1
|
Stabinska J, Thiel TA, Zöllner HJ, Benkert T, Wittsack HJ, Ljimani A. Investigation of diffusion time dependence of apparent diffusion coefficient and intravoxel incoherent motion parameters in the human kidney. Magn Reson Med 2024. [PMID: 39641988 DOI: 10.1002/mrm.30396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 10/21/2024] [Accepted: 11/16/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE To characterize the diffusion time (Δeff) dependence of apparent diffusion coefficient (ADC) and intravoxel incoherent motion-related parameters in the human kidney at 3 T. METHODS Sixteen healthy volunteers underwent an MRI examination at 3 T including diffusion-weighted imaging at different Δeff ranging from 24.1 to 104.1 ms. The extended mono-exponential ADC and intravoxel incoherent motion models were fitted to the data for each Δeff and the medullary and cortical ADC, (pseudo-)diffusion coefficients (D* and D) and flow-related signal fraction (f) were calculated. RESULTS When all the data were used for fitting, a significant trend toward higher ADC with increasing Δeff was observed between 24.1 and 104.1 ms (median and interquartile range: 2.38 [2.19, 2.47] to 2.84 [2.36, 2.90] × 10-3 mm2/s for cortex, and 2.28 [2.18, 2.37] to 2.82 [2.58, 3.11] × 10-3 mm2/s for medulla). In contrast, no significant differences in ADC were found when only the data acquired at b-values higher than 200 s/mm2 were used for fitting. When the intravoxel incoherent motion model was applied, cortical and medullary f increased significantly (cortex: 0.21 [0.15 0.27] to 0.37 [0.32, 0.49] × 10-3 mm2/s; medulla: 0.15 [0.13 0.29] to 0.41 [0.36 0.51] × 10-3 mm2/s). No significant changes in cortical and medullary D and D* were observed as diffusion time increased. CONCLUSION Renal perfusion and tubular flow substantially contribute to the observed increase in ADC over a wide range of Δeff between 24 and 104 ms.
Collapse
Affiliation(s)
- Julia Stabinska
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thomas Andreas Thiel
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Helge Jörn Zöllner
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thomas Benkert
- MR Application Predevelopment, Siemens Healthineers AG, Erlangen, Germany
| | - Hans-Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Alexandra Ljimani
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| |
Collapse
|
2
|
Dan G, Sun K, Luo Q, Zhou XJ. Single-shot multi-b-value (SSMb) diffusion-weighted MRI using spin echo and stimulated echoes with variable flip angles. NMR IN BIOMEDICINE 2024; 37:e5261. [PMID: 39308034 DOI: 10.1002/nbm.5261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 11/15/2024]
Abstract
Conventional diffusion-weighted imaging (DWI) sequences employing a spin echo or stimulated echo sensitize diffusion with a specific b-value at a fixed diffusion direction and diffusion time (Δ). To compute apparent diffusion coefficient (ADC) and other diffusion parameters, the sequence needs to be repeated multiple times by varying the b-value and/or gradient direction. In this study, we developed a single-shot multi-b-value (SSMb) diffusion MRI technique, which combines a spin echo and a train of stimulated echoes produced with variable flip angles. The method involves a pair of 90° radio frequency (RF) pulses that straddle a diffusion gradient lobe (GD), to rephase the magnetization in the transverse plane, producing a diffusion-weighted spin echo acquired by the first echo-planar imaging (EPI) readout train. The magnetization stored along the longitudinal axis is successively re-excited by a series of n variable-flip-angle pulses, each followed by a diffusion gradient lobe GD and a subsequent EPI readout train to sample n stimulated-echo signals. As such, (n + 1) diffusion-weighted images, each with a distinct b-value, are acquired in a single shot. The SSMb sequence was demonstrated on a diffusion phantom and healthy human brain to produce diffusion-weighted images, which were quantitative analyzed using a mono-exponential model. In the phantom experiment, SSMb provided similar ADC values to those from a commercial spin-echo EPI (SE-EPI) sequence (r = 0.999). In the human brain experiment, SSMb enabled a fourfold scan time reduction and yielded slightly lower ADC values (0.83 ± 0.26 μm2/ms) than SE-EPI (0.88 ± 0.29 μm2/ms) in all voxels excluding cerebrospinal fluid, likely due to the influence of varying diffusion times. The feasibility of using SSMb to acquire multiple images in a single shot for intravoxel incoherent motion (IVIM) analysis was also demonstrated. In conclusion, despite a relatively low signal-to-noise ratio, the proposed SSMb technique can substantially increase the data acquisition efficiency in DWI studies.
Collapse
Affiliation(s)
- Guangyu Dan
- Center for Magnetic Resonance Research, University of Illinois Chicago, Chicago, Illinois, USA
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| | - Kaibao Sun
- Center for Magnetic Resonance Research, University of Illinois Chicago, Chicago, Illinois, USA
| | - Qingfei Luo
- Center for Magnetic Resonance Research, University of Illinois Chicago, Chicago, Illinois, USA
- Department of Radiology, University of Illinois College of Medicine at Chicago, Chicago, Illinois, USA
| | - Xiaohong Joe Zhou
- Center for Magnetic Resonance Research, University of Illinois Chicago, Chicago, Illinois, USA
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
- Department of Radiology, University of Illinois College of Medicine at Chicago, Chicago, Illinois, USA
- Department of Neurosurgery, University of Illinois College of Medicine at Chicago, Chicago, Illinois, USA
| |
Collapse
|
3
|
Kallis K, Conlin CC, Ollison C, Hahn ME, Rakow‐Penner R, Dale AM, Seibert TM. Quantitative MRI biomarker for classification of clinically significant prostate cancer: Calibration for reproducibility across echo times. J Appl Clin Med Phys 2024; 25:e14514. [PMID: 39374162 PMCID: PMC11539966 DOI: 10.1002/acm2.14514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 10/09/2024] Open
Abstract
PURPOSE The purpose of the present study is to develop a calibration method to account for differences in echo times (TE) and facilitate the use of restriction spectrum imaging restriction score (RSIrs) as a quantitative biomarker for the detection of clinically significant prostate cancer (csPCa). METHODS This study included 197 consecutive patients who underwent MRI and biopsy examination; 97 were diagnosed with csPCa (grade group ≥ 2). RSI data were acquired three times during the same session: twice at minimum TE ~75 ms and once at TE = 90 ms (TEmin1, TEmin2, and TE90, respectively). A linear regression model was determined to match the C-maps of TE90 to the reference C-maps of TEmin1 within the interval ranging from 95th to 99th percentile of signal intensity within the prostate. RSIrs comparisons were made at the 98th percentile within each patient's prostate. We compared RSIrs from calibrated TE90 (RSIrsTE90corr) and uncorrected TE90 (RSIrsTE90) to RSIrs from reference TEmin1 (RSIrsTEmin1) and repeated TEmin2 (RSIrsTEmin2). Calibration performance was evaluated with sensitivity, specificity and area under the ROC curve (AUC). RESULTS Scaling factors for C1, C2, C3, and C4 were estimated as 1.68, 1.33, 1.02, and 1.13, respectively. In non-csPCa cases, the 98th percentile of RSIrsTEmin2 and RSIrsTEmin1 differed by 0.27 ± 0.86SI (mean ± standard deviation), whereas RSIrsTE90 differed from RSIrsTEmin1 by 1.82 ± 1.20SI. After calibration, this bias was reduced to -0.51 ± 1.21SI, representing a 72% reduction in absolute error. For patients with csPCa, the difference was 0.54 ± 1.98SI between RSIrsTEmin2 and RSIrsTEmin1 and 2.28 ± 2.06SI between RSIrsTE90 and RSIrsTEmin1. After calibration, the mean difference decreased to -1.03SI, a 55% reduction in absolute error. At the Youden index for patient-level classification of csPCa (8.94SI), RSIrsTEmin1 has a sensitivity of 66% and a specificity of 72%. CONCLUSIONS The proposed linear calibration method produces similar quantitative biomarker values for acquisitions with different TE, reducing TE-induced error by 72% and 55% for non-csPCa and csPCa, respectively.
Collapse
Affiliation(s)
- Karoline Kallis
- Department of Radiation Medicine and Applied SciencesUC San Diego HealthLa JollaCaliforniaUSA
| | | | - Courtney Ollison
- Department of Radiation Medicine and Applied SciencesUC San Diego HealthLa JollaCaliforniaUSA
| | - Michael E. Hahn
- Department of RadiologyUC San Diego HealthLa JollaCaliforniaUSA
| | | | - Anders M. Dale
- Department of RadiologyUC San Diego HealthLa JollaCaliforniaUSA
- Department of NeurosciencesUC San Diego HealthLa JollaCaliforniaUSA
- Halıcıoğlu Data Science InstituteUC San DiegoLa JollaCaliforniaUSA
| | - Tyler M. Seibert
- Department of Radiation Medicine and Applied SciencesUC San Diego HealthLa JollaCaliforniaUSA
- Department of RadiologyUC San Diego HealthLa JollaCaliforniaUSA
- Department of BioengineeringUC San Diego Jacobs School of EngineeringLa JollaCaliforniaUSA
| |
Collapse
|
4
|
Bäuchle TA, Stuprich CM, Loh M, Nagel AM, Uder M, Laun FB. Influence of Magnetic Field Strength on Intravoxel Incoherent Motion Parameters in Diffusion MRI of the Calf. Tomography 2024; 10:773-788. [PMID: 38787019 PMCID: PMC11126135 DOI: 10.3390/tomography10050059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Background: The purpose of this study was to investigate the dependence of Intravoxel Incoherent Motion (IVIM) parameters measured in the human calf on B0. Methods: Diffusion-weighted image data of eight healthy volunteers were acquired using five b-values (0-600 s/mm2) at rest and after muscle activation at 0.55 and 7 T. The musculus gastrocnemius mediale (GM, activated) was assessed. The perfusion fraction f and diffusion coefficient D were determined using segmented fits. The dependence on field strength was assessed using Student's t-test for paired samples and the Wilcoxon signed-rank test. A biophysical model built on the three non-exchanging compartments of muscle, venous blood, and arterial blood was used to interpret the data using literature relaxation times. Results: The measured perfusion fraction of the GM was significantly lower at 7 T, both for the baseline measurement and after muscle activation. For 0.55 and 7 T, the mean f values were 7.59% and 3.63% at rest, and 14.03% and 6.92% after activation, respectively. The biophysical model estimations for the mean proton-density-weighted perfusion fraction were 3.37% and 6.50% for the non-activated and activated states, respectively. Conclusions: B0 may have a significant effect on the measured IVIM parameters. The blood relaxation times suggest that 7 T IVIM may be arterial-weighted whereas 0.55 T IVIM may exhibit an approximately equal weighting of arterial and venous blood.
Collapse
Affiliation(s)
- Tamara Alice Bäuchle
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Christoph Martin Stuprich
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Martin Loh
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Armin Michael Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Frederik Bernd Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
5
|
Kallis K, Conlin CC, Ollison C, Hahn ME, Rakow-Penner R, Dale AM, Seibert TM. Quantitative MRI biomarker for classification of clinically significant prostate cancer: calibration for reproducibility across echo times. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.25.24301789. [PMID: 38343810 PMCID: PMC10854339 DOI: 10.1101/2024.01.25.24301789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Background Restriction Spectrum Imaging restriction score (RSIrs) is a quantitative biomarker for detecting clinically significant prostate cancer (csPCa). However, the quantitative value of the RSIrs is affected by imaging parameters such as echo time (TE). Purpose The purpose of the present study is to develop a calibration method to account for differences in echo times and facilitate use of RSIrs as a quantitative biomarker for the detection of csPCa. Methods This study included 197 consecutive patients who underwent MRI and biopsy examination; 97 were diagnosed with csPCa (grade group ≥ 2). RSI data were acquired three times during the same session: twice at minimum TE∼75ms and once at TE=90ms (TEmin 1 , TEmin 2 , and TE90, respectively). A proposed calibration method, trained on patients without csPCa, estimated a linear scaling factor (f) for each of the four diffusion compartments (C) of the RSI signal model. A linear regression model was determined to match C-maps of TE90 to the reference C-maps of TEmin 1 within the interval ranging from 95 th to 99 th percentile of signal intensity within the prostate. RSIrs comparisons were made at 98 th percentile within each patient's prostate. We compared RSIrs from calibrated TE90 (RSIrs TE90corr ) and uncorrected TE90 (RSIrs TE90 ) to RSIrs from reference TEmin 1 (RSIrs TEmin1 ) and repeated TEmin 2 (RSIrs TEmin2 ). Calibration performance was evaluated with sensitivity, specificity, area under the ROC curve, positive predicted value, negative predicted value, and F1-score. Results Scaling factors for C 1 , C 2 , C 3 , and C 4 were estimated as 1.70, 1.38, 1.03, and 1.19, respectively. In non-csPCa cases, the 98 th percentile of RSIrs TEmin2 and RSIrs TEmin1 differed by 0.27±0.86SI (mean±standard deviation), whereas RSIrs TE90 differed from RSIrs TEmin1 by 1.81±1.20SI. After calibration, this bias was reduced to -0.41±1.20SI, representing a 78% reduction in absolute error. For patients with csPCa, the difference was 0.54±1.98SI between RSIrs TEmin2 and RSIrs TEmin1 and 2.28±2.06SI between RSIrs TE90 and RSIrs TEmin1 . After calibration, the mean difference decreased to -0.86SI, a 38% reduction in absolute error. At the Youden index for patient-level classification of csPCa (8.94SI), RSIrs TEmin1 has a sensitivity of 66% and a specificity of 72%. Prior to calibration, RSIrs TE90 at the same threshold tended to over-diagnose benign cases (sensitivity 44%, specificity 88%). Post-calibration, RSIrs TE90corr performs more similarly to the reference (sensitivity 71%, specificity 62%). Conclusion The proposed linear calibration method produces similar quantitative biomarker values for acquisitions with different TE, reducing TE-induced error by 78% and 38% for non-csPCa and csPCa, respectively.
Collapse
|
6
|
Granata V, Fusco R, Belli A, Borzillo V, Palumbo P, Bruno F, Grassi R, Ottaiano A, Nasti G, Pilone V, Petrillo A, Izzo F. Conventional, functional and radiomics assessment for intrahepatic cholangiocarcinoma. Infect Agent Cancer 2022; 17:13. [PMID: 35346300 PMCID: PMC8961950 DOI: 10.1186/s13027-022-00429-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/18/2022] [Indexed: 02/08/2023] Open
Abstract
Background This paper offers an assessment of diagnostic tools in the evaluation of Intrahepatic Cholangiocarcinoma (ICC). Methods Several electronic datasets were analysed to search papers on morphological and functional evaluation in ICC patients. Papers published in English language has been scheduled from January 2010 to December 2021.
Results We found that 88 clinical studies satisfied our research criteria. Several functional parameters and morphological elements allow a truthful ICC diagnosis. The contrast medium evaluation, during the different phases of contrast studies, support the recognition of several distinctive features of ICC. The imaging tool to employed and the type of contrast medium in magnetic resonance imaging, extracellular or hepatobiliary, should change considering patient, departement, and regional features. Also, Radiomics is an emerging area in the evaluation of ICCs. Post treatment studies are required to evaluate the efficacy and the safety of therapies so as the patient surveillance. Conclusions Several morphological and functional data obtained during Imaging studies allow a truthful ICC diagnosis.
Collapse
|
7
|
McDonald ES, Rosen MA. Editorial for "Evaluation of Monoexponential, Stretched Exponential and Intravoxel Incoherent Motion MRI Diffusion Models in Early Response Monitoring to Neoadjuvant Chemotherapy in Patients With Breast Cancer-A Preliminary Study.". J Magn Reson Imaging 2022; 56:1089-1090. [PMID: 35179266 DOI: 10.1002/jmri.28118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Elizabeth S McDonald
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mark A Rosen
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|