1
|
Babaloo R, Atalar E. Minimizing electric fields and increasing peripheral nerve stimulation thresholds using a body gradient array coil. Magn Reson Med 2024; 92:1290-1305. [PMID: 38624032 DOI: 10.1002/mrm.30109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/22/2024] [Accepted: 03/23/2024] [Indexed: 04/17/2024]
Abstract
PURPOSE To demonstrate the performance of gradient array coils in minimizing switched-gradient-induced electric fields (E-fields) and improving peripheral nerve stimulation (PNS) thresholds while generating gradient fields with adjustable linearity across customizable regions of linearity (ROLs). METHODS A body gradient array coil is used to reduce the induced E-fields on the surface of a body model by modulating applied currents. This is achieved by performing an optimization problem with the peak E-field as the objective function and current amplitudes as unknown variables. Coil dimensions and winding patterns are fixed throughout the optimization, whereas other engineering metrics remain adjustable. Various scenarios are explored by manipulating adjustable parameters. RESULTS The array design consistently yields lower E-fields and higher PNS thresholds across all scenarios compared with a conventional coil. When the gradient array coil generates target gradient fields within a 44-cm-diameter spherical ROL, the maximum E-field is reduced by 10%, 18%, and 61% for the X, Y, and Z gradients, respectively. Transitioning to a smaller ROL (24 cm) and relaxing the gradient linearity error results in further E-field reductions. In oblique gradients, the array coil demonstrates the most substantial reduction of 40% in the Z-Y direction. Among the investigated scenarios, the most significant increase of 4.3-fold is observed in the PNS thresholds. CONCLUSION Our study demonstrated that gradient array coils offer a promising pathway toward achieving high-performance gradient coils regarding gradient strength, slew rate, and PNS thresholds, especially in scenarios in which linear magnetic fields are required within specific target regions.
Collapse
Affiliation(s)
- Reza Babaloo
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
| | - Ergin Atalar
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
| |
Collapse
|
2
|
Ramos-Llordén G, Park DJ, Kirsch JE, Scholz A, Keil B, Maffei C, Lee HH, Bilgic B, Edlow BL, Mekkaoui C, Yendiki A, Witzel T, Huang SY. Eddy current-induced artifact correction in high b-value ex vivo human brain diffusion MRI with dynamic field monitoring. Magn Reson Med 2024; 91:541-557. [PMID: 37753621 PMCID: PMC10842131 DOI: 10.1002/mrm.29873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/28/2023]
Abstract
PURPOSE To investigate whether spatiotemporal magnetic field monitoring can correct pronounced eddy current-induced artifacts incurred by strong diffusion-sensitizing gradients up to 300 mT/m used in high b-value diffusion-weighted (DW) EPI. METHODS A dynamic field camera equipped with 16 1 H NMR field probes was first used to characterize field perturbations caused by residual eddy currents from diffusion gradients waveforms in a 3D multi-shot EPI sequence on a 3T Connectom scanner for different gradient strengths (up to 300 mT/m), diffusion directions, and shots. The efficacy of dynamic field monitoring-based image reconstruction was demonstrated on high-gradient strength, submillimeter resolution whole-brain ex vivo diffusion MRI. A 3D multi-shot image reconstruction framework was developed that incorporated the nonlinear phase evolution measured with the dynamic field camera. RESULTS Phase perturbations in the readout induced by residual eddy currents from strong diffusion gradients are highly nonlinear in space and time, vary among diffusion directions, and interfere significantly with the image encoding gradients, changing the k-space trajectory. During the readout, phase modulations between odd and even EPI echoes become non-static and diffusion encoding direction-dependent. Superior reduction of ghosting and geometric distortion was achieved with dynamic field monitoring compared to ghosting reduction approaches such as navigator- and structured low-rank-based methods or MUSE followed by image-based distortion correction with the FSL tool "eddy." CONCLUSION Strong eddy current artifacts characteristic of high-gradient strength DW-EPI can be well corrected with dynamic field monitoring-based image reconstruction.
Collapse
Affiliation(s)
- Gabriel Ramos-Llordén
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Daniel J. Park
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - John E. Kirsch
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Alina Scholz
- Institute of Medical Physics and Radiation Protection, Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Boris Keil
- Institute of Medical Physics and Radiation Protection, Mittelhessen University of Applied Sciences, Giessen, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Marburg, Philipps University of Marburg, Baldingerstrasse 1, 35043, Marburg, Germany
| | - Chiara Maffei
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Hong-Hsi Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Brian L. Edlow
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Choukri Mekkaoui
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Anastasia Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | | | - Susie Y. Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
3
|
Ramos-Llordén G, Park D, Kirsch JE, Scholz A, Keil B, Maffei C, Lee HH, Bilgiç B, Edlow BL, Mekkaoui C, Yendiki A, Witzel T, Huang SY. Eddy current-induced artifacts correction in high gradient strength diffusion MRI with dynamic field monitoring: demonstration in ex vivo human brain imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528684. [PMID: 36824894 PMCID: PMC9948962 DOI: 10.1101/2023.02.15.528684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Purpose To demonstrate the advantages of spatiotemporal magnetic field monitoring to correct eddy current-induced artifacts (ghosting and geometric distortions) in high gradient strength diffusion MRI (dMRI). Methods A dynamic field camera with 16 NMR field probes was used to characterize eddy current fields induced from diffusion gradients for different gradients strengths (up to 300 mT/m), diffusion directions, and shots in a 3D multi-shot EPI sequence on a 3T Connectom scanner. The efficacy of dynamic field monitoring-based image reconstruction was demonstrated on high-resolution whole brain ex vivo dMRI. A 3D multi-shot image reconstruction framework was informed with the actual nonlinear phase evolution measured with the dynamic field camera, thereby accounting for high-order eddy currents fields on top of the image encoding gradients in the image formation model. Results Eddy current fields from diffusion gradients at high gradient strength in a 3T Connectom scanner are highly nonlinear in space and time, inducing high-order spatial phase modulations between odd/even echoes and shots that are not static during the readout. Superior reduction of ghosting and geometric distortion was achieved with dynamic field monitoring compared to ghosting approaches such as navigator- and structured low-rank-based methods or MUSE, followed by image-based distortion correction with eddy. Improved dMRI analysis is demonstrated with diffusion tensor imaging and high-angular resolution diffusion imaging. Conclusion Strong eddy current artifacts characteristic of high gradient strength dMRI can be well corrected with dynamic field monitoring-based image reconstruction, unlike the two-step approach consisting of ghosting correction followed by geometric distortion reduction with eddy.
Collapse
|