1
|
Paška J, Wang B, Chen AM, Madelin G, Brown R. Triple-tuned birdcage and single-tuned dipole array for quadri-nuclear head MRI at 7 T. Magn Reson Med 2024; 91:2188-2199. [PMID: 38116692 PMCID: PMC10950522 DOI: 10.1002/mrm.29977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/31/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
Abstract
PURPOSE The purpose of this work was to design and build a coil for quadri-nuclear MRI of the human brain at 7 T. METHODS We built a transmit/receive triple-tuned (45.6 MHz for 2 $$ {}^2 $$ H, 78.6 MHz for 23 $$ {}^{23} $$ Na, and 120.3 MHz for 31 $$ {}^{31} $$ P) quadrature four-rod birdcage that was geometrically interleaved with a transmit/receive four-channel dipole array (297.2 MHz for 1 $$ {}^1 $$ H). The birdcage rods contained passive, two-pole resonant circuits that emulated capacitors required for single-tuning at three frequencies. The birdcage assembly also included triple-tuned matching networks, baluns, and transmit/receive switches. We assessed the performance of the coil with quality factor (Q) and signal-to-noise ratio (SNR) measurements, and performed in vivo multinuclear MRI and MR spectroscopic imaging (MRSI). RESULTS Q measurements showed that the triple-tuned birdcage efficiency was within 33% of that of single-tuned baseline birdcages at all three frequencies. The quadri-tuned coil SNR was 78%, 59%, 44%, and 48% lower than that of single or dual-tuned reference coils for 1 $$ {}^1 $$ H, 2 $$ {}^2 $$ H, 23 $$ {}^{23} $$ Na, and 31 $$ {}^{31} $$ P, respectively. Quadri-nuclear MRI and MRSI was demonstrated in brain in vivo in about 30 min. CONCLUSION While the SNR of the quadruple tuned coil was significantly lower than dual- and single-tuned reference coils, it represents a step toward truly simultaneous quadri-nuclear measurements.
Collapse
Affiliation(s)
- Jan Paška
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Bili Wang
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Anna M. Chen
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Guillaume Madelin
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Ryan Brown
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
2
|
Sun C, Bauer CC, Hou J, Wright SM. Wideband receive-coil array design using high-impedance amplifiers for broadband decoupling. Magn Reson Med 2023; 90:2198-2210. [PMID: 37382188 DOI: 10.1002/mrm.29755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/17/2023] [Accepted: 05/21/2023] [Indexed: 06/30/2023]
Abstract
PURPOSE Multinuclear MRI/S is of increasing interest. Currently, most multinuclear receive array coils are constructed by nesting multiple single-tuned array coils or using switching elements to control the operating frequency, in which case more than one set of conventional isolation preamplifiers and associated decoupling circuits is required. These conventional configurations rapidly become complicated when greater numbers of channels or nuclei are needed. In this work, a novel coil decoupling mechanism is proposed to enable broadband decoupling for array coils with one set of preamplifiers. METHODS Instead of using conventional isolation preamplifiers, a high-input impedance preamplifier is proposed to create broadband decoupling of the array elements. A matching network consisting of a single inductor-capacitor-capacitor multi-tuned network and a wire-wound transformer was used to interface the surface coil to the high-impedance preamplifier. To validate the concept, the proposed configuration was compared to the conventional preamplifier decoupling configuration on both bench and scanner. RESULTS 2 The approach can provide more than 15dB decoupling over a range of 25MHz, covering the Larmor frequencies of 23 Na and 2 H at 4.7T. This multi-tuned prototype obtained 61% and 76% of the imaging SNR at 2 H and 23 Na respectively, 76 and 89% in a higher loading test phantom, when compared to the conventional single-tuned preamplifier decoupling configuration. CONCLUSION With the multinuclear array operation and decoupling achieved using only one layer of array coil and preamplifiers, this work provides a simple approach of building high element-count arrays to enable accelerated imaging or SNR improvement from multiple nuclei.
Collapse
Affiliation(s)
- Chenhao Sun
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
| | - Courtney C Bauer
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Jue Hou
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Steven M Wright
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
3
|
Gast LV, Platt T, Nagel AM, Gerhalter T. Recent technical developments and clinical research applications of sodium ( 23Na) MRI. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2023; 138-139:1-51. [PMID: 38065665 DOI: 10.1016/j.pnmrs.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 12/18/2023]
Abstract
Sodium is an essential ion that plays a central role in many physiological processes including the transmembrane electrochemical gradient and the maintenance of the body's homeostasis. Due to the crucial role of sodium in the human body, the sodium nucleus is a promising candidate for non-invasively assessing (patho-)physiological changes. Almost 10 years ago, Madelin et al. provided a comprehensive review of methods and applications of sodium (23Na) MRI (Madelin et al., 2014) [1]. More recent review articles have focused mainly on specific applications of 23Na MRI. For example, several articles covered 23Na MRI applications for diseases such as osteoarthritis (Zbyn et al., 2016, Zaric et al., 2020) [2,3], multiple sclerosis (Petracca et al., 2016, Huhn et al., 2019) [4,5] and brain tumors (Schepkin, 2016) [6], or for imaging certain organs such as the kidneys (Zollner et al., 2016) [7], the brain (Shah et al., 2016, Thulborn et al., 2018) [8,9], and the heart (Bottomley, 2016) [10]. Other articles have reviewed technical developments such as radiofrequency (RF) coils for 23Na MRI (Wiggins et al., 2016, Bangerter et al., 2016) [11,12], pulse sequences (Konstandin et al., 2014) [13], image reconstruction methods (Chen et al., 2021) [14], and interleaved/simultaneous imaging techniques (Lopez Kolkovsky et al., 2022) [15]. In addition, 23Na MRI topics have been covered in review articles with broader topics such as multinuclear MRI or ultra-high-field MRI (Niesporek et al., 2019, Hu et al., 2019, Ladd et al., 2018) [16-18]. During the past decade, various research groups have continued working on technical improvements to sodium MRI and have investigated its potential to serve as a diagnostic and prognostic tool. Clinical research applications of 23Na MRI have covered a broad spectrum of diseases, mainly focusing on the brain, cartilage, and skeletal muscle (see Fig. 1). In this article, we aim to provide a comprehensive summary of methodological and hardware developments, as well as a review of various clinical research applications of sodium (23Na) MRI in the last decade (i.e., published from the beginning of 2013 to the end of 2022).
Collapse
Affiliation(s)
- Lena V Gast
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Tanja Platt
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Teresa Gerhalter
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
4
|
Wang B, Zhang B, Yu Z, Ianniello C, Lakshmanan K, Paska J, Madelin G, Cloos M, Brown R. A radially interleaved sodium and proton coil array for brain MRI at 7 T. NMR IN BIOMEDICINE 2021; 34:e4608. [PMID: 34476861 PMCID: PMC9362999 DOI: 10.1002/nbm.4608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
The objective of the current study was to design and build a dual-tuned coil array for simultaneous 23 Na/1 H MRI of the human brain at 7 T. Quality factor, experimental B1+ measurements, and electromagnetic simulations in prototypes showed that setups consisting of geometrically interleaved 1 H and 23 Na loops performed better than or similar to 1 H or 23 Na loops in isolation. Based on these preliminary findings, we built a transmit/receive eight-channel 23 Na loop array that was geometrically interleaved with a transmit/receive eight-channel 1 H loop array. We assessed the performance of the manufactured array with mononuclear signal-to-noise ratio (SNR) and B1+ measurements, along with multinuclear magnetic resonance fingerprinting maps and images. The 23 Na array within the developed dual-tuned device provided more than 50% gain in peripheral SNR and similar B1+ uniformity and coverage as a reference birdcage coil of similar size. The 1 H array provided good B1+ uniformity in the brain, excluding the cerebellum and brain stem. The integrated 23 Na and 1 H arrays were used to demonstrate truly simultaneous quantitative 1 H mapping and 23 Na imaging.
Collapse
Affiliation(s)
- Bili Wang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Bei Zhang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Advanced Imaging Research Center, Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zidan Yu
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
| | - Carlotta Ianniello
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
| | - Karthik Lakshmanan
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Jan Paska
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Guillaume Madelin
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
| | - Martijn Cloos
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Ryan Brown
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
5
|
Giovannetti G, Flori A, Martini N, Francischello R, Aquaro GD, Pingitore A, Frijia F. Sodium Radiofrequency Coils for Magnetic Resonance: From Design to Applications. ELECTRONICS 2021; 10:1788. [DOI: 10.3390/electronics10151788] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Sodium (23Na) is the most abundant cation present in the human body and is involved in a large number of vital body functions. In the last few years, the interest in Sodium Magnetic Resonance Imaging (23Na MRI) has considerably increased for its relevance in physiological and physiopathological aspects. Indeed, sodium MRI offers the possibility to extend the anatomical imaging information by providing additional and complementary information on physiology and cellular metabolism with the heteronuclear Magnetic Resonance Spectroscopy (MRS). Constraints are the rapidly decaying of sodium signal, the sensitivity lack due to the low sodium concentration versus 1H-MRI induce scan times not clinically acceptable and it also constitutes a challenge for sodium MRI. With the available magnetic fields for clinical MRI scanners (1.5 T, 3 T, 7 T), and the hardware capabilities such as strong gradient strengths with high slew rates and new dedicated radiofrequency (RF) sodium coils, it is possible to reach reasonable measurement times (~10–15 min) with a resolution of a few millimeters, where it has already been applied in vivo in many human organs such as the brain, cartilage, kidneys, heart, as well as in muscle and the breast. In this work, we review the different geometries and setup of sodium coils described in the available literature for different in vivo applications in human organs with clinical MR scanners, by providing details of the design, modeling and construction of the coils.
Collapse
|
6
|
Choi CH, Hong SM, Felder J, Shah NJ. The state-of-the-art and emerging design approaches of double-tuned RF coils for X-nuclei, brain MR imaging and spectroscopy: A review. Magn Reson Imaging 2020; 72:103-116. [DOI: 10.1016/j.mri.2020.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/16/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022]
|
7
|
Zaric O, Juras V, Szomolanyi P, Schreiner M, Raudner M, Giraudo C, Trattnig S. Frontiers of Sodium MRI Revisited: From Cartilage to Brain Imaging. J Magn Reson Imaging 2020; 54:58-75. [PMID: 32851736 PMCID: PMC8246730 DOI: 10.1002/jmri.27326] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/19/2022] Open
Abstract
Sodium magnetic resonance imaging (23 Na-MRI) is a highly promising imaging modality that offers the possibility to noninvasively quantify sodium content in the tissue, one of the most relevant parameters for biochemical investigations. Despite its great potential, due to the intrinsically low signal-to-noise ratio (SNR) of sodium imaging generated by low in vivo sodium concentrations, low gyromagnetic ratio, and substantially shorter relaxation times than for proton (1 H) imaging, 23 Na-MRI is extremely challenging. In this article, we aim to provide a comprehensive overview of the literature that has been published in the last 10-15 years and which has demonstrated different technical designs for a range of 23 Na-MRI methods applicable for disease diagnoses and treatment efficacy evaluations. Currently, a wider use of 3.0T and 7.0T systems provide imaging with the expected increase in SNR and, consequently, an increased image resolution and a reduced scanning time. A great interest in translational research has enlarged the field of sodium MRI applications to almost all parts of the body: articular cartilage tendons, spine, heart, breast, muscle, kidney, and brain, etc., and several pathological conditions, such as tumors, neurological and degenerative diseases, and others. The quantitative parameter, tissue sodium concentration, which reflects changes in intracellular sodium concentration, extracellular sodium concentration, and intra-/extracellular volume fractions is becoming acknowledged as a reliable biomarker. Although the great potential of this technique is evident, there must be steady technical development for 23 Na-MRI to become a standard imaging tool. The future role of sodium imaging is not to be considered as an alternative to 1 H MRI, but to provide early, diagnostically valuable information about altered metabolism or tissue function associated with disease genesis and progression. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Olgica Zaric
- Institute for Clinical Molecular MRI in the Musculoskeletal System, Karl Landsteiner Society, Vienna, Austria
| | - Vladimir Juras
- High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Pavol Szomolanyi
- High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Markus Schreiner
- Deartment of Orthopaedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Marcus Raudner
- High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Chiara Giraudo
- Radiology Institute, Department of Medicine, DIMED Padova University Via Giustiniani 2, Padova, Italy
| | - Siegfried Trattnig
- Institute for Clinical Molecular MRI in the Musculoskeletal System, Karl Landsteiner Society, Vienna, Austria.,High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MRI, Christian Doppler Forschungsgesellschaft, Vienna, Austria
| |
Collapse
|
8
|
Avdievich NI, Ruhm L, Dorst J, Scheffler K, Korzowski A, Henning A. Double‐tuned
31
P/
1
H human head array with high performance at both frequencies for spectroscopic imaging at 9.4T. Magn Reson Med 2020; 84:1076-1089. [DOI: 10.1002/mrm.28176] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/30/2019] [Accepted: 12/30/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Nikolai I. Avdievich
- High‐Field MR Center Max Planck Institute for Biological Cybernetics Tübingen Germany
| | - Loreen Ruhm
- High‐Field MR Center Max Planck Institute for Biological Cybernetics Tübingen Germany
| | - Johanna Dorst
- High‐Field MR Center Max Planck Institute for Biological Cybernetics Tübingen Germany
| | - Klaus Scheffler
- High‐Field MR Center Max Planck Institute for Biological Cybernetics Tübingen Germany
- Department for Biomedical Magnetic Resonance University of Tübingen Tübingen Germany
| | - Andreas Korzowski
- Department for Medical Physics in Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Anke Henning
- High‐Field MR Center Max Planck Institute for Biological Cybernetics Tübingen Germany
- Advanced Imaging Research Center University of Texas Southwestern Medical Center Dallas Texas
| |
Collapse
|
9
|
Lakshmanan K, Dehkharghani S, Madelin G, Brown R. A dual-tuned 17 O/ 1 H head array for direct brain oximetry at 3 Tesla. Magn Reson Med 2019; 83:1512-1518. [PMID: 31593372 DOI: 10.1002/mrm.28005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/19/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE To design and build a dual-tuned 17 O/1 H coil for direct brain oximetry at 3T. METHODS A dual-tuned 17 O/1 H coil comprising 2 degenerate mode birdcage coils was constructed to facilitate high-sensitivity 17 O and 1 H imaging. In vivo 17 O brain images were acquired in a healthy volunteer using a fermat looped orthogonally encoded trajectories sequence, together with high-resolution structural brain 1 H images. RESULTS Natural abundance 17 O images with a nominal resolution of 8 mm3 were acquired in under 20 minutes exhibiting clear delineation of the physiological 17 O distribution. One-millimeter isotropic 1 H structural brain images demonstrated excellent quality and anatomical detail using routine clinical imaging sequence parameters and parallel acceleration. CONCLUSION A dual-tuned 17 O/1 H array was constructed to enable high-sensitivity 17 O and 1 H imaging under standard clinical 3 T scanning conditions.
Collapse
Affiliation(s)
- Karthik Lakshmanan
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York.,Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York
| | - Seena Dehkharghani
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| | - Guillaume Madelin
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York.,Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York.,The Sackler Institute of Graduate Biomedical Science, New York University School of Medicine, New York, New York
| | - Ryan Brown
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York.,Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York.,The Sackler Institute of Graduate Biomedical Science, New York University School of Medicine, New York, New York
| |
Collapse
|
10
|
Hu R, Kleimaier D, Malzacher M, Hoesl MA, Paschke NK, Schad LR. X‐nuclei imaging: Current state, technical challenges, and future directions. J Magn Reson Imaging 2019; 51:355-376. [DOI: 10.1002/jmri.26780] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Ruomin Hu
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| | - Dennis Kleimaier
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| | - Matthias Malzacher
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| | | | - Nadia K. Paschke
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| | - Lothar R. Schad
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| |
Collapse
|
11
|
van Uden MJ, Peeters TH, Rijpma A, Rodgers CT, Heerschap A, Scheenen TWJ. An 8-channel receive array for improved 31 P MRSI of the whole brain at 3T. Magn Reson Med 2019; 82:825-832. [PMID: 30900352 PMCID: PMC6520216 DOI: 10.1002/mrm.27736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 12/26/2022]
Abstract
PURPOSE To demonstrate a 1 H/31 P whole human brain volume coil configuration for 3 Tesla with separate 31 P transmit and receive components that maintains 1 H MRS performance and delivers optimal 31 P MRSI with 1 H decoupling. METHODS We developed an 8-channel 31 P receive array coil covering the head to be used as an insert for a commercial double-tuned 1 H/31 P birdcage transmit-receive coil. This retains the possibility of using low-power rectangular pulses for 1 H-decoupled 3D 31 P MRSI (nominal resolution 17.6 cm3 ; acquisition duration 13 min) but increases the SNR with the receive sensitivity of 31 P surface coils. The performance of the combined coil setup was evaluated by measuring 1 H and 31 P SNR with and without the 31 P receive array and by assessing the effect of the receive array on the transmit efficiencies of the birdcage coil. RESULTS Compared to the birdcage coil alone, the 31 P insert in combination with the birdcage achieved an average 31 P SNR gain of 1.4 ± 0.4 in a center partition of the brain. The insert did not cause losses in 1 H MRS performance and transmit efficiency, whereas for 31 P approximately 20% more power was needed to achieve the same γB1. CONCLUSION The new coil configuration allows 1 H MRSI and optimal 1 H-decoupled 3D 31 P MRSI, with increased SNR of the human brain without patient repositioning, for clinical and research purposes at 3 Tesla.
Collapse
Affiliation(s)
- Mark J van Uden
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Tom H Peeters
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Anne Rijpma
- Department of Geriatric Medicine, Radboud university medical center, Nijmegen, The Netherlands.,Radboudumc Alzheimer Center, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | | | - Arend Heerschap
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Tom W J Scheenen
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands.,Erwin L. Hahn Institute, University Hospital Duisburg-Essen, Essen, Germany
| |
Collapse
|
12
|
Malzacher M, Chacon-Caldera J, Paschke N, Schad LR. Feasibility study of a double resonant 8-channel 1H/ 8-channel 23Na receive-only head coil at 3 Tesla. Magn Reson Imaging 2019; 59:97-104. [PMID: 30880113 DOI: 10.1016/j.mri.2019.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 03/09/2019] [Accepted: 03/13/2019] [Indexed: 01/12/2023]
Abstract
Sodium (23Na) magnetic resonance imaging (MRI), especially brain applications are increasingly interesting since sodium MRI can provide additional information about tissue viability and vitality. In order to include sodium MRI in the clinical routine, a single RF setup is preferable which provides high sodium sensitivity and full proton performance in terms of signal-to-noise ratio (SNR) and parallel imaging performance. The aim of this work was to evaluate the feasibility of a double resonant receive (Rx) coil array for proton and sodium head MRI. The coil was designed to provide high sodium SNR and full proton performance comparable to commercial coils which are optimized for sodium MRI or for proton MRI, respectively. A measurement setup was built which comprised an 8-channel Rx degenerate Birdcage for sodium imaging and an 8-channel Rx array for proton imaging. The performance of the coil was evaluated against commercial sodium and proton coils using phantom and in-vivo measurements of two healthy volunteers.
Collapse
Affiliation(s)
- Matthias Malzacher
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Jorge Chacon-Caldera
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nadia Paschke
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lothar R Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
13
|
Grover H, Qian Y, Boada FE, Lakshmanan K, Flanagan S, Lui YW. MRI Evidence of Altered Callosal Sodium in Mild Traumatic Brain Injury. AJNR Am J Neuroradiol 2018; 39:2200-2204. [PMID: 30498019 DOI: 10.3174/ajnr.a5903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 09/27/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND PURPOSE Mild traumatic brain injury is a leading cause of death and disability worldwide with 42 million cases reported annually, increasing the need to understand the underlying pathophysiology because this could help guide the development of targeted therapy. White matter, particularly the corpus callosum, is susceptible to injury. Animal models suggest stretch-induced mechanoporation of the axonal membrane resulting in ionic shifts and altered sodium ion distribution. The purpose of this study was to compare the distribution of total sodium concentration in the corpus callosum between patients with mild traumatic brain injury and controls using sodium (23Na) MR imaging. MATERIALS AND METHODS Eleven patients with a history of mild traumatic brain injury and 10 age- and sex-matched controls underwent sodium (23Na) MR imaging using a 3T scanner. Total sodium concentration was measured in the genu, body, and splenium of the corpus callosum with 5-mm ROIs; total sodium concentration of the genu-to-splenium ratio was calculated and compared between patients and controls. RESULTS Higher total sodium concentration in the genu (49.28 versus 43.29 mmol/L, P = .01) and lower total sodium concentration in the splenium (which was not statistically significant; 38.35 versus 44.06 mmol/L, P = .08) was seen in patients with mild traumatic brain injury compared with controls. The ratio of genu total sodium concentration to splenium total sodium concentration was also higher in patients with mild traumatic brain injury (1.3 versus 1.01, P = .001). CONCLUSIONS Complex differences are seen in callosal total sodium concentration in symptomatic patients with mild traumatic brain injury, supporting the notion of ionic dysfunction in the pathogenesis of mild traumatic brain injury. The total sodium concentration appears to be altered beyond the immediate postinjury phase, and further work is needed to understand the relationship to persistent symptoms and outcome.
Collapse
Affiliation(s)
- H Grover
- From the New York University Langone Medical Center, New York, New York
| | - Y Qian
- From the New York University Langone Medical Center, New York, New York
| | - F E Boada
- From the New York University Langone Medical Center, New York, New York
| | - K Lakshmanan
- From the New York University Langone Medical Center, New York, New York
| | - S Flanagan
- From the New York University Langone Medical Center, New York, New York
| | - Y W Lui
- From the New York University Langone Medical Center, New York, New York.
| |
Collapse
|