1
|
Heo HY, Singh M, Mahmud SZ, Blair L, Kamson DO, Zhou J. Unraveling contributions to the Z-spectrum signal at 3.5 ppm of human brain tumors. Magn Reson Med 2024; 92:2641-2651. [PMID: 39086185 PMCID: PMC11436306 DOI: 10.1002/mrm.30241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/26/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
PURPOSE To evaluate the influence of the confounding factors, direct water saturation (DWS), and magnetization transfer contrast (MTC) effects on measured Z-spectra and amide proton transfer (APT) contrast in brain tumors. METHODS High-grade glioma patients were scanned using an RF saturation-encoded 3D MR fingerprinting (MRF) sequence at 3 T. For MRF reconstruction, a recurrent neural network was designed to learn free water and semisolid macromolecule parameter mappings of the underlying multiple tissue properties from saturation-transfer MRF signals. The DWS spectra and MTC spectra were synthesized by solving Bloch-McConnell equations and evaluated in brain tumors. RESULTS The dominant contribution to the saturation effect at 3.5 ppm was from DWS and MTC effects, but 25%-33% of the saturated signal in the gadolinium-enhancing tumor (13%-20% for normal tissue) was due to the APT effect. The APT# signal of the gadolinium-enhancing tumor was significantly higher than that of the normal-appearing white matter (10.1% vs. 8.3% at 1 μT and 11.2% vs. 7.8% at 1.5 μT). CONCLUSION The RF saturation-encoded MRF allowed us to separate contributions to the saturation signal at 3.5 ppm in the Z-spectrum. Although free water and semisolid MTC are the main contributors, significant APT contrast between tumor and normal tissues was observed.
Collapse
Affiliation(s)
- Hye-Young Heo
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Munendra Singh
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sultan Z Mahmud
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Lindsay Blair
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - David Olayinka Kamson
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jinyuan Zhou
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Kang B, Lee W, Seo H, Heo HY, Park H. Self-supervised learning for denoising of multidimensional MRI data. Magn Reson Med 2024; 92:1980-1994. [PMID: 38934408 PMCID: PMC11341249 DOI: 10.1002/mrm.30197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
PURPOSE To develop a fast denoising framework for high-dimensional MRI data based on a self-supervised learning scheme, which does not require ground truth clean image. THEORY AND METHODS Quantitative MRI faces limitations in SNR, because the variation of signal amplitude in a large set of images is the key mechanism for quantification. In addition, the complex non-linear signal models make the fitting process vulnerable to noise. To address these issues, we propose a fast deep-learning framework for denoising, which efficiently exploits the redundancy in multidimensional MRI data. A self-supervised model was designed to use only noisy images for training, bypassing the challenge of clean data paucity in clinical practice. For validation, we used two different datasets of simulated magnetization transfer contrast MR fingerprinting (MTC-MRF) dataset and in vivo DWI image dataset to show the generalizability. RESULTS The proposed method drastically improved denoising performance in the presence of mild-to-severe noise regardless of noise distributions compared to previous methods of the BM3D, tMPPCA, and Patch2self. The improvements were even pronounced in the following quantification results from the denoised images. CONCLUSION The proposed MD-S2S (Multidimensional-Self2Self) denoising technique could be further applied to various multi-dimensional MRI data and improve the quantification accuracy of tissue parameter maps.
Collapse
Affiliation(s)
- Beomgu Kang
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Guseong-dong, Yuseong-gu, Daejeon, Republic of Korea
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Wonil Lee
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
| | - Hyunseok Seo
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Hye-Young Heo
- Divison of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - HyunWook Park
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Guseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| |
Collapse
|
3
|
Viswanathan M, Yin L, Kurmi Y, Afzal A, Zu Z. Enhancing amide proton transfer imaging in ischemic stroke using a machine learning approach with partially synthetic data. NMR IN BIOMEDICINE 2024:e5277. [PMID: 39434444 DOI: 10.1002/nbm.5277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/21/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
Amide proton transfer (APT) imaging, a technique sensitive to tissue pH, holds promise in the diagnosis of ischemic stroke. Achieving accurate and rapid APT imaging is crucial for this application. However, conventional APT quantification methods either lack accuracy or are time-consuming. Machine learning (ML) has recently been recognized as a potential solution to improve APT quantification. In this paper, we applied an ML model trained on a new type of partially synthetic data, along with an optimization approach utilizing recursive feature elimination, to predict APT imaging in an animal stroke model. This partially synthetic datum is not a simple blend of measured and simulated chemical exchange saturation transfer (CEST) signals. Rather, it integrates the underlying components including all CEST, direct water saturation, and magnetization transfer effects partly derived from measurements and simulations to reconstruct the CEST signals using an inverse summation relationship. Training with partially synthetic data requires less in vivo data compared to training entirely with fully synthetic or in vivo data, making it a more practical approach. Since this type of data closely resembles real tissue, it leads to more accurate predictions than ML models trained on fully synthetic data. Results indicate that an ML model trained on this partially synthetic data can successfully predict the APT effect with enhanced accuracy, providing significant contrast between stroke lesions and normal tissues, thus clearly delineating lesions. In contrast, conventional quantification methods such as the asymmetric analysis method, three-point method, and multiple-pool model Lorentzian fit showed inadequate accuracy in quantifying the APT effect. Moreover, ML methods trained using in vivo data and fully synthetic data exhibited poor predictive performance due to insufficient training data and inaccurate simulation pool settings or parameter ranges, respectively. Following optimization, only 13 frequency offsets were selected from the initial 69, resulting in significantly reduced scan time.
Collapse
Affiliation(s)
- Malvika Viswanathan
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Leqi Yin
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- School of Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Yashwant Kurmi
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Aqeela Afzal
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
4
|
Liu C, Li Z, Chen Z, Zhao B, Zheng Z, Song X. Highly-accelerated CEST MRI using frequency-offset-dependent k-space sampling and deep-learning reconstruction. Magn Reson Med 2024; 92:688-701. [PMID: 38623899 DOI: 10.1002/mrm.30089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/31/2024] [Accepted: 03/02/2024] [Indexed: 04/17/2024]
Abstract
PURPOSE To develop a highly accelerated CEST Z-spectral acquisition method using a specifically-designed k-space sampling pattern and corresponding deep-learning-based reconstruction. METHODS For k-space down-sampling, a customized pattern was proposed for CEST, with the randomized probability following a frequency-offset-dependent (FOD) function in the direction of saturation offset. For reconstruction, the convolution network (CNN) was enhanced with a Partially Separable (PS) function to optimize the spatial domain and frequency domain separately. Retrospective experiments on a self-acquired human brain dataset (13 healthy adults and 15 brain tumor patients) were conducted using k-space resampling. The prospective performance was also assessed on six healthy subjects. RESULTS In retrospective experiments, the combination of FOD sampling and PS network (FOD + PSN) showed the best quantitative metrics for reconstruction, outperforming three other combinations of conventional sampling with varying density and a regular CNN (nMSE and SSIM, p < 0.001 for healthy subjects). Across all acceleration factors from 4 to 14, the FOD + PSN approach consistently outperformed the comparative methods in four contrast maps including MTRasym, MTRrex, as well as the Lorentzian Difference maps of amide and nuclear Overhauser effect (NOE). In the subspace replacement experiment, the error distribution demonstrated the denoising benefits achieved in the spatial subspace. Finally, our prospective results obtained from healthy adults and brain tumor patients (14×) exhibited the initial feasibility of our method, albeit with less accurate reconstruction than retrospective ones. CONCLUSION The combination of FOD sampling and PSN reconstruction enabled highly accelerated CEST MRI acquisition, which may facilitate CEST metabolic MRI for brain tumor patients.
Collapse
Affiliation(s)
- Chuyu Liu
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Zhongsen Li
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Zhensen Chen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Benqi Zhao
- Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Zhuozhao Zheng
- Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Xiaolei Song
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
5
|
Heckel R, Jacob M, Chaudhari A, Perlman O, Shimron E. Deep learning for accelerated and robust MRI reconstruction. MAGMA (NEW YORK, N.Y.) 2024; 37:335-368. [PMID: 39042206 DOI: 10.1007/s10334-024-01173-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 07/24/2024]
Abstract
Deep learning (DL) has recently emerged as a pivotal technology for enhancing magnetic resonance imaging (MRI), a critical tool in diagnostic radiology. This review paper provides a comprehensive overview of recent advances in DL for MRI reconstruction, and focuses on various DL approaches and architectures designed to improve image quality, accelerate scans, and address data-related challenges. It explores end-to-end neural networks, pre-trained and generative models, and self-supervised methods, and highlights their contributions to overcoming traditional MRI limitations. It also discusses the role of DL in optimizing acquisition protocols, enhancing robustness against distribution shifts, and tackling biases. Drawing on the extensive literature and practical insights, it outlines current successes, limitations, and future directions for leveraging DL in MRI reconstruction, while emphasizing the potential of DL to significantly impact clinical imaging practices.
Collapse
Affiliation(s)
- Reinhard Heckel
- Department of computer engineering, Technical University of Munich, Munich, Germany
| | - Mathews Jacob
- Department of Electrical and Computer Engineering, University of Iowa, Iowa, 52242, IA, USA
| | - Akshay Chaudhari
- Department of Radiology, Stanford University, Stanford, 94305, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, 94305, CA, USA
| | - Or Perlman
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Efrat Shimron
- Department of Electrical and Computer Engineering, Technion-Israel Institute of Technology, Haifa, 3200004, Israel.
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200004, Israel.
| |
Collapse
|
6
|
Wang Y, Sun YX, Yang QY, Gao JH. A generalized QUCESOP method with evaluating CEST peak overlap. NMR IN BIOMEDICINE 2024; 37:e5098. [PMID: 38224670 DOI: 10.1002/nbm.5098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/26/2023] [Accepted: 12/04/2023] [Indexed: 01/17/2024]
Abstract
The overlapping peaks of the target chemical exchange saturation transfer (CEST) solutes and other unknown CEST solutes affect the quantification results and accuracy of the chemical exchange parameters-the fractional concentration, f b , exchange rate, k b , and transverse relaxation rate, R 2 b -for the target solutes. However, to date, no method has been established for assessing the overlapping peaks. This study aimed to develop a method for quantifying the f b , k b , and R 2 b values of a specific CEST solute, as well as assessing the overlap between the CEST peaks of the specific solute(s) and other unknown solutes. A simplified R 1 ρ model was proposed, assuming linear approximation of the other solutes' contributions to R 1 ρ . A CEST data acquisition scheme was applied with various saturation offsets and saturation powers. In addition to fitting the f b , k b , and R 2 b values of the specific solute, the overlapping condition was evaluated based on the root mean square error (RMSE) between the trajectories of the acquired and synthesized data. Single-solute and multi-solute phantoms with various phosphocreatine (PCr) concentrations and pH values were used to calculate the f b and k b of PCr and the corresponding RMSE. The feasibility of RMSE for evaluating the overlapping condition, and the accurate fitting of f b and k b in weak overlapping conditions, were verified. Furthermore, the method was employed to quantify the nuclear Overhauser effect signal in rat brains and the PCr signal in rat skeletal muscles, providing results that were consistent with those reported in previous studies. In summary, the proposed approach can be applied to evaluate the overlapping condition of CEST peaks and quantify the f b , k b , and R 2 b values of specific solutes, if the weak overlapping condition is satisfied.
Collapse
Affiliation(s)
- Yi Wang
- Public Health Science and Engineering College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi-Xuan Sun
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiu-Yu Yang
- Public Health Science and Engineering College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China
- McGovern Institute for Brain Research, Peking University, Beijing, China
- National Biomedical Imaging Center, Peking University, Beijing, China
| |
Collapse
|
7
|
Cao X, Liao C, Zhou Z, Zhong Z, Li Z, Dai E, Iyer SS, Hannum AJ, Yurt M, Schauman S, Chen Q, Wang N, Wei J, Yan Y, He H, Skare S, Zhong J, Kerr A, Setsompop K. DTI-MR fingerprinting for rapid high-resolution whole-brain T 1 , T 2 , proton density, ADC, and fractional anisotropy mapping. Magn Reson Med 2024; 91:987-1001. [PMID: 37936313 PMCID: PMC11068310 DOI: 10.1002/mrm.29916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/09/2023]
Abstract
PURPOSE This study aims to develop a high-efficiency and high-resolution 3D imaging approach for simultaneous mapping of multiple key tissue parameters for routine brain imaging, including T1 , T2 , proton density (PD), ADC, and fractional anisotropy (FA). The proposed method is intended for pushing routine clinical brain imaging from weighted imaging to quantitative imaging and can also be particularly useful for diffusion-relaxometry studies, which typically suffer from lengthy acquisition time. METHODS To address challenges associated with diffusion weighting, such as shot-to-shot phase variation and low SNR, we integrated several innovative data acquisition and reconstruction techniques. Specifically, we used M1-compensated diffusion gradients, cardiac gating, and navigators to mitigate phase variations caused by cardiac motion. We also introduced a data-driven pre-pulse gradient to cancel out eddy currents induced by diffusion gradients. Additionally, to enhance image quality within a limited acquisition time, we proposed a data-sharing joint reconstruction approach coupled with a corresponding sequence design. RESULTS The phantom and in vivo studies indicated that the T1 and T2 values measured by the proposed method are consistent with a conventional MR fingerprinting sequence and the diffusion results (including diffusivity, ADC, and FA) are consistent with the spin-echo EPI DWI sequence. CONCLUSION The proposed method can achieve whole-brain T1 , T2 , diffusivity, ADC, and FA maps at 1-mm isotropic resolution within 10 min, providing a powerful tool for investigating the microstructural properties of brain tissue, with potential applications in clinical and research settings.
Collapse
Affiliation(s)
- Xiaozhi Cao
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Congyu Liao
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Zihan Zhou
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Zheng Zhong
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Zhitao Li
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Erpeng Dai
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Siddharth Srinivasan Iyer
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, Massachusetts, USA
| | - Ariel J Hannum
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Mahmut Yurt
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Sophie Schauman
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Quan Chen
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Nan Wang
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Jintao Wei
- Center for Brain Imaging Science and Technology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yifan Yan
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hongjian He
- Center for Brain Imaging Science and Technology, Zhejiang University, Hangzhou, Zhejiang, China
- School of Physics, Zhejiang University, Hangzhou, Zhejiang, China
| | - Stefan Skare
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Jianhui Zhong
- Department of Imaging Sciences, University of Rochester, NY, USA
| | - Adam Kerr
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Kawin Setsompop
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
8
|
Nagar D, Vladimirov N, Farrar CT, Perlman O. Dynamic and rapid deep synthesis of chemical exchange saturation transfer and semisolid magnetization transfer MRI signals. Sci Rep 2023; 13:18291. [PMID: 37880343 PMCID: PMC10600114 DOI: 10.1038/s41598-023-45548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023] Open
Abstract
Model-driven analysis of biophysical phenomena is gaining increased attention and utility for medical imaging applications. In magnetic resonance imaging (MRI), the availability of well-established models for describing the relations between the nuclear magnetization, tissue properties, and the externally applied magnetic fields has enabled the prediction of image contrast and served as a powerful tool for designing the imaging protocols that are now routinely used in the clinic. Recently, various advanced imaging techniques have relied on these models for image reconstruction, quantitative tissue parameter extraction, and automatic optimization of acquisition protocols. In molecular MRI, however, the increased complexity of the imaging scenario, where the signals from various chemical compounds and multiple proton pools must be accounted for, results in exceedingly long model simulation times, severely hindering the progress of this approach and its dissemination for various clinical applications. Here, we show that a deep-learning-based system can capture the nonlinear relations embedded in the molecular MRI Bloch-McConnell model, enabling a rapid and accurate generation of biologically realistic synthetic data. The applicability of this simulated data for in-silico, in-vitro, and in-vivo imaging applications is then demonstrated for chemical exchange saturation transfer (CEST) and semisolid macromolecule magnetization transfer (MT) analysis and quantification. The proposed approach yielded 63-99% acceleration in data synthesis time while retaining excellent agreement with the ground truth (Pearson's r > 0.99, p < 0.0001, normalized root mean square error < 3%).
Collapse
Affiliation(s)
- Dinor Nagar
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Nikita Vladimirov
- Department of Biomedical Engineering, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Christian T Farrar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Or Perlman
- Department of Biomedical Engineering, Tel Aviv University, 6997801, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
9
|
Singh M, Jiang S, Li Y, van Zijl P, Zhou J, Heo HY. Bloch simulator-driven deep recurrent neural network for magnetization transfer contrast MR fingerprinting and CEST imaging. Magn Reson Med 2023; 90:1518-1536. [PMID: 37317675 PMCID: PMC10524222 DOI: 10.1002/mrm.29748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 04/17/2023] [Accepted: 05/18/2023] [Indexed: 06/16/2023]
Abstract
PURPOSE To develop a unified deep-learning framework by combining an ultrafast Bloch simulator and a semisolid macromolecular magnetization transfer contrast (MTC) MR fingerprinting (MRF) reconstruction for estimation of MTC effects. METHODS The Bloch simulator and MRF reconstruction architectures were designed with recurrent neural networks and convolutional neural networks, evaluated with numerical phantoms with known ground truths and cross-linked bovine serum albumin phantoms, and demonstrated in the brain of healthy volunteers at 3 T. In addition, the inherent magnetization-transfer ratio asymmetry effect was evaluated in MTC-MRF, CEST, and relayed nuclear Overhauser enhancement imaging. A test-retest study was performed to evaluate the repeatability of MTC parameters, CEST, and relayed nuclear Overhauser enhancement signals estimated by the unified deep-learning framework. RESULTS Compared with a conventional Bloch simulation, the deep Bloch simulator for generation of the MTC-MRF dictionary or a training data set reduced the computation time by 181-fold, without compromising MRF profile accuracy. The recurrent neural network-based MRF reconstruction outperformed existing methods in terms of reconstruction accuracy and noise robustness. Using the proposed MTC-MRF framework for tissue-parameter quantification, the test-retest study showed a high degree of repeatability in which the coefficients of variance were less than 7% for all tissue parameters. CONCLUSION Bloch simulator-driven, deep-learning MTC-MRF can provide robust and repeatable multiple-tissue parameter quantification in a clinically feasible scan time on a 3T scanner.
Collapse
Affiliation(s)
- Munendra Singh
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shanshan Jiang
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yuguo Li
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Peter van Zijl
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Jinyuan Zhou
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hye-Young Heo
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Sun C, Zhao Y, Zu Z. Validation of the presence of fast exchanging amine CEST effect at low saturation powers and its influence on the quantification of APT. Magn Reson Med 2023; 90:1502-1517. [PMID: 37317709 PMCID: PMC10614282 DOI: 10.1002/mrm.29742] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
PURPOSE Accurately quantifying the amide proton transfer (APT) effect and the underlying exchange parameters is crucial for its applications, but previous studies have reported conflicting results. In these quantifications, the CEST effect from the fast exchange amine was always ignored because it was considered weak with low saturation powers. This paper aims to evaluate the influence of the fast exchange amine CEST on the quantification of APT at low saturation powers. METHODS A quantification method with low and high saturation powers was used to distinguish APT from the fast exchange amine CEST effect. Simulations were conducted to assess the method's capability to separate APT from the fast exchange amine CEST effect. Animal experiments were performed to assess the relative contributions from the fast exchange amine and amide to CEST signals at 3.5 ppm. Three APT quantification methods, each with varying degrees of contamination from the fast exchange amine, were employed to process the animal data to assess the influence of the amine on the quantification of APT effect and the exchange parameters. RESULTS The relative size of the fast exchange amine CEST effect to APT effect gradually increases with increasing saturation power. At 9.4 T, it increases from approximately 20% to 40% of APT effect with a saturation power increase from 0.25 to 1 μT. CONCLUSION The fast exchange amine CEST effect leads overestimation of APT effect, fitted amide concentration, and amide-water exchange rate, potentially contributing to the conflicting results reported in previous studies.
Collapse
Affiliation(s)
- Casey Sun
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, US
- Department of Chemistry, University of Florida, Gainesville, US
| | - Yu Zhao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, US
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, US
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, US
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, US
- Department of Biomedical Engineering, Vanderbilt University, Nashville, US
| |
Collapse
|
11
|
Shimron E, Perlman O. AI in MRI: Computational Frameworks for a Faster, Optimized, and Automated Imaging Workflow. Bioengineering (Basel) 2023; 10:492. [PMID: 37106679 PMCID: PMC10135995 DOI: 10.3390/bioengineering10040492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Over the last decade, artificial intelligence (AI) has made an enormous impact on a wide range of fields, including science, engineering, informatics, finance, and transportation [...].
Collapse
Affiliation(s)
- Efrat Shimron
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
| | - Or Perlman
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
12
|
Sawaya R, Ueda J, Saito S. Quantitative Susceptibility Mapping and Amide Proton Transfer-Chemical Exchange Saturation Transfer for the Evaluation of Intracerebral Hemorrhage Model. Int J Mol Sci 2023; 24:ijms24076627. [PMID: 37047596 PMCID: PMC10095413 DOI: 10.3390/ijms24076627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
This study aimed to evaluate an intracerebral hemorrhage (ICH) model using quantitative susceptibility mapping (QSM) and chemical exchange saturation transfer (CEST) with preclinical 7T-magnetic resonance imaging (MRI) and determine the potential of amide proton transfer-CEST (APT-CEST) for use as a biomarker for the early detection of ICH. Six Wistar male rats underwent MRI, and another six underwent histopathological examinations on postoperative days 0, 3, and 7. The ICH model was created by injecting bacterial collagenase into the right hemisphere of the brain. QSM and APT-CEST MRI were performed using horizontal 7T-MRI. Histological studies were performed to observe ICH and detect iron deposition at the ICH site. T2-weighted images (T2WI) revealed signal changes associated with hemoglobin degeneration in red blood cells, indicating acute-phase hemorrhage on day 0, late-subacute-phase hemorrhage on day 3, and chronic-phase hemorrhage on day 7. The susceptibility alterations in each phase were detected using QSM. QSM and Berlin blue staining revealed hemosiderin deposition in the chronic phase. APT-CEST revealed high magnetization transfer ratios in the acute phase. Abundant mobile proteins and peptides were observed in early ICH, which were subsequently diluted. APT-CEST imaging may be a reliable noninvasive biomarker for the early diagnosis of ICH.
Collapse
Affiliation(s)
- Reika Sawaya
- Department of Medical Physics and Engineering, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita 560-0871, Osaka, Japan
| | - Junpei Ueda
- Department of Medical Physics and Engineering, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita 560-0871, Osaka, Japan
| | - Shigeyoshi Saito
- Department of Medical Physics and Engineering, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita 560-0871, Osaka, Japan
- Department of Advanced Medical Technologies, National Cardiovascular and Cerebral Research Center, Suita 564-8565, Osaka, Japan
| |
Collapse
|