Reymbaut A, Critchley J, Durighel G, Sprenger T, Sughrue M, Bryskhe K, Topgaard D. Toward nonparametric diffusion-
T1 characterization of crossing fibers in the human brain.
Magn Reson Med 2021;
85:2815-2827. [PMID:
33301195 PMCID:
PMC7898694 DOI:
10.1002/mrm.28604]
[Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE
To estimate T 1 for each distinct fiber population within voxels containing multiple brain tissue types.
METHODS
A diffusion- T 1 correlation experiment was carried out in an in vivo human brain using tensor-valued diffusion encoding and multiple repetition times. The acquired data were inverted using a Monte Carlo algorithm that retrieves nonparametric distributions P ( D , R 1 ) of diffusion tensors and longitudinal relaxation rates R 1 = 1 / T 1 . Orientation distribution functions (ODFs) of the highly anisotropic components of P ( D , R 1 ) were defined to visualize orientation-specific diffusion-relaxation properties. Finally, Monte Carlo density-peak clustering (MC-DPC) was performed to quantify fiber-specific features and investigate microstructural differences between white matter fiber bundles.
RESULTS
Parameter maps corresponding to P ( D , R 1 ) 's statistical descriptors were obtained, exhibiting the expected R 1 contrast between brain tissue types. Our ODFs recovered local orientations consistent with the known anatomy and indicated differences in R 1 between major crossing fiber bundles. These differences, confirmed by MC-DPC, were in qualitative agreement with previous model-based works but seem biased by the limitations of our current experimental setup.
CONCLUSIONS
Our Monte Carlo framework enables the nonparametric estimation of fiber-specific diffusion- T 1 features, thereby showing potential for characterizing developmental or pathological changes in T 1 within a given fiber bundle, and for investigating interbundle T 1 differences.
Collapse