1
|
Boito D, Eklund A, Tisell A, Levi R, Özarslan E, Blystad I. MRI with generalized diffusion encoding reveals damaged white matter in patients previously hospitalized for COVID-19 and with persisting symptoms at follow-up. Brain Commun 2023; 5:fcad284. [PMID: 37953843 PMCID: PMC10638510 DOI: 10.1093/braincomms/fcad284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/25/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
There is mounting evidence of the long-term effects of COVID-19 on the central nervous system, with patients experiencing diverse symptoms, often suggesting brain involvement. Conventional brain MRI of these patients shows unspecific patterns, with no clear connection of the symptomatology to brain tissue abnormalities, whereas diffusion tensor studies and volumetric analyses detect measurable changes in the brain after COVID-19. Diffusion MRI exploits the random motion of water molecules to achieve unique sensitivity to structures at the microscopic level, and new sequences employing generalized diffusion encoding provide structural information which are sensitive to intravoxel features. In this observational study, a total of 32 persons were investigated: 16 patients previously hospitalized for COVID-19 with persisting symptoms of post-COVID condition (mean age 60 years: range 41-79, all male) at 7-month follow-up and 16 matched controls, not previously hospitalized for COVID-19, with no post-COVID symptoms (mean age 58 years, range 46-69, 11 males). Standard MRI and generalized diffusion encoding MRI were employed to examine the brain white matter of the subjects. To detect possible group differences, several tissue microstructure descriptors obtainable with the employed diffusion sequence, the fractional anisotropy, mean diffusivity, axial diffusivity, radial diffusivity, microscopic anisotropy, orientational coherence (Cc) and variance in compartment's size (CMD) were analysed using the tract-based spatial statistics framework. The tract-based spatial statistics analysis showed widespread statistically significant differences (P < 0.05, corrected for multiple comparisons using the familywise error rate) in all the considered metrics in the white matter of the patients compared to the controls. Fractional anisotropy, microscopic anisotropy and Cc were lower in the patient group, while axial diffusivity, radial diffusivity, mean diffusivity and CMD were higher. Significant changes in fractional anisotropy, microscopic anisotropy and CMD affected approximately half of the analysed white matter voxels located across all brain lobes, while changes in Cc were mainly found in the occipital parts of the brain. Given the predominant alteration in microscopic anisotropy compared to Cc, the observed changes in diffusion anisotropy are mostly due to loss of local anisotropy, possibly connected to axonal damage, rather than white matter fibre coherence disruption. The increase in radial diffusivity is indicative of demyelination, while the changes in mean diffusivity and CMD are compatible with vasogenic oedema. In summary, these widespread alterations of white matter microstructure are indicative of vasogenic oedema, demyelination and axonal damage. These changes might be a contributing factor to the diversity of central nervous system symptoms that many patients experience after COVID-19.
Collapse
Affiliation(s)
- Deneb Boito
- Department of Biomedical Engineering, Linköping University, S-58183 Linköping, Sweden
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, S-58183 Linköping, Sweden
| | - Anders Eklund
- Department of Biomedical Engineering, Linköping University, S-58183 Linköping, Sweden
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, S-58183 Linköping, Sweden
- Division of Statistics and Machine learning, Department of Computer and Information Science, Linköping University, S-58183 Linköping, Sweden
| | - Anders Tisell
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, S-58183 Linköping, Sweden
- Department of Radiation Physics, Linköping University, S-58185 Linköping, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, S58183 Linköping, Sweden
| | - Richard Levi
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, S-58183 Linköping, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, S58183 Linköping, Sweden
- Department of Rehabilitation Medicine in Linköping, Linköping University, S-58185 Linköping, Sweden
| | - Evren Özarslan
- Department of Biomedical Engineering, Linköping University, S-58183 Linköping, Sweden
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, S-58183 Linköping, Sweden
| | - Ida Blystad
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, S-58183 Linköping, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, S58183 Linköping, Sweden
- Department of Radiology in Linköping, Linköping University, S-58185 Linköping, Sweden
| |
Collapse
|
2
|
Application of Multimodal Magnetic Resonance Imaging in Green Channel of Acute and Hyperacute Ischemic Stroke. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:2452282. [PMID: 35935321 PMCID: PMC9337922 DOI: 10.1155/2022/2452282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/24/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022]
Abstract
The purpose of this study was to observe the effects of multimodal magnetic resonance imaging (MRI) in the green channel of acute and hyperacute ischemic strokes, in order to better guide clinical treatment. The clinical data of 126 patients with acute and hyperacute ischemic stroke who received interventional treatment in the emergency green channel was collected retrospectively. The patients who received multimodal computed tomography (CT) were included in the CT group. Patients who underwent multimodal MRI examinations were included in the MRI group, and the door-to-needle time (DNT), neurological function, and prognosis of the two groups were compared. The result turned out that among the 126 patients included, 40 patients underwent CT examination (CT group) and 86 patients underwent MRI examination (MRI group). A comparison of general data between the CT group and the MRI group showed
. The MRI group’s DNT time (61.23 ± 9.32) min was shorter than that of the CT group (87.22 ± 14.26) min,
. Through comparison, the
values of mRS scores and NIHSS scores in both groups were greater than 0.05. After treatment, the mRS score and NIHSS score of the MRI group was lower, with
. According to the results of this study, it can be concluded that emergency multimodal MRI could shorten the DNT time of patients with acute and hyperacute ischemic stroke, reduce the degree of neurological impairment, and improve the prognosis.
Collapse
|
3
|
Herberthson M, Boito D, Haije TD, Feragen A, Westin CF, Özarslan E. Q-space trajectory imaging with positivity constraints (QTI+). Neuroimage 2021; 238:118198. [PMID: 34029738 PMCID: PMC9596133 DOI: 10.1016/j.neuroimage.2021.118198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/02/2021] [Accepted: 05/20/2021] [Indexed: 01/18/2023] Open
Abstract
Q-space trajectory imaging (QTI) enables the estimation of useful scalar measures indicative of the local tissue structure. This is accomplished by employing generalized gradient waveforms for diffusion sensitization alongside a diffusion tensor distribution (DTD) model. The first two moments of the underlying DTD are made available by acquisitions at low diffusion sensitivity (b-values). Here, we show that three independent conditions have to be fulfilled by the mean and covariance tensors associated with distributions of symmetric positive semidefinite tensors. We introduce an estimation framework utilizing semi-definite programming (SDP) to guarantee that these conditions are met. Applying the framework on simulated signal profiles for diffusion tensors distributed according to non-central Wishart distributions demonstrates the improved noise resilience of QTI+ over the commonly employed estimation methods. Our findings on a human brain data set also reveal pronounced improvements, especially so for acquisition protocols featuring few number of volumes. Our method’s robustness to noise is expected to not only improve the accuracy of the estimates, but also enable a meaningful interpretation of contrast in the derived scalar maps. The technique’s performance on shorter acquisitions could make it feasible in routine clinical practice.
Collapse
Affiliation(s)
| | - Deneb Boito
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden.
| | - Tom Dela Haije
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark.
| | - Aasa Feragen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark.
| | - Carl-Fredrik Westin
- Laboratory for Mathematics in Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Evren Özarslan
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden.
| |
Collapse
|