1
|
Simicic D, Alves B, Mosso J, Briand G, Lê TP, van Heeswijk RB, Starčuková J, Lanz B, Klauser A, Strasser B, Bogner W, Cudalbu C. Fast High-Resolution Metabolite Mapping in the rat Brain Using 1H-FID-MRSI at 14.1 T. NMR IN BIOMEDICINE 2025; 38:e5304. [PMID: 39711201 DOI: 10.1002/nbm.5304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/08/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024]
Abstract
Magnetic resonance spectroscopic imaging (MRSI) enables the simultaneous noninvasive acquisition of MR spectra from multiple spatial locations inside the brain. Although 1H-MRSI is increasingly used in the human brain, it is not yet widely applied in the preclinical setting, mostly because of difficulties specifically related to very small nominal voxel size in the rat brain and low concentration of brain metabolites, resulting in low signal-to-noise ratio (SNR). In this context, we implemented a free induction decay 1H-MRSI sequence (1H-FID-MRSI) in the rat brain at 14.1 T. We combined the advantages of 1H-FID-MRSI with the ultra-high magnetic field to achieve higher SNR, coverage, and spatial resolution in the rat brain and developed a custom dedicated processing pipeline with a graphical user interface for Bruker 1H-FID-MRSI: MRS4Brain toolbox. LCModel fit, using the simulated metabolite basis set and in vivo measured MM, provided reliable fits for the data at acquisition delays of 1.30 ms. The resulting Cramér-Rao lower bounds were sufficiently low (< 30%) for eight metabolites of interest (total creatine, N-acetylaspartate, N-acetylaspartate + N-acetylaspartylglutamate, total choline, glutamine, glutamate, myo-inositol, and taurine), leading to highly reproducible metabolic maps. Similar spectral quality and metabolic maps were obtained with one and two averages, with slightly better contrast and brain coverage due to increased SNR in the latter case. Furthermore, the obtained metabolic maps were accurate enough to confirm the previously known brain regional distribution of some metabolites. The acquisitions proved high reproducibility over time. We demonstrated that the increased SNR and spectral resolution at 14.1 T can be translated into high spatial resolution in 1H-FID-MRSI of the rat brain in 13 min using the sequence and processing pipeline described herein. High-resolution 1H-FID-MRSI at 14.1 T provided robust, reproducible, and high-quality metabolic mapping of brain metabolites with minimal technical limitations.
Collapse
Affiliation(s)
- Dunja Simicic
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, École Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Brayan Alves
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, École Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jessie Mosso
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, École Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Laboratory of Functional and Metabolic Imaging, École Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Guillaume Briand
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, École Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Thanh Phong Lê
- Laboratory of Functional and Metabolic Imaging, École Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ruud B van Heeswijk
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Jana Starčuková
- Institute of Scientific Instruments of the CAS, Brno, Czech Republic
| | - Bernard Lanz
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, École Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Antoine Klauser
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland
| | - Bernhard Strasser
- High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria
| | - Wolfgang Bogner
- High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria
| | - Cristina Cudalbu
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, École Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
2
|
Deelchand DK. Simultaneous frequency and phase corrections of single-shot MRS data using cross-correlation. Magn Reson Med 2025; 93:8-17. [PMID: 39155397 PMCID: PMC11518653 DOI: 10.1002/mrm.30252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/05/2024] [Accepted: 07/27/2024] [Indexed: 08/20/2024]
Abstract
PURPOSE The objective of this study was to propose a novel preprocessing approach to simultaneously correct for the frequency and phase drifts in MRS data using cross-correlation technique. METHODS The performance of the proposed method was first investigated at different SNR levels using simulation. Random frequency and phase offsets were added to a previously acquired STEAM human data at 7 T, simulating two different noise levels with and without baseline artifacts. Alongside the proposed spectral cross-correlation (SC) method, three other simultaneous alignment approaches were evaluated. Validation was performed on human brain data at 3 T and mouse brain data at 16.4 T. RESULTS The results showed that the SC technique effectively corrects for both small and large frequency and phase drifts, even at low SNR levels. Furthermore, the mean square measurement error of the SC algorithm was comparable to the other three methods used, with much faster processing time. The efficacy of the proposed technique was successfully demonstrated in both human brain MRS data and in a noisy MRS dataset acquired from a small volume-of-interest in the mouse brain. CONCLUSION The study demonstrated the availability of a fast and robust technique that accurately corrects for both small and large frequency and phase shifts in MRS.
Collapse
Affiliation(s)
- Dinesh K Deelchand
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
3
|
Vazquez F, Villareal A, Lazovic J, Martin R, Solis-Najera SE, Rodriguez AO. RF coil that minimizes electronic components while enhancing performance for rodent MRI at 7 Tesla. Biomed Phys Eng Express 2024; 10:055040. [PMID: 39173647 DOI: 10.1088/2057-1976/ad7265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
This study introduces a novel volume coil design that features two slotted end-plates connected by six rungs, resembling the traditional birdcage coil. The end rings are equipped with six evenly distributed circular slots, inspired by Mansfield's cavity resonator theory, which suggests that circular slots can generate a baseline resonant frequency. One notable advantage of this proposed coil design is its reduced reliance on electronic components compared to other volume coils, making it more efficient. Additionally, the dimensions of the coil can be theoretically computed in advance, enhancing its practicality. To evaluate the performance and safety of the coil, electromagnetic field and specific absorption rate simulations were simulated using a cylindrical saline phantom and the finite element method. Furthermore, a transceiver coil prototype optimized for 7 Tesla and driven in quadrature was constructed, enabling whole-body imaging of rats. The resonant frequency of the coil prototype obtained through experimental measurements closely matched the theoretical frequency derived from Mansfield's theory. To validate the coil design, phantom images were acquired to demonstrate its viability and assess its performance. These images also served to validate the magnetic field simulations. The experimental results aligned well with the simulation findings, confirming the reliability of the proposed coil design. Importantly, the prototype coil showcased significant improvements over a similarly-sized birdcage coil, indicating its potential for enhanced performance. The noise figure was lower in the prototype versus the birdcage coil (NFbirdcage-NFslotcage= 0.7). Phantom image data were also used to compute the image SNR, giving SNRslotcage/SNRbirdcage= 34.36/24.34. By proving the feasibility of the coil design through successful rat whole-body imaging, the study provides evidence supporting its potential as a viable option for high-field MRI applications on rodents.
Collapse
Affiliation(s)
- F Vazquez
- Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, CdMx 04510, Mexico
| | - A Villareal
- Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, CdMx 04510, Mexico
| | - J Lazovic
- Department of Physical Intelligence, Max Planck Institute for Intelligence Systems, Stuttgart 70569, Germany
| | - R Martin
- Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, CdMx 04510, Mexico
| | - S E Solis-Najera
- Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, CdMx 04510, Mexico
| | - A O Rodriguez
- Department of Electrical Engineering, Universidad Autonoma Metropolitana Iztapalapa, CdMx 09340, Mexico
| |
Collapse
|
4
|
Mosso J, Simicic D, Lanz B, Gruetter R, Cudalbu C. Diffusion-weighted SPECIAL improves the detection of J-coupled metabolites at ultrahigh magnetic field. Magn Reson Med 2024; 91:4-18. [PMID: 37771277 DOI: 10.1002/mrm.29805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/16/2023] [Accepted: 07/04/2023] [Indexed: 09/30/2023]
Abstract
PURPOSE To improve the detection and subsequent estimation of the diffusion properties of strongly J-coupled metabolites in diffusion-weighted MRS (DWS). METHODS A new sequence for single-voxel diffusion-weighted 1 H MR spectroscopy, named DW-SPECIAL, is proposed. It combines the semi-adiabatic SPECIAL sequence with a stimulated echo diffusion block. Acquisitions with DW-SPECIAL and STE-LASER, the current gold standard for rodent DWS experiments at high fields, were performed at 14.1T on phantoms and in vivo on the rat brain. The apparent diffusion coefficient and intra-stick diffusivity (Callaghan's model, randomly-oriented sticks) were fitted and compared between the sequences for glutamate, glutamine, myo-inositol, taurine, total NAA, total Cho, total Cr, and the macromolecules. RESULTS The shorter TE achieved with DW-SPECIAL (18 ms against 33 ms with STE-LASER) substantially limited the metabolites' signal loss caused by J-evolution. In addition, DW-SPECIAL preserved the main advantages of STE-LASER: absence of cross-terms, diffusion time during a stimulated echo, and limited sensitivity to B1 inhomogeneities. In vivo, compared to STE-LASER, DW-SPECIAL yielded the same spectral quality and reduced the Cramer Rao Lower Bounds for J-coupled metabolites, irrespective of the b-value. DW-SPECIAL also reduced the SD of the metabolites' diffusion estimates based on individual animal fitting without loss of accuracy compared to the fit on the averaged decay. CONCLUSION We conclude that due to its reduced TE, DW-SPECIAL can serve as an alternative to STE-LASER when strongly J-coupled metabolites like glutamine are investigated, thereby extending the range of accessible metabolites in the context of DWS acquisitions.
Collapse
Affiliation(s)
- Jessie Mosso
- LIFMET, EPFL, Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, EPFL, Lausanne, Switzerland
| | - Dunja Simicic
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, EPFL, Lausanne, Switzerland
| | - Bernard Lanz
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, EPFL, Lausanne, Switzerland
| | | | - Cristina Cudalbu
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, EPFL, Lausanne, Switzerland
| |
Collapse
|
5
|
Tkáč I, Xie T, Shah N, Larson S, Dubinsky JM, Gomez-Pastor R, McLoughlin HS, Orr HT, Eberly LE, Öz G. Regional sex differences in neurochemical profiles of healthy mice measured by magnetic resonance spectroscopy at 9.4 tesla. Front Neurosci 2023; 17:1278828. [PMID: 37954878 PMCID: PMC10634209 DOI: 10.3389/fnins.2023.1278828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023] Open
Abstract
Objective To determine sex differences in the neurochemical concentrations measured by in vivo proton magnetic resonance spectroscopy (1H MRS) of healthy mice on a genetic background commonly used for neurodegenerative disease models. Methods 1H MRS data collected from wild type mice with C57BL/6 or related genetic backgrounds in seven prior studies were used in this retrospective analysis. To be included, data had to be collected at 9.4 tesla magnetic field using advanced 1H MRS protocols, with isoflurane anesthesia and similar animal handling protocols, and a similar number of datasets from male and female mice had to be available for the brain regions analyzed. Overall, 155 spectra from female mice and 166 spectra from male mice (321 in total), collected from six brain regions (brainstem, cerebellum, cortex, hippocampus, hypothalamus, and striatum) at various ages were included. Results Concentrations of taurine, total creatine (creatine + phosphocreatine), ascorbate, glucose and glutamate were consistently higher in male vs. female mice in most brain regions. Striatum was an exception with similar total creatine in male and female mice. The sex difference pattern in the hypothalamus was notably different from other regions. Interaction between sex and age was significant for total creatine and taurine in the cerebellum and hippocampus. Conclusion Sex differences in regional neurochemical levels are small but significant and age-dependent, with consistent male-female differences across most brain regions. The neuroendocrine region hypothalamus displays a different pattern of sex differences in neurochemical levels. Differences in energy metabolism and cellular density may underlie the differences, with higher metabolic rates in females and higher osmoregulatory and antioxidant capacity in males.
Collapse
Affiliation(s)
- Ivan Tkáč
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Tiankai Xie
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Nitya Shah
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Sarah Larson
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Janet M. Dubinsky
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Rocio Gomez-Pastor
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | | | - Harry T. Orr
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Lynn E. Eberly
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Gülin Öz
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
6
|
Ebert T, Heinz DE, Almeida-Corrêa S, Cruz R, Dethloff F, Stark T, Bajaj T, Maurel OM, Ribeiro FM, Calcagnini S, Hafner K, Gassen NC, Turck CW, Boulat B, Czisch M, Wotjak CT. Myo-Inositol Levels in the Dorsal Hippocampus Serve as Glial Prognostic Marker of Mild Cognitive Impairment in Mice. Front Aging Neurosci 2021; 13:731603. [PMID: 34867270 PMCID: PMC8633395 DOI: 10.3389/fnagi.2021.731603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 10/13/2021] [Indexed: 01/03/2023] Open
Abstract
Dementia is a devastating age-related disorder. Its therapy would largely benefit from the identification of susceptible subjects at early, prodromal stages of the disease. To search for such prognostic markers of cognitive impairment, we studied spatial navigation in male BALBc vs. B6N mice in combination with in vivo magnetic resonance spectroscopy (1H-MRS). BALBc mice consistently showed higher escape latencies than B6N mice, both in the Water Cross Maze (WCM) and the Morris water maze (MWM). These performance deficits coincided with higher levels of myo-inositol (mIns) in the dorsal hippocampus before and after training. Subsequent biochemical analyses of hippocampal specimens by capillary immunodetection and liquid chromatography mass spectrometry-based (LC/MS) metabolomics revealed a higher abundance of glial markers (IBA-1, S100B, and GFAP) as well as distinct alterations in metabolites including a decrease in vitamins (pantothenic acid and nicotinamide), neurotransmitters (acetylcholine), their metabolites (glutamine), and acetyl-L-carnitine. Supplementation of low abundant acetyl-L-carnitine via the drinking water, however, failed to revert the behavioral deficits shown by BALBc mice. Based on our data we suggest (i) BALBc mice as an animal model and (ii) hippocampal mIns levels as a prognostic marker of mild cognitive impairment (MCI), due to (iii) local changes in microglia and astrocyte activity, which may (iv) result in decreased concentrations of promnesic molecules.
Collapse
Affiliation(s)
- Tim Ebert
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Daniel E. Heinz
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
- Max Planck School of Cognition, Leipzig, Germany
| | | | - Renata Cruz
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
| | - Frederik Dethloff
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | - Tibor Stark
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czechia
- Scientific Core Unit “Neuroimaging”, Max Planck Institute of Psychiatry, Munich, Germany
| | - Thomas Bajaj
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Oriana M. Maurel
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
| | - Fabiola M. Ribeiro
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
| | - Silvio Calcagnini
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
| | - Kathrin Hafner
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Nils C. Gassen
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Christoph W. Turck
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | - Benoit Boulat
- Scientific Core Unit “Neuroimaging”, Max Planck Institute of Psychiatry, Munich, Germany
| | - Michael Czisch
- Scientific Core Unit “Neuroimaging”, Max Planck Institute of Psychiatry, Munich, Germany
| | - Carsten T. Wotjak
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
- Central Nervous System Diseases Research (CNSDR), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
7
|
Measuring Glycolytic Activity with Hyperpolarized [ 2H 7, U- 13C 6] D-Glucose in the Naive Mouse Brain under Different Anesthetic Conditions. Metabolites 2021; 11:metabo11070413. [PMID: 34201777 PMCID: PMC8303162 DOI: 10.3390/metabo11070413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/01/2021] [Accepted: 06/19/2021] [Indexed: 12/30/2022] Open
Abstract
Glucose is the primary fuel for the brain; its metabolism is linked with cerebral function. Different magnetic resonance spectroscopy (MRS) techniques are available to assess glucose metabolism, providing complementary information. Our first aim was to investigate the difference between hyperpolarized 13C-glucose MRS and non-hyperpolarized 2H-glucose MRS to interrogate cerebral glycolysis. Isoflurane anesthesia is commonly employed in preclinical MRS, but it affects cerebral hemodynamics and functional connectivity. A combination of low doses of isoflurane and medetomidine is routinely used in rodent functional magnetic resonance imaging (fMRI) and shows similar functional connectivity, as in awake animals. As glucose metabolism is tightly linked to neuronal activity, our second aim was to assess the impact of these two anesthetic conditions on the cerebral metabolism of glucose. Brain metabolism of hyperpolarized 13C-glucose and non-hyperpolaized 2H-glucose was monitored in two groups of mice in a 9.4 T MRI system. We found that the very different duration and temporal resolution of the two techniques enable highlighting the different aspects in glucose metabolism. We demonstrate (by numerical simulations) that hyperpolarized 13C-glucose reports on de novo lactate synthesis and is sensitive to cerebral metabolic rate of glucose (CMRGlc). We show that variations in cerebral glucose metabolism, under different anesthesia, are reflected differently in hyperpolarized and non-hyperpolarized X-nuclei glucose MRS.
Collapse
|
8
|
Lin A, Andronesi O, Bogner W, Choi I, Coello E, Cudalbu C, Juchem C, Kemp GJ, Kreis R, Krššák M, Lee P, Maudsley AA, Meyerspeer M, Mlynarik V, Near J, Öz G, Peek AL, Puts NA, Ratai E, Tkáč I, Mullins PG. Minimum Reporting Standards for in vivo Magnetic Resonance Spectroscopy (MRSinMRS): Experts' consensus recommendations. NMR IN BIOMEDICINE 2021; 34:e4484. [PMID: 33559967 PMCID: PMC8647919 DOI: 10.1002/nbm.4484] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 11/24/2020] [Accepted: 01/12/2021] [Indexed: 05/08/2023]
Abstract
The translation of MRS to clinical practice has been impeded by the lack of technical standardization. There are multiple methods of acquisition, post-processing, and analysis whose details greatly impact the interpretation of the results. These details are often not fully reported, making it difficult to assess MRS studies on a standardized basis. This hampers the reviewing of manuscripts, limits the reproducibility of study results, and complicates meta-analysis of the literature. In this paper a consensus group of MRS experts provides minimum guidelines for the reporting of MRS methods and results, including the standardized description of MRS hardware, data acquisition, analysis, and quality assessment. This consensus statement describes each of these requirements in detail and includes a checklist to assist authors and journal reviewers and to provide a practical way for journal editors to ensure that MRS studies are reported in full.
Collapse
Affiliation(s)
- Alexander Lin
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Ovidiu Andronesi
- Department of RadiologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Wolfgang Bogner
- High Field MR Center, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - In‐Young Choi
- Department of Neurology, Hoglund Biomedical Imaging CenterUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Eduardo Coello
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Cristina Cudalbu
- Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Christoph Juchem
- Departments of Biomedical Engineering and RadiologyColumbia UniversityNew YorkNew YorkUSA
| | - Graham J. Kemp
- Department of Musculoskeletal and Ageing Science and Liverpool Magnetic Resonance Imaging Centre (LiMRIC)University of LiverpoolLiverpoolUK
| | - Roland Kreis
- Departments of Radiology and Biomedical ResearchUniversity of BernBernSwitzerland
| | - Martin Krššák
- Department of Medicine III and Department of Biomedical Imaging and Image guided TherapyMedical University of ViennaViennaAustria
| | - Phil Lee
- Department of Radiology, Hoglund Biomedical Imaging CenterUniversity of Kansas Medical CenterKansas CityKansasUSA
| | | | - Martin Meyerspeer
- High Field MR Center, Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
| | - Vladamir Mlynarik
- Magnetic Resonance Centre of Excellence. Medical University of ViennaViennaAustria
| | - Jamie Near
- Brain Imaging Centre, Douglas Research Centre, Department of PsychiatryMcGill UniversityMontrealQuebecCanada
| | - Gülin Öz
- Center for Magnetic Resonance Research, Department of RadiologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Aimie L. Peek
- Faculty of Health SciencesUniversity of SydneySydneyAustralia
| | - Nicolaas A. Puts
- Department of Forensic and Neurodevelopmental SciencesSackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and Neuroscience, King's College LondonLondonUK
| | - Eva‐Maria Ratai
- A.A. Martinos Center for Biomedical Imaging, Neuroradiology Division, Department of RadiologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Ivan Tkáč
- Faculty of Health SciencesUniversity of SydneySydneyAustralia
| | - Paul G. Mullins
- Bangor Imaging Unit, School of PsychologyBangor UniversityBangorGwyneddUK
| | | |
Collapse
|
9
|
Ip IB, Bridge H. Investigating the neurochemistry of the human visual system using magnetic resonance spectroscopy. Brain Struct Funct 2021; 227:1491-1505. [PMID: 33900453 PMCID: PMC9046312 DOI: 10.1007/s00429-021-02273-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/09/2021] [Indexed: 11/29/2022]
Abstract
Biochemical processes underpin the structure and function of the visual cortex, yet our understanding of the fundamental neurochemistry of the visual brain is incomplete. Proton magnetic resonance spectroscopy (1H-MRS) is a non-invasive brain imaging tool that allows chemical quantification of living tissue by detecting minute differences in the resonant frequency of molecules. Application of MRS in the human brain in vivo has advanced our understanding of how the visual brain consumes energy to support neural function, how its neural substrates change as a result of disease or dysfunction, and how neural populations signal during perception and plasticity. The aim of this review is to provide an entry point to researchers interested in investigating the neurochemistry of the visual system using in vivo measurements. We provide a basic overview of MRS principles, and then discuss recent findings in four topics of vision science: (i) visual perception, plasticity in the (ii) healthy and (iii) dysfunctional visual system, and (iv) during visual stimulation. Taken together, evidence suggests that the neurochemistry of the visual system provides important novel insights into how we perceive the world.
Collapse
Affiliation(s)
- I Betina Ip
- Wellcome Centre for Integrative Neuroimaging, FMRIB Building, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Holly Bridge
- Wellcome Centre for Integrative Neuroimaging, FMRIB Building, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| |
Collapse
|
10
|
Kreis R, Boer V, Choi I, Cudalbu C, de Graaf RA, Gasparovic C, Heerschap A, Krššák M, Lanz B, Maudsley AA, Meyerspeer M, Near J, Öz G, Posse S, Slotboom J, Terpstra M, Tkáč I, Wilson M, Bogner W. Terminology and concepts for the characterization of in vivo MR spectroscopy methods and MR spectra: Background and experts' consensus recommendations. NMR IN BIOMEDICINE 2020; 34:e4347. [PMID: 32808407 PMCID: PMC7887137 DOI: 10.1002/nbm.4347] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 05/04/2023]
Abstract
With a 40-year history of use for in vivo studies, the terminology used to describe the methodology and results of magnetic resonance spectroscopy (MRS) has grown substantially and is not consistent in many aspects. Given the platform offered by this special issue on advanced MRS methodology, the authors decided to describe many of the implicated terms, to pinpoint differences in their meanings and to suggest specific uses or definitions. This work covers terms used to describe all aspects of MRS, starting from the description of the MR signal and its theoretical basis to acquisition methods, processing and to quantification procedures, as well as terms involved in describing results, for example, those used with regard to aspects of quality, reproducibility or indications of error. The descriptions of the meanings of such terms emerge from the descriptions of the basic concepts involved in MRS methods and examinations. This paper also includes specific suggestions for future use of terms where multiple conventions have emerged or coexisted in the past.
Collapse
Affiliation(s)
- Roland Kreis
- Department of Radiology, Neuroradiology, and Nuclear Medicine and Department of Biomedical ResearchUniversity BernBernSwitzerland
| | - Vincent Boer
- Danish Research Centre for Magnetic Resonance, Funktions‐ og Billeddiagnostisk EnhedCopenhagen University Hospital HvidovreHvidovreDenmark
| | - In‐Young Choi
- Department of Neurology, Hoglund Brain Imaging CenterUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Cristina Cudalbu
- Centre d'Imagerie Biomedicale (CIBM)Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Robin A. de Graaf
- Department of Radiology and Biomedical Imaging & Department of Biomedical EngineeringYale UniversityNew HavenConnecticutUSA
| | | | - Arend Heerschap
- Department of Radiology and Nuclear MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Martin Krššák
- Division of Endocrinology and Metabolism, Department of Internal Medicine III & High Field MR Centre, Department of Biomedical Imaging and Image guided TherapyMedical University of ViennaViennaAustria
| | - Bernard Lanz
- Laboratory of Functional and Metabolic Imaging (LIFMET)Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
- Sir Peter Mansfield Imaging Centre, School of MedicineUniversity of NottinghamNottinghamUK
| | - Andrew A. Maudsley
- Department of Radiology, Miller School of MedicineUniversity of MiamiMiamiFloridaUSA
| | - Martin Meyerspeer
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
- High Field MR CenterMedical University of ViennaViennaAustria
| | - Jamie Near
- Douglas Mental Health University Institute and Department of PsychiatryMcGill UniversityMontrealCanada
| | - Gülin Öz
- Center for Magnetic Resonance Research, Department of RadiologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Stefan Posse
- Department of NeurologyUniversity of New Mexico School of MedicineAlbuquerqueNew MexicoUSA
| | - Johannes Slotboom
- Department of Radiology, Neuroradiology, and Nuclear MedicineUniversity Hospital BernBernSwitzerland
| | - Melissa Terpstra
- Center for Magnetic Resonance Research, Department of RadiologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Ivan Tkáč
- Center for Magnetic Resonance Research, Department of RadiologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Martin Wilson
- Centre for Human Brain Health and School of PsychologyUniversity of BirminghamBirminghamUK
| | - Wolfgang Bogner
- High Field MR Center, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| |
Collapse
|