1
|
Lutz M, Aigner CS, Flassbeck S, Krueger F, Gatefait CGF, Kolbitsch C, Silemek B, Seifert F, Schaeffter T, Schmitter S. B1-MRF: Large dynamic range MRF-based absolute B 1 + mapping in the human body at 7T. Magn Reson Med 2024; 92:2473-2490. [PMID: 39133639 DOI: 10.1002/mrm.30242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/03/2024] [Accepted: 07/21/2024] [Indexed: 09/28/2024]
Abstract
PURPOSE This study aims to map the transmit magnetic field (B 1 + $$ {B}_1^{+} $$ ) in the human body at 7T using MR fingerprinting (MRF), with a focus on achieving high accuracy and precision across a large dynamic range, particularly at low flip angles (FAs). METHODS A FLASH-based MRF sequence (B1-MRF) with highB 1 + $$ {B}_1^{+} $$ sensitivity was developed. Phantom and in vivo abdominal imaging were performed at 7T, and the results were compared with established reference methods, including a slow but precise preparation-based method (PEX), saturated TurboFLASH (satTFL), actual flip angle imaging (AFI) and Bloch-Siegert shift (BSS). RESULTS The MRF signal curve was highly sensitive toB 1 + $$ {B}_1^{+} $$ , while T1 sensitivity was comparatively low. The phantom experiment showed good agreement ofB 1 + $$ {B}_1^{+} $$ to PEX for a T1 range of 204-1691 ms evaluated at FAs from 0° to 70°. Compared to the references, a dynamic range increase larger than a factor of two was determined experimentally. In vivo liver scans showed a strong correlation between B1-MRF, satTFL, and RPE-AFI in a low body mass index (BMI) subject (18.1 kg/m2). However, in larger BMI subjects (≥25.5 kg/m2), inconsistencies were observed in lowB 1 + $$ {B}_1^{+} $$ regions for satTFL and RPE-AFI, while B1-MRF still provided consistent results in these regions. CONCLUSION B1-MRF provides accurate and preciseB 1 + $$ {B}_1^{+} $$ maps over a wide range of FAs, surpassing the capabilities of existing methods in the FA range < 60°. Its enhanced sensitivity at low FAs is advantageous for various applications requiring preciseB 1 + $$ {B}_1^{+} $$ estimates, potentially advancing the frontiers of ultra-high field (UHF) body imaging at 7T and beyond.
Collapse
Affiliation(s)
- Max Lutz
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | | | - Sebastian Flassbeck
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Felix Krueger
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | | | | | - Berk Silemek
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | - Frank Seifert
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | - Tobias Schaeffter
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
- Einstein Center Digital Future, Berlin, Germany
- Department of Biomedical Engineering, Technical University of Berlin, Berlin, Germany
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
2
|
Zhang X, de Moura HL, Monga A, Zibetti MVW, Kijowski R, Regatte RR. Repeatability of Quantitative Knee Cartilage T 1, T 2, and T 1ρ Mapping With 3D-MRI Fingerprinting. J Magn Reson Imaging 2024; 60:688-699. [PMID: 37885320 PMCID: PMC11045656 DOI: 10.1002/jmri.29068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Three-dimensional MR fingerprinting (3D-MRF) techniques have been recently described for simultaneous multiparametric mapping of knee cartilage. However, investigation of repeatability remains limited. PURPOSE To assess the intra-day and inter-day repeatabilities of knee cartilage T1, T2, and T1ρ maps using a 3D-MRF sequence for simultaneous measurement. STUDY TYPE Prospective. SUBJECTS Fourteen healthy subjects (35.4 ± 9.3 years, eight males), scanned on Day 1 and Day 7. FIELD STRENGTH/SEQUENCE 3 T/3D-MRF, T1, T2, and T1ρ maps. ASSESSMENT The acquisition of 3D-MRF cartilage (simultaneous acquisition of T1, T2, and T1ρ maps) were acquired using a dictionary pattern-matching approach. Conventional cartilage T1, T2, and T1ρ maps were acquired using variable flip angles and a modified 3D-Turbo-Flash sequence with different echo and spin-lock times, respectively, and were fitted using mono-exponential models. Each sequence was acquired on Day 1 and Day 7 with two scans on each day. STATISTICAL TESTS The mean and SD for cartilage T1, T2, and T1ρ were calculated in five manually segmented regions of interest (ROIs), including lateral femur, lateral tibia, medial femur, medial tibia, and patella cartilages. Intra-subject and inter-subject repeatabilities were assessed using coefficient of variation (CV) and intra-class correlation coefficient (ICC), respectively, on the same day and among different days. Regression and Bland-Altman analysis were performed to compare maps between the conventional and 3D-MRF sequences. RESULTS The CV in all ROIs was lower than 7.4%, 8.4%, and 7.5% and the ICC was higher than 0.56, 0.51, and 0.52 for cartilage T1, T2, and T1ρ, respectively. The MRF results had a good agreement with the conventional methods with a linear regression slope >0.61 and R2 > 0.59. CONCLUSION The 3D-MRF sequence had high intra-subject and inter-subject repeatabilities for simultaneously measuring knee cartilage T1, T2, and T1ρ with good agreement with conventional sequences. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Hector L. de Moura
- Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Anmol Monga
- Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Marcelo V. W. Zibetti
- Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Richard Kijowski
- Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Ravinder R. Regatte
- Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
3
|
Liu Y, Hamilton J, Jiang Y, Seiberlich N. Assessment of MRF for simultaneous T 1 and T 2 quantification and water-fat separation in the liver at 0.55 T. MAGMA (NEW YORK, N.Y.) 2023; 36:513-523. [PMID: 36574163 PMCID: PMC10293475 DOI: 10.1007/s10334-022-01057-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/10/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The goal of this work was to assess the feasibility of performing MRF in the liver on a 0.55 T scanner and to examine the feasibility of water-fat separation using rosette MRF at 0.55 T. MATERIALS AND METHODS Spiral and rosette MRF sequences were implemented on a commercial 0.55 T scanner. The accuracy of both sequences in T1 and T2 quantification was validated in the ISMRM/NIST system phantom. The efficacy of rosette MRF in water-fat separation was evaluated in simulations and water/oil phantoms. Both spiral and rosette MRF were performed in the liver of healthy subjects. RESULTS In the ISMRM/NIST phantom, both spiral and rosette MRF achieved good agreement with reference values in T1 and T2 measurements. In addition, rosette MRF enables water-fat separation and can generate water- and fat- specific T1 maps, T2 maps, and proton density images from the same dataset for a spatial resolution of 1.56 × 1.56 × 5mm3 within the acquisition time of 15 s. CONCLUSION It is feasible to measure T1 and T2 simultaneously in the liver using MRF on a 0.55 T system with lower performance gradients compared to state-of-the-art 1.5 T and 3 T systems within an acquisition time of 15 s. In addition, rosette MRF enables water-fat separation along with T1 and T2 quantification with no time penalty.
Collapse
Affiliation(s)
- Yuchi Liu
- Department of Radiology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109, USA.
| | - Jesse Hamilton
- Department of Radiology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Yun Jiang
- Department of Radiology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Nicole Seiberlich
- Department of Radiology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Kijowski R, Sharafi A, Zibetti MV, Chang G, Cloos MA, Regatte RR. Age-Dependent Changes in Knee Cartilage T 1 , T 2 , and T 1p Simultaneously Measured Using MRI Fingerprinting. J Magn Reson Imaging 2023; 57:1805-1812. [PMID: 36190187 PMCID: PMC10067532 DOI: 10.1002/jmri.28451] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Magnetic resonance fingerprinting (MRF) techniques have been recently described for simultaneous multiparameter cartilage mapping of the knee although investigation of their ability to detect early cartilage degeneration remains limited. PURPOSE To investigate age-dependent changes in knee cartilage T1 , T2 , and T1p relaxation times measured using a three-dimensional (3D) MRF sequence in healthy volunteers. STUDY TYPE Prospective. SUBJECTS The study group consisted of 24 healthy asymptomatic human volunteers (15 males with mean age 34.9 ± 14.4 years and 9 females with mean age 44.5 ± 13.1 years). FIELD STRENGTH/SEQUENCE A 3.0 T gradient-echo-based 3D-MRF sequence was used to simultaneously create proton density-weighted images and T1 , T2 , and T1p maps of knee cartilage. ASSESSMENT Mean global cartilage and regional cartilage (lateral femur, lateral tibia, medial femur, medial tibia, and patella) T1 , T2 , and T1ρ relaxation times of the knee were measured. STATISTICAL TESTS Kruskal-Wallis tests were used to compared cartilage T1 , T2 , and T1ρ relaxation times between different age groups, while Spearman correlation coefficients was used to determine the association between age and cartilage T1 , T2 , and T1ρ relaxation times. The value of P < 0.05 was considered statistically significant. RESULTS Higher age groups showed higher global and regional cartilage T1 , T2 , and T1ρ . There was a significant difference between age groups in global cartilage T2 and T1ρ but no significant difference (P = 0.13) in global cartilage T1. Significant difference was also present between age groups in cartilage T2 and T1ρ for medial femur cartilage and medial tibia cartilage. There were significant moderate correlations between age and T2 and T1ρ for global cartilage (R2 = 0.63-0.64), medial femur cartilage (R2 = 0.50-0.56), and medial tibia cartilage (R2 = 0.54-0.66). CONCLUSION Cartilage T2 and T1p relaxation times simultaneously measured using a 3D-MRF sequence in healthy volunteers showed age-dependent changes in knee cartilage, primarily within the medial compartment.
Collapse
Affiliation(s)
- Richard Kijowski
- Bernard and Irene Schwartz Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Azadeh Sharafi
- Bernard and Irene Schwartz Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Marcelo V.W. Zibetti
- Bernard and Irene Schwartz Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Gregory Chang
- Bernard and Irene Schwartz Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Martijn A. Cloos
- Center of Advanced Imaging, University of Queensland, Brisbane, QLD, Australia
- ARC Training Center for Innovation in Biomedical Imaging Technology, University of Queensland, Brisbane, QLD, Australia
| | - Ravinder R. Regatte
- Bernard and Irene Schwartz Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
5
|
Sharafi A, Zibetti MVW, Chang G, Cloos M, Regatte RR. 3D magnetic resonance fingerprinting for rapid simultaneous T1, T2, and T1ρ volumetric mapping of human articular cartilage at 3 T. NMR IN BIOMEDICINE 2022; 35:e4800. [PMID: 35815660 PMCID: PMC9669203 DOI: 10.1002/nbm.4800] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 05/25/2023]
Abstract
Quantitative MRI can detect early biochemical changes in cartilage; however, the conventional techniques only measure one parameter (e.g., T1 , T2 , and T1ρ ) at a time while also being comparatively slow. We implemented a 3D magnetic resonance fingerprinting (3D-MRF) technique for simultaneous, volumetric mapping of T1 , T2 , and T1ρ in knee articular cartilage in under 9 min. It is evaluated on 11 healthy volunteers (mean age: 53 ± 9 years), five mild knee osteoarthritis (OA) patients (Kellgren-Lawrence (KL) score: 2, mean age: 60 ± 4 years), and the National Institute of Standards and Technology (NIST)/International Society for Magnetic Resonance in Medicine (ISMRM) system phantom. Proton density image, and T1 , T2, T1ρ relaxation times, and B1 + were estimated in the NIST/ISMRM system phantom as well as in the human knee medial and lateral femur, medial and lateral tibia, and patellar cartilage. The repeatability and reproducibility of the proposed technique were assessed in the phantom using analysis of the Bland-Altman plots. The intrasubject repeatability was assessed with the coefficient of variation (CV) and root mean square CV (rmsCV). The Mann-Whitney U test was used to assess the difference between healthy subjects and mild knee OA patients. The Bland-Altman plots in the NIST/ISMRM phantom demonstrated an average difference of 0.001% ± 015%, 1.2% ± 7.1%, and 0.47% ± 3% between two scans from the same 3-T scanner (repeatability), and 0.002% ± 015%, 0.62% ± 10.5%, and 0.97% ± 14% between the scans acquired on two different 3-T scanners (reproducibility) for T1 , T2 , and T1ρ , respectively. The in vivo knee study showed excellent repeatability with rmsCV less than 1%, 2%, and 1% for T1 , T2 , and T1ρ , respectively. T1ρ relaxation time in the mild knee OA patients was significantly higher (p < 0.05) than in healthy subjects. The proposed 3D-MRF sequence is fast, reproducible, robust to B1 + inhomogeneity, and can simultaneously measure the T1 , T2 , T1ρ , and B1 + volumetric maps of the knee joint in a single scan within a clinically feasible scan time.
Collapse
Affiliation(s)
- Azadeh Sharafi
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Marcelo V. W. Zibetti
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Gregory Chang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Martijn Cloos
- Center of Advanced Imaging, University of Queensland, Brisbane, Australia
| | - Ravinder R. Regatte
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
6
|
Cao P, Wang Z, Liu C, Li T, Hui E, Cai J. Motion-resolved and free-breathing liver MRF. Magn Reson Imaging 2022; 91:69-80. [DOI: 10.1016/j.mri.2022.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/01/2022] [Accepted: 05/22/2022] [Indexed: 11/28/2022]
|