728007 PMCID: PMC6856159 DOI: 10.1038/s41598-019-53350-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/28/2019] [Indexed: 12/24/2022] Open
Abstract
The importance of Diffusion Weighted Imaging (DWI) in prostate cancer (PCa) diagnosis have been widely handled in literature. In the last decade, due to the mono-exponential model limitations, several studies investigated non-Gaussian DWI models and their utility in PCa diagnosis. Since their results were often inconsistent and conflicting, we performed a systematic review of studies from 2012 examining the most commonly used Non-Gaussian DWI models for PCa detection and characterization. A meta-analysis was conducted to assess the ability of each Non-Gaussian model to detect PCa lesions and distinguish between low and intermediate/high grade lesions. Weighted mean differences and 95% confidence intervals were calculated and the heterogeneity was estimated using the I2 statistic. 29 studies were selected for the systematic review, whose results showed inconsistence and an unclear idea about the actual usefulness and the added value of the Non-Gaussian model parameters. 12 studies were considered in the meta-analyses, which showed statistical significance for several non-Gaussian parameters for PCa detection, and to a lesser extent for PCa characterization. Our findings showed that Non-Gaussian model parameters may potentially play a role in the detection and characterization of PCa but further studies are required to identify a standardized DWI acquisition protocol for PCa diagnosis.
Collapse
|
8
|
Lemberskiy G, Fieremans E, Veraart J, Deng FM, Rosenkrantz AB, Novikov DS. Characterization of prostate microstructure using water diffusion and NMR relaxation. FRONTIERS IN PHYSICS 2018; 6:91. [PMID: 30568939 PMCID: PMC6296484 DOI: 10.3389/fphy.2018.00091] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
For many pathologies, early structural tissue changes occur at the cellular level, on the scale of micrometers or tens of micrometers. Magnetic resonance imaging (MRI) is a powerful non-invasive imaging tool used for medical diagnosis, but its clinical hardware is incapable of reaching the cellular length scale directly. In spite of this limitation, microscopic tissue changes in pathology can potentially be captured indirectly, from macroscopic imaging characteristics, by studying water diffusion. Here we focus on water diffusion and NMR relaxation in the human prostate, a highly heterogeneous organ at the cellular level. We present a physical picture of water diffusion and NMR relaxation in the prostate tissue, that is comprised of a densely-packed cellular compartment (composed of stroma and epithelium), and a luminal compartment with almost unrestricted water diffusion. Transverse NMR relaxation is used to identify fast and slow T 2 components, corresponding to these tissue compartments, and to disentangle the luminal and cellular compartment contributions to the temporal evolution of the overall water diffusion coefficient. Diffusion in the luminal compartment falls into the short-time surface-to-volume (S/V) limit, indicating that only a small fraction of water molecules has time to encounter the luminal walls of healthy tissue; from the S/V ratio, the average lumen diameter averaged over three young healthy subjects is measured to be 217.7±188.7 μm. Conversely, the diffusion in the cellular compartment is highly restricted and anisotropic, consistent with the fibrous character of the stromal tissue. Diffusion transverse to these fibers is well described by the random permeable barrier model (RPBM), as confirmed by the dynamical exponent ϑ = 1/2 for approaching the long-time limit of diffusion, and the corresponding structural exponent p = -1 in histology. The RPBM-derived fiber diameter and membrane permeability were 19.8±8.1 μm and 0.044±0.045 μm/ms, respectively, in agreement with known values from tissue histology and membrane biophysics. Lastly, we revisited 38 prostate cancer cases from a recently published study, and found the same dynamical exponent ϑ = 1/2 of diffusion in tumors and benign regions. Our results suggest that a multi-parametric MRI acquisition combined with biophysical modeling may be a powerful non-invasive complement to prostate cancer grading, potentially foregoing biopsies.
Collapse
Affiliation(s)
- Gregory Lemberskiy
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, NY, USA; Sackler Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, NY, USA
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, NY, USA,
| | - Jelle Veraart
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, NY, USA,
| | - Fang-Ming Deng
- Department of Pathology, New York University Langone Medical Center, New York, NY New York, NY, USA;
| | - Andrew B Rosenkrantz
- Department of Radiology, New York University Langone Medical Center, New York, NY New York, NY, USA;
| | - Dmitry S Novikov
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, NY, USA,
| |
Collapse
|