1
|
Abstract
The pancreatic β-cell secretes insulin in response to elevated plasma glucose. This review applies an external bioenergetic critique to the central processes of glucose-stimulated insulin secretion, including glycolytic and mitochondrial metabolism, the cytosolic adenine nucleotide pool, and its interaction with plasma membrane ion channels. The control mechanisms responsible for the unique responsiveness of the cell to glucose availability are discussed from bioenergetic and metabolic control standpoints. The concept of coupling factor facilitation of secretion is critiqued, and an attempt is made to unravel the bioenergetic basis of the oscillatory mechanisms controlling secretion. The need to consider the physiological constraints operating in the intact cell is emphasized throughout. The aim is to provide a coherent pathway through an extensive, complex, and sometimes bewildering literature, particularly for those unfamiliar with the field.
Collapse
Affiliation(s)
- David G Nicholls
- Buck Institute for Research on Aging, Novato, California; and Department of Clinical Sciences, Unit of Molecular Metabolism, Lund University Diabetes Centre, Malmo, Sweden
| |
Collapse
|
2
|
Santacruz L, Hernandez A, Nienaber J, Mishra R, Pinilla M, Burchette J, Mao L, Rockman HA, Jacobs DO. Normal cardiac function in mice with supraphysiological cardiac creatine levels. Am J Physiol Heart Circ Physiol 2013; 306:H373-81. [PMID: 24271489 DOI: 10.1152/ajpheart.00411.2013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Creatine and phosphocreatine levels are decreased in heart failure, and reductions in myocellular phosphocreatine levels predict the severity of the disease and portend adverse outcomes. Previous studies of transgenic mouse models with increased creatine content higher than two times baseline showed the development of heart failure and shortened lifespan. Given phosphocreatine's role in buffering ATP content, we tested the hypothesis whether elevated cardiac creatine content would alter cardiac function under normal physiological conditions. Here, we report the creation of transgenic mice that overexpress the human creatine transporter (CrT) in cardiac muscle under the control of the α-myosin heavy chain promoter. Cardiac transgene expression was quantified by qRT-PCR, and human CrT protein expression was documented on Western blots and immunohistochemistry using a specific anti-CrT antibody. High-energy phosphate metabolites and cardiac function were measured in transgenic animals and compared with age-matched, wild-type controls. Adult transgenic animals showed increases of 5.7- and 4.7-fold in the content of creatine and free ADP, respectively. Phosphocreatine and ATP levels were two times as high in young transgenic animals but declined to control levels by the time the animals reached 8 wk of age. Transgenic mice appeared to be healthy and had normal life spans. Cardiac morphometry, conscious echocardiography, and pressure-volume loop studies demonstrated mild hypertrophy but normal function. Based on our characterization of the human CrT protein expression, creatine and phosphocreatine content, and cardiac morphometry and function, these transgenic mice provide an in vivo model for examining the therapeutic value of elevated creatine content for cardiac pathologies.
Collapse
Affiliation(s)
- Lucia Santacruz
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Balaban RS. Perspectives on: SGP symposium on mitochondrial physiology and medicine: metabolic homeostasis of the heart. ACTA ACUST UNITED AC 2013; 139:407-14. [PMID: 22641635 PMCID: PMC3362523 DOI: 10.1085/jgp.201210783] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Robert S Balaban
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20817, USA.
| |
Collapse
|
4
|
Kadenbach B, Ramzan R, Moosdorf R, Vogt S. The role of mitochondrial membrane potential in ischemic heart failure. Mitochondrion 2011; 11:700-6. [DOI: 10.1016/j.mito.2011.06.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/13/2011] [Accepted: 06/08/2011] [Indexed: 11/16/2022]
|
5
|
Ramzan R, Staniek K, Kadenbach B, Vogt S. Mitochondrial respiration and membrane potential are regulated by the allosteric ATP-inhibition of cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1672-80. [PMID: 20599681 DOI: 10.1016/j.bbabio.2010.06.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/01/2010] [Accepted: 06/07/2010] [Indexed: 11/28/2022]
Abstract
This paper describes the problems of measuring the allosteric ATP-inhibition of cytochrome c oxidase (CcO) in isolated mitochondria. Only by using the ATP-regenerating system phosphoenolpyruvate and pyruvate kinase full ATP-inhibition of CcO could be demonstrated by kinetic measurements. The mechanism was proposed to keep the mitochondrial membrane potential (DeltaPsi(m)) in living cells and tissues at low values (100-140 mV), when the matrix ATP/ADP ratios are high. In contrast, high DeltaPsi(m) values (180-220 mV) are generally measured in isolated mitochondria. By using a tetraphenyl phosphonium electrode we observed in isolated rat liver mitochondria with glutamate plus malate as substrates a reversible decrease of DeltaPsi(m) from 233 to 123 mV after addition of phosphoenolpyruvate and pyruvate kinase. The decrease of DeltaPsi(m) is explained by reversal of the gluconeogenetic enzymes pyruvate carboxylase and phosphoenolpyruvate carboxykinase yielding ATP and GTP, thus increasing the matrix ATP/ADP ratio. With rat heart mitochondria, which lack these enzymes, no decrease of DeltaPsi(m) was found. From the data we conclude that high matrix ATP/ADP ratios keep DeltaPsi(m) at low values by the allosteric ATP-inhibition of CcO, thus preventing the generation of reactive oxygen species which could generate degenerative diseases. It is proposed that respiration in living eukaryotic organisms is normally controlled by the DeltaPsi(m)-independent "allosteric ATP-inhibition of CcO." Only when the allosteric ATP-inhibition is switched off under stress, respiration is regulated by "respiratory control," based on DeltaPsi(m) according to the Mitchell Theory.
Collapse
Affiliation(s)
- Rabia Ramzan
- Biomedical Research Center, Cardiovascular Laboratory, Philipps-University, D-35032 Marburg, Germany
| | | | | | | |
Collapse
|
6
|
ATP-binding cassette proteins involved in glucose and lipid homeostasis. Biosci Biotechnol Biochem 2010; 74:899-907. [PMID: 20460728 DOI: 10.1271/bbb.90921] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glucose and lipids are essential to the body, but excess glucose or lipids lead to metabolic syndrome. ATP-binding cassette (ABC) proteins are involved in the homeostasis of glucose and lipid in that they regulate insulin secretion and remove excess cholesterol from the body. Sulfonylurea receptor (SUR) is a subunit of the ATP-sensitive potassium channels, which regulate insulin secretion from pancreatic beta-cells by sensing cellular metabolic levels. ABCG1 removes excess cholesterol from peripheral tissues and functions in reverse cholesterol transport to the liver. ABCG5 and ABCG8 suppress the absorption of cholesterol in the intestine and exclude cholesterol from the liver to the bile duct. ABCG1 and ABCG4, expressed in the central nervous system, play roles in lipid metabolism in the brain. These ABC proteins are targets of drugs and functional foods to cure and prevent diabetes, hyperlipidemia, and neurodegenerative diseases. In this review, recent knowledge of the physiological function and regulation of ABC proteins in the homeostasis of glucose and lipids is discussed.
Collapse
|
7
|
Canyon SJ, Dobson GP. The effect of an adenosine and lidocaine intravenous infusion on myocardial high-energy phosphates and pH during regional ischemia in the rat model in vivo. Can J Physiol Pharmacol 2007; 84:903-12. [PMID: 17111035 DOI: 10.1139/y06-035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously shown that an intravenous infusion of adenosine and lidocaine (AL) solution protects against death and severe arrhythmias and reduces infarct size in the in vivo rat model of regional ischemia. The aim of this study was to examine the relative changes of myocardial high-energy phosphates (ATP and PCr) and pH in the left ventricle during ischemia-reperfusion using 31P NMR in AL-treated rats (n = 7) and controls (n = 6). The AL solution (A: 305 microg.(kg body mass)-1.min-1; L: 608 microg.(kg body mass)-1.min-1) was administered intravenously 5 min before and during 30 min coronary artery ligation. Two controls died from ventricular fibrillation; no deaths were recorded in AL-treated rats. In controls that survived, ATP fell to 73% +/- 29% of baseline by 30 min ischemia and decreased further to 68% +/- 28% during reperfusion followed by a sharp recovery at the end of the reperfusion period. AL-treated rats maintained relatively constant ATP throughout ischemia and reperfusion ranging from 95% +/- 6% to 121% +/- 10% of baseline. Owing to increased variability in controls, these results were not found to be significant. In contrast, control [PCr] was significantly reduced in controls compared with AL-treated rats during ischemia at 10 min (68% +/- 7% vs. 99% +/- 6%), at 15 min (68% +/- 10% vs. 93% +/- 2%), and at 20 min (67% +/- 15% vs. 103% +/- 5%) and during reperfusion at 10 min (56% +/- 22% vs. 99% +/- 7%), at 15 min (60% +/- 10% vs. 98% +/- 7%), and at 35 min (63% +/- 14% vs. 120% +/- 11%) (p < 0.05). Interestingly, changes in intramyocardial pH between each group were not significantly different during ischemia and fell by about 1 pH unit to 6.6. During reperfusion, pH in AL-treated rats recovered to baseline in 5 min but not in controls, which recovered to only around pH 7.1. There was no significant difference in the heart rate, mean arterial pressure, and rate-pressure product between the controls and AL treatment during ischemia and reperfusion. We conclude that AL cardioprotection appears to be associated with the preservation of myocardial high-energy phosphates, downregulation of the heart at the expense of a high acid-load during ischemia, and with a rapid recovery of myocardial pH during reperfusion.
Collapse
Affiliation(s)
- Sarah J Canyon
- Department of Physiology and Pharmacology, James Cook University, Townsville, Queensland, 4811 Australia
| | | |
Collapse
|
8
|
Lee J, Hu Q, Nakamura Y, Wang X, Zhang X, Zhu X, Chen W, Yang Q, Zhang J. Open-chest 31P magnetic resonance spectroscopy of mouse heart at 4.7 Tesla. J Magn Reson Imaging 2007; 24:1269-76. [PMID: 17096395 DOI: 10.1002/jmri.20766] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PURPOSE To develop a rapid, robust, and accurate method for assessing myocardial energetics in mice and demonstrate its applicability to mouse models of acquired and genetic heart disease. MATERIALS AND METHODS We combined surface coil localization (10-mm diameter, tunable between (1)H and (31)P, using adiabatic half-passage radiofrequency pulses) and surgery (electrocautery removal of anterior chest wall) to create an open-chest method for acquiring in vivo (31)P nuclear magnetic resonance (NMR) cardiac spectra from mice at 4.7T within 12 minutes. Normal BALB/c mice, BALB/c with myocardial infarction (MI), cardiomyocyte-restricted peroxisome proliferator-activated receptor-delta knockout (KO) (CR-PPARd(-/-)) and control loxP-flanked Ppard (Ppard(flox/flox)) mice were examined. RESULTS The mean phosphocreatine (PCr)/adenosine triphosphate (ATP) ratios in control BALB/c mice, BALB/c MI mice, Ppard(flox/flox) mice, and PPAR-delta KO mice were 2.13 +/- 0.09 (N = 11), 1.35 +/- 0.07 (N = 9, P < 0.001 vs. BALB/c control), 1.92 +/- 0.09 (N = 5), and 1.31 +/- 0.12 (N = 5, P < 0.005 vs. Ppard(flox/flox) control), respectively. The significant depression of myocardial PCr/ATP we observed in these genetic/acquired models of heart disease was in accord with previous data from analogous large animal models. No NMR signal contamination from chamber blood or adjacent skeletal muscle was identified. CONCLUSION This new technique provides cardiac (31)P spectra suitable for accurate quantitative analysis in a relatively short acquisition time, is suitable for terminal studies of mouse myocardial energy metabolism, and could be installed in virtually any NMR laboratory to study myocardial energetics in numerous mouse models of human heart disease.
Collapse
Affiliation(s)
- Joseph Lee
- Department of Medicine, University of Minnesota Academic Health Center, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The ability to select a discrete region within the body for signal acquisition is a fundamental requirement of in vivo NMR spectroscopy. Ideally, it should be possible to tailor the selected volume to coincide exactly with the lesion or tissue of interest, without loss of signal from within this volume or contamination with extraneous signals. Many techniques have been developed over the past 25 years employing a combination of RF coil properties, static magnetic field gradients and pulse sequence design in an attempt to meet these goals. This review presents a comprehensive survey of these techniques, their various advantages and disadvantages, and implications for clinical applications. Particular emphasis is placed on the reliability of the techniques in terms of signal loss, contamination and the effect of nuclear relaxation and J-coupling. The survey includes techniques based on RF coil and pulse design alone, those using static magnetic field gradients, and magnetic resonance spectroscopic imaging. Although there is an emphasis on techniques currently in widespread use (PRESS, STEAM, ISIS and MRSI), the review also includes earlier techniques, in order to provide historical context, and techniques that are promising for future use in clinical and biomedical applications.
Collapse
Affiliation(s)
- Stephen F Keevil
- Department of Medical Physics, Guy's and St Thomas' NHS Foundation Trust, Guy's Hospital, London, SE1 9RT, UK.
| |
Collapse
|
10
|
Dobson GP. On being the right size: heart design, mitochondrial efficiency and lifespan potential. Clin Exp Pharmacol Physiol 2003; 30:590-7. [PMID: 12890185 DOI: 10.1046/j.1440-1681.2003.03876.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. From the smallest shrew or bumble-bee bat to the largest blue whale, heart size varies by over seven orders of magnitude (from 12 mg to 600 kg). This study reviews the scaling relationships between heart design, cellular bioenergetics and mitochondrial efficiencies in mammals of different body sizes. 2. The [31P]-nuclear magnetic resonance-derived [phosphocreatine]/[ATP] ratio in hearts of smaller mammals is significantly higher (2.7 +/- 0.3 for mouse; n = 22) than in larger mammals (1.6 +/- 0.3 for humans; n = 13). 3. The inverse of the free myocardial cytosolic [ADP] concentration and the cytosolic phosphorylation ratio ([ATP]/[ADP][Pi]) scales with heart size and with absolute mitochondrial and myofibrillar volumes, close to a quarter-power (from -0.22 to -0.28; r = 0.99). 4. Assuming a similar mitochondrial P/O ratio and the same maximal amount of work required to convert 1 mol NADH to 0.5 mol O2 (i.e. 212.25 kJ/mol), the higher [ATP]/[ADP][Pi] ratios or cellular driving forces (DeltaG'ATP) in hearts of smaller mammals imply greater mitochondrial efficiencies in coupling ATP production to electron transport as body size decreases. For a P/O ratio of 2.5, the mitochondrial efficiency in the heart of a shrew, mouse, human and whale is 84, 82, 71 and 65%, respectively. 5. Higher cytosolic ATP]/[ADP][Pi] ratios and DeltaG'ATP values imply that the hearts of smaller mammals operate further from equilibrium than hearts of larger mammals. 6. As a consequence of scaling relationships, a number of remarkable invariants emerge when comparing heart function from the smallest shrew to the largest whale; the total volume of blood pumped by each heart in a lifetime is approximately 200 million L/kg heart and the total number of heart beats is approximately 1.1 billion per lifetime. 7. Similarly, the metabolic potential (total O2 consumed during adult lifespan per g bodyweight) for a 2 g shrew or a 100000 kg blue whale is approximately 38 L O2 consumed or 8.5 mol ATP/g body mass per lifetime. 8. The importance of quarter-power scaling relationships linking structural, metabolic and bioenergetic design to the natural ageing process and maximum lifespan potential is discussed.
Collapse
Affiliation(s)
- Geoffrey P Dobson
- Molecular Science Building, School of Biomedical Sciences, James Cook University, Townsville, Queensland, Australia.
| |
Collapse
|
11
|
Dobson GP, Himmelreich U. Heart design: free ADP scales with absolute mitochondrial and myofibrillar volumes from mouse to human. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1553:261-7. [PMID: 11997135 DOI: 10.1016/s0005-2728(01)00247-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Our aim was to estimate a number of bioenergetic parameters in the beating mouse, rat and guinea pig heart in situ and compare the values to those in hearts of mammals over a 2000-fold range in body mass. For the mouse, rat and guinea pig heart, we report a phosphorylation ratio of 1005+/-50 (n=16), 460+/-32 (n=10) and 330+/-22 (n=5) mM(-1) and a free cytosolic [ADP] concentration of 13, 18 and 22 microM, respectively. When each parameter was plotted against body mass, they scaled closely to the quarter power (-0.28, r=0.99 and -0.23, r=0.97). A similar regression slope was found when the inverse of free [ADP] was plotted against absolute mitochondrial (slope=-0.26, r=0.99) and myofibrillar volumes (slope=-0.24, r=0.99). The similar slopes indicate that the ratio of absolute mitochondria and myofibrillar volumes in the healthy mammalian heart is a constant, and independent of body size. In conclusion, our study supports the hypothesis that the mammalian heart has a number of highly conserved thermodynamic and kinetic parameters that obey quarter-power laws linking the phosphorylation ratio, ATP turnover rates, free [ADP] and absolute mitochondrial volumes to body size. The results are discussed in terms of possible mechanisms and potential deviations from these laws in some disease states.
Collapse
Affiliation(s)
- Geoffrey P Dobson
- Department of Physiology and Pharmacology, James Cook University, 4811, Townsville, Qld, Australia.
| | | |
Collapse
|
12
|
Beckmann N, Gentsch C, Baumann D, Bruttel K, Vassout A, Schoeffter P, Loetscher E, Bobadilla M, Perentes E, Rudin M. Current awareness. NMR IN BIOMEDICINE 2001; 14:217-222. [PMID: 11357188 DOI: 10.1002/nbm.669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In order to keep subscribers up-to-date with the latest developments in their field, John Wiley & Sons are providing a current awareness service in each issue of the journal. The bibliography contains newly published material in the field of NMR in biomedicine. Each bibliography is divided into 9 sections: 1 Books, Reviews ' Symposia; 2 General; 3 Technology; 4 Brain and Nerves; 5 Neuropathology; 6 Cancer; 7 Cardiac, Vascular and Respiratory Systems; 8 Liver, Kidney and Other Organs; 9 Muscle and Orthopaedic. Within each section, articles are listed in alphabetical order with respect to author. If, in the preceding period, no publications are located relevant to any one of these headings, that section will be omitted.
Collapse
Affiliation(s)
- N Beckmann
- Core Technologies Area, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|