1
|
Chen X, Shen Y, Song Z, Wang X, Yao H, Cai Y, Zhao ZA, Hu B. microRNA-2184 orchestrates Mauthner-cell axon regeneration in zebrafish via syt3 modulation. J Genet Genomics 2024; 51:911-921. [PMID: 38582297 DOI: 10.1016/j.jgg.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 03/30/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
MicroRNAs (miRNAs) play a significant role in axon regeneration following spinal cord injury. However, the functions of numerous miRNAs in axon regeneration within the central nervous system (CNS) remain largely unexplored. Here, we elucidate the positive role of microRNA-2184 (miR-2184) in axon regeneration within zebrafish Mauthner cells (M-cells). The upregulation of miR-2184 in a single M-cell can facilitate axon regeneration, while the specific sponge-induced silencing of miR-2184 leads to impeded regeneration. We show that syt3, a downstream target of miR-2184, negatively regulates axon regeneration, and the regeneration suppression modulated by syt3 depends on its binding to Ca2+. Furthermore, pharmacological stimulation of the cAMP/PKA pathway suggests that changes in the readily releasable pool may affect axon regeneration. Our data indicate that miR-2184 promotes axon regeneration of M-cells within the CNS by modulating the downstream target syt3, providing valuable insights into potential therapeutic strategies.
Collapse
Affiliation(s)
- Xinghan Chen
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yueru Shen
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zheng Song
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xinliang Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Huaitong Yao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuan Cai
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zi-Ang Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bing Hu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China; Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
2
|
Chanez-Paredes SD, Abtahi S, Zha J, Li E, Marsischky G, Zuo L, Grey MJ, He W, Turner JR. Mechanisms underlying distinct subcellular localization and regulation of epithelial long myosin light-chain kinase splice variants. J Biol Chem 2024; 300:105643. [PMID: 38199574 PMCID: PMC10862019 DOI: 10.1016/j.jbc.2024.105643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 12/13/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Intestinal epithelia express two long myosin light-chain kinase (MLCK) splice variants, MLCK1 and MLCK2, which differ by the absence of a complete immunoglobulin (Ig)-like domain 3 within MLCK2. MLCK1 is preferentially associated with the perijunctional actomyosin ring at steady state, and this localization is enhanced by inflammatory stimuli including tumor necrosis factor (TNF). Here, we sought to identify MLCK1 domains that direct perijunctional MLCK1 localization and their relevance to disease. Ileal biopsies from Crohn's disease patients demonstrated preferential increases in MLCK1 expression and perijunctional localization relative to healthy controls. In contrast to MLCK1, MLCK2 expressed in intestinal epithelia is predominantly associated with basal stress fibers, and the two isoforms have distinct effects on epithelial migration and barrier regulation. MLCK1(Ig1-4) and MLCK1(Ig1-3), but not MLCK2(Ig1-4) or MLCK1(Ig3), directly bind to F-actin in vitro and direct perijunctional recruitment in intestinal epithelial cells. Further study showed that Ig1 is unnecessary, but that, like Ig3, the unstructured linker between Ig1 and Ig2 (Ig1/2us) is essential for recruitment. Despite being unable to bind F-actin or direct recruitment independently, Ig3 does have dominant negative functions that allow it to displace perijunctional MLCK1, increase steady-state barrier function, prevent TNF-induced MLCK1 recruitment, and attenuate TNF-induced barrier loss. These data define the minimal domain required for MLCK1 localization and provide mechanistic insight into the MLCK1 recruitment process. Overall, the results create a foundation for development of molecularly targeted therapies that target key domains to prevent MLCK1 recruitment, restore barrier function, and limit inflammatory bowel disease progression.
Collapse
Affiliation(s)
- Sandra D Chanez-Paredes
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shabnam Abtahi
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Juanmin Zha
- Department of Oncology, The First Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genomic Resource Center, Suzhou Medical School of Soochow University, Suzhou, China
| | - Enkai Li
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Gerald Marsischky
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Li Zuo
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA; Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui, China
| | - Michael J Grey
- Gastroenterology Division, Department of Medicine, Beth-Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Weiqi He
- Department of Oncology, The First Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genomic Resource Center, Suzhou Medical School of Soochow University, Suzhou, China.
| | - Jerrold R Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
3
|
Dynamics of Endothelial Engagement and Filopodia Formation in Complex 3D Microscaffolds. Int J Mol Sci 2022; 23:ijms23052415. [PMID: 35269558 PMCID: PMC8910162 DOI: 10.3390/ijms23052415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 11/28/2022] Open
Abstract
The understanding of endothelium–extracellular matrix interactions during the initiation of new blood vessels is of great medical importance; however, the mechanobiological principles governing endothelial protrusive behaviours in 3D microtopographies remain imperfectly understood. In blood capillaries submitted to angiogenic factors (such as vascular endothelial growth factor, VEGF), endothelial cells can transiently transdifferentiate in filopodia-rich cells, named tip cells, from which angiogenesis processes are locally initiated. This protrusive state based on filopodia dynamics contrasts with the lamellipodia-based endothelial cell migration on 2D substrates. Using two-photon polymerization, we generated 3D microstructures triggering endothelial phenotypes evocative of tip cell behaviour. Hexagonal lattices on pillars (“open”), but not “closed” hexagonal lattices, induced engagement from the endothelial monolayer with the generation of numerous filopodia. The development of image analysis tools for filopodia tracking allowed to probe the influence of the microtopography (pore size, regular vs. elongated structures, role of the pillars) on orientations, engagement and filopodia dynamics, and to identify MLCK (myosin light-chain kinase) as a key player for filopodia-based protrusive mode. Importantly, these events occurred independently of VEGF treatment, suggesting that the observed phenotype was induced through microtopography. These microstructures are proposed as a model research tool for understanding endothelial cell behaviour in 3D fibrillary networks.
Collapse
|
4
|
Vesicular movements in the growth cone. Neurochem Int 2018; 119:71-76. [DOI: 10.1016/j.neuint.2017.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 08/29/2017] [Accepted: 09/24/2017] [Indexed: 01/03/2023]
|
5
|
Sherman SP, Bang AG. High-throughput screen for compounds that modulate neurite growth of human induced pluripotent stem cell-derived neurons. Dis Model Mech 2018; 11:dmm.031906. [PMID: 29361516 PMCID: PMC5894944 DOI: 10.1242/dmm.031906] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/29/2017] [Indexed: 01/01/2023] Open
Abstract
Development of technology platforms to perform compound screens of human induced pluripotent stem cell (hiPSC)-derived neurons with relatively high throughput is essential to realize their potential for drug discovery. Here, we demonstrate the feasibility of high-throughput screening of hiPSC-derived neurons using a high-content, image-based approach focused on neurite growth, a process that is fundamental to formation of neural networks and nerve regeneration. From a collection of 4421 bioactive small molecules, we identified 108 hit compounds, including 37 approved drugs, that target molecules or pathways known to regulate neurite growth, as well as those not previously associated with this process. These data provide evidence that many pathways and targets known to play roles in neurite growth have similar activities in hiPSC-derived neurons that can be identified in an unbiased phenotypic screen. The data also suggest that hiPSC-derived neurons provide a useful system to study the mechanisms of action and off-target activities of the approved drugs identified as hits, leading to a better understanding of their clinical efficacy and toxicity, especially in the context of specific human genetic backgrounds. Finally, the hit set we report constitutes a sublibrary of approved drugs and tool compounds that modulate neurites. This sublibrary will be invaluable for phenotypic analyses and interrogation of hiPSC-based disease models as probes for defining phenotypic differences and cellular vulnerabilities in patient versus control cells, as well as for investigations of the molecular mechanisms underlying human neurite growth in development and maintenance of neuronal networks, and nerve regeneration. Summary: High-throughput, small molecule screening of hiPSC-derived neurons using a high-content, image-based approach focused on neurite growth identified hit compounds, including approved drugs, which target molecules or pathways known to regulate neurite growth.
Collapse
Affiliation(s)
- Sean P Sherman
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute La Jolla, CA 92037, USA
| | - Anne G Bang
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute La Jolla, CA 92037, USA
| |
Collapse
|
6
|
Wang H, Gui SY, Chen FH, Zhou Q, Wang Y. New insights into 4-amino-2-tri-fluoromethyl-phenyl ester inhibition of cell growth and migration in the A549 lung adenocarcinoma cell line. Asian Pac J Cancer Prev 2015; 14:7265-70. [PMID: 24460286 DOI: 10.7314/apjcp.2013.14.12.7265] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE The present study was designed to investigate the probable mechanisms of synthetic retinoid 4-amino-2-tri-fluoromethyl-phenyl ester (ATPR) inhibition of the proliferation and migration of A549 human lung carcinoma cells. MATERIALS AND METHODS After the A549 cells were treated with different concentrations of ATPR or all-trans retinoic acid (ATRA) for 72 h, scratch-wound assays were performed to assess migration. Immunofluorescence was used to determine the distribution of CAV1 and RXRα, while expression of CAV1, MLCK, MLC, P38, and phosphorylation of MLC and P38 were detected by Western blotting. RESULTS ATPR could block the migration of A549 cells. The relative migration rate of ML-7 group had significantly decreased compared with control group. In addition, ATPR decreased the expression of a migration related proteins, MLCK, and phosphorylation of MLC and P38. ATPR could also influence the expression of RARs or RXRs. At the same time, CAV1 accumulated at cell membranes, and RXRα relocated to the nucleus after ATPR treatment. CONCLUSIONS Caveolae may be implicate in the transport of ATPR to the nucleus. Change in the expression and distribution of RXRα may be implicated in ATPR inhibition of A549 cell proliferation. The mechanisms of ATPR reduction in A549 cell migration may be associated with expression of MLCK and phosphorylation of MLC and P38.
Collapse
Affiliation(s)
- Hao Wang
- Department of Respiratory Medicine, the First Affiliated Hospital, Hefei, Anhui, China E-mail : ,
| | | | | | | | | |
Collapse
|
7
|
Chen M, Zhang W, Lu X, Hoggatt AM, Gunst SJ, Kassab GS, Tune JD, Herring BP. Regulation of 130-kDa smooth muscle myosin light chain kinase expression by an intronic CArG element. J Biol Chem 2013; 288:34647-57. [PMID: 24151072 DOI: 10.1074/jbc.m113.510362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The mylk1 gene encodes a 220-kDa nonmuscle myosin light chain kinase (MLCK), a 130-kDa smooth muscle MLCK (smMLCK), as well as the non-catalytic product telokin. Together, these proteins play critical roles in regulating smooth muscle contractility. Changes in their expression are associated with many pathological conditions; thus, it is important to understand the mechanisms regulating expression of mylk1 gene transcripts. Previously, we reported a highly conserved CArG box, which binds serum response factor, in intron 15 of mylk1. Because this CArG element is near the promoter that drives transcription of the 130-kDa smMLCK, we examined its role in regulating expression of this transcript. Results show that deletion of the intronic CArG region from a β-galactosidase reporter gene abolished transgene expression in mice in vivo. Deletion of the CArG region from the endogenous mylk1 gene, specifically in smooth muscle cells, decreased expression of the 130-kDa smMLCK by 40% without affecting expression of the 220-kDa MLCK or telokin. This reduction in 130-kDa smMLCK expression resulted in decreased phosphorylation of myosin light chains, attenuated smooth muscle contractility, and a 24% decrease in small intestine length that was associated with a significant reduction of Ki67-positive smooth muscle cells. Overall, these data show that the CArG element in intron 15 of the mylk1 gene is necessary for maximal expression of the 130-kDa smMLCK and that the 130-kDa smMLCK isoform is specifically required to regulate smooth muscle contractility and small intestine smooth muscle cell proliferation.
Collapse
Affiliation(s)
- Meng Chen
- From the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Al-Ali H, Schürer SC, Lemmon VP, Bixby JL. Chemical interrogation of the neuronal kinome using a primary cell-based screening assay. ACS Chem Biol 2013; 8:1027-36. [PMID: 23480631 DOI: 10.1021/cb300584e] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A fundamental impediment to functional recovery from spinal cord injury (SCI) and traumatic brain injury is the lack of sufficient axonal regeneration in the adult central nervous system. There is thus a need to develop agents that can stimulate axon growth to re-establish severed connections. Given the critical role played by protein kinases in regulating axon growth and the potential for pharmacological intervention, small molecule protein kinase inhibitors present a promising therapeutic strategy. Here, we report a robust cell-based phenotypic assay, utilizing primary rat hippocampal neurons, for identifying small molecule kinase inhibitors that promote neurite growth. The assay is highly reliable and suitable for medium-throughput screening, as indicated by its Z'-factor of 0.73. A focused structurally diverse library of protein kinase inhibitors was screened, revealing several compound groups with the ability to strongly and consistently promote neurite growth. The best performing bioassay hit robustly and consistently promoted axon growth in a postnatal cortical slice culture assay. This study can serve as a jumping-off point for structure activity relationship (SAR) and other drug discovery approaches toward the development of drugs for treating SCI and related neurological pathologies.
Collapse
Affiliation(s)
- Hassan Al-Ali
- Miami Project to Cure Paralysis, ‡Center for Computational Sciences, and Departments of §Neurological Surgery and ∥Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Stephan C. Schürer
- Miami Project to Cure Paralysis, ‡Center for Computational Sciences, and Departments of §Neurological Surgery and ∥Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Vance P. Lemmon
- Miami Project to Cure Paralysis, ‡Center for Computational Sciences, and Departments of §Neurological Surgery and ∥Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - John L. Bixby
- Miami Project to Cure Paralysis, ‡Center for Computational Sciences, and Departments of §Neurological Surgery and ∥Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| |
Collapse
|
9
|
Zhang XF, Hyland C, Van Goor D, Forscher P. Calcineurin-dependent cofilin activation and increased retrograde actin flow drive 5-HT-dependent neurite outgrowth in Aplysia bag cell neurons. Mol Biol Cell 2012; 23:4833-48. [PMID: 23097492 PMCID: PMC3521690 DOI: 10.1091/mbc.e12-10-0715] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Neurite outgrowth in response to soluble growth factors often involves changes in intracellular Ca(2+); however, mechanistic roles for Ca(2+) in controlling the underlying dynamic cytoskeletal processes have remained enigmatic. Bag cell neurons exposed to serotonin (5-hydroxytryptamine [5-HT]) respond with a threefold increase in neurite outgrowth rates. Outgrowth depends on phospholipase C (PLC) → inositol trisphosphate → Ca(2+) → calcineurin signaling and is accompanied by increased rates of retrograde actin network flow in the growth cone P domain. Calcineurin inhibitors had no effect on Ca(2+) release or basal levels of retrograde actin flow; however, they completely suppressed 5-HT-dependent outgrowth and F-actin flow acceleration. 5-HT treatments were accompanied by calcineurin-dependent increases in cofilin activity in the growth cone P domain. 5-HT effects were mimicked by direct activation of PLC, suggesting that increased actin network treadmilling may be a widespread mechanism for promoting neurite outgrowth in response to neurotrophic factors.
Collapse
Affiliation(s)
- Xiao-Feng Zhang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
10
|
Boomkamp SD, Riehle MO, Wood J, Olson MF, Barnett SC. The development of a rat in vitro model of spinal cord injury demonstrating the additive effects of rho and ROCK inhibitors on neurite outgrowth and myelination. Glia 2011; 60:441-56. [DOI: 10.1002/glia.22278] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 11/11/2011] [Indexed: 12/20/2022]
|
11
|
Bennett M. Schizophrenia: susceptibility genes, dendritic-spine pathology and gray matter loss. Prog Neurobiol 2011; 95:275-300. [DOI: 10.1016/j.pneurobio.2011.08.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 02/01/2023]
|
12
|
Nölle A, Zeug A, van Bergeijk J, Tönges L, Gerhard R, Brinkmann H, Al Rayes S, Hensel N, Schill Y, Apkhazava D, Jablonka S, O'mer J, Srivastav RK, Baasner A, Lingor P, Wirth B, Ponimaskin E, Niedenthal R, Grothe C, Claus P. The spinal muscular atrophy disease protein SMN is linked to the Rho-kinase pathway via profilin. Hum Mol Genet 2011; 20:4865-78. [PMID: 21920940 DOI: 10.1093/hmg/ddr425] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spinal muscular atrophy (SMA), a frequent neurodegenerative disease, is caused by reduced levels of functional survival of motoneuron (SMN) protein. SMN is involved in multiple pathways, including RNA metabolism and splicing as well as motoneuron development and function. Here we provide evidence for a major contribution of the Rho-kinase (ROCK) pathway in SMA pathogenesis. Using an in vivo protein interaction system based on SUMOylation of proteins, we found that SMN is directly interacting with profilin2a. Profilin2a binds to a stretch of proline residues in SMN, which is heavily impaired by a novel SMN2 missense mutation (S230L) derived from a SMA patient. In different SMA models, we identified differential phosphorylation of the ROCK-downstream targets cofilin, myosin-light chain phosphatase and profilin2a. We suggest that hyper-phosphorylation of profilin2a is the molecular link between SMN and the ROCK pathway repressing neurite outgrowth in neuronal cells. Finally, we found a neuron-specific increase in the F-/G-actin ratio that further support the role of actin dynamics in SMA pathogenesis.
Collapse
Affiliation(s)
- Anna Nölle
- Institute for Neuroanatomy, Hannover Medical School, Hannover 30623, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zha J, Chen X, Li C, Zhu M, Ding G, He W. One-Step Construction of Lentiviral Reporter Using Red-Mediated Recombination. Mol Biotechnol 2011; 49:278-82. [DOI: 10.1007/s12033-011-9405-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Bennett MR, Farnell L, Gibson WG. A Model of NMDA Receptor Control of F-actin Treadmilling in Synaptic Spines and Their Growth. Bull Math Biol 2010; 73:2109-31. [DOI: 10.1007/s11538-010-9614-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 11/26/2010] [Indexed: 12/16/2022]
|
15
|
Integrins and ion channels in cell migration: implications for neuronal development, wound healing and metastatic spread. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 674:107-23. [PMID: 20549944 DOI: 10.1007/978-1-4419-6066-5_10] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cells migration is necessary for proper embryonic development and adult tissue remodeling. Its mechanisms determine the physiopathology of processes such as neuronal targeting, inflammation, wound healing and metastatic spread. Crawling of cells onto solid surfaces requires a controlled sequence of cell protrusions and retractions that mainly depends on sophisticated regulation of the actin cytoskeleton, although the contribution of microtubules should not be neglected. This process is triggered and modulated by a combination of diffusible and fixed environmental signals. External cues are sensed and integrated by membrane receptors, including integrins, which transduce these signals into cellular signaling pathways, often centered on the small GTPase proteins belonging to the Rho family. These pathways regulate the coordinated cytoskeletal rearrangements necessary for proper timing of adhesion, contraction and detachement at the front and rear side of cells finding their way through the extracellular spaces. The overall process involves continuous modulation of cell motility, shape and volume, in which ion channels play major roles. In particular, Ca2+ signals have both global and local regulatory effects on cell motility, because they target the contractile proteins as well as many regulatory proteins. After reviewing the fundamental mechanisms of eukaryotic cell migration onto solid substrates, we briefly describe how integrin receptors and ion channels are involved in cell movement. We next examine a few processes in which these mechanisms have been studied in depth. We thus illustrate how integrins and K+ channels control cell volume and migration, how intracellular Ca2+ homeostasis affects the motility of neuronal growth cones and what is known about the ion channel roles in epithelial cell migration. These mechanisms are implicated in a variety of pathological processes, such as the disruption of neural circuits and wound healing. Finally, we describe the interaction between neoplastic cells and their local environment and how derangement of adhesion can lead to metastatic spread. It is likely that the cellular mechanisms controlled by integrin receptors, ion channels or both participate in the entire metastatic process. Until now, however, evidence is limited to a few steps of the metastatic cascade, such as brain tumor invasiveness.
Collapse
|
16
|
Twomey E, Li Y, Lei J, Sodja C, Ribecco-Lutkiewicz M, Smith B, Fang H, Bani-Yaghoub M, McKinnell I, Sikorska M. Regulation of MYPT1 stability by the E3 ubiquitin ligase SIAH2. Exp Cell Res 2009; 316:68-77. [PMID: 19744480 DOI: 10.1016/j.yexcr.2009.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 08/25/2009] [Accepted: 09/01/2009] [Indexed: 10/20/2022]
Abstract
Myosin phosphatase target subunit 1 (MYPT1), together with catalytic subunit of type1 delta isoform (PP1cdelta) and a small 20-kDa regulatory unit (M20), form a heterotrimeric holoenzyme, myosin phosphatase (MP), which is responsible for regulating the extent of myosin light chain phosphorylation. Here we report the identification and characterization of a molecular interaction between Seven in absentia homolog 2 (SIAH2) and MYPT1 that resulted in the proteasomal degradation of the latter in mammalian cells, including neurons and glia. The interaction involved the substrate binding domain of SIAH2 (aa 116-324) and a central region of MYPT1 (aa 445-632) containing a degenerate consensus Siah-binding motif RLAYVAP (aa 493-499) evolutionally conserved from fish to humans. These findings suggest a novel mechanism whereby the ability of MP to modulate myosin light chain might be regulated by the degradation of its targeting subunit MYPT1 through the SIAH2-ubiquitin-proteasomal pathway. In this manner, the turnover of MYPT1 would serve to limit the duration and/or magnitude of MP activity required to achieve a desired physiological effect.
Collapse
Affiliation(s)
- Erin Twomey
- Neurogenesis and Brain Repair Group, Institute for Biological Sciences, National Research Council of Canada, 1200 Montreal Road, M-54, Ottawa, Canada ON K1A 0R6
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bennett M. Positive and negative symptoms in schizophrenia: the NMDA receptor hypofunction hypothesis, neuregulin/ErbB4 and synapse regression. Aust N Z J Psychiatry 2009; 43:711-21. [PMID: 19629792 DOI: 10.1080/00048670903001943] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Carlsson has put forward the hypothesis that the positive and negative symptoms of schizophrenia are due to failure of mesolimbic and mesocortical projections consequent on hypofunction of the glutamate N-methyl-d-aspartate (NMDA) receptor. The hypothesis has been recently emphasized in this Journal that the loss of synaptic spines with NMDA receptors, which can be precipitated by stress, can explain the emergence of positive symptoms such as hallucinations and that this synapse regression involves molecules such as neuregulin and its receptor ErbB4 that have been implicated in schizophrenia. In this essay these two hypotheses are brought together in a single scheme in which emphasis is placed on the molecular pathways from neuregulin/ErbB4, to modulation of the NMDA receptors, subsequent changes in the synaptic spine's cytoskeletal apparatus and so regression of the spines. It is suggested that identification of the molecular constituents of this pathway will allow synthesis of suitable substances for removing the hypofunction of NMDA receptors and so the phenotypic consequences that flow from this hypofunction.
Collapse
Affiliation(s)
- Maxwell Bennett
- Brain and Mind Research Institute, University of Sydney, NSW, Australia.
| |
Collapse
|
18
|
Wylie SR, Chantler PD. Myosin IIC: a third molecular motor driving neuronal dynamics. Mol Biol Cell 2008; 19:3956-68. [PMID: 18614800 DOI: 10.1091/mbc.e07-08-0744] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Neuronal dynamics result from the integration of forces developed by molecular motors, especially conventional myosins. Myosin IIC is a recently discovered nonsarcomeric conventional myosin motor, the function of which is poorly understood, particularly in relation to the separate but coupled activities of its close homologues, myosins IIA and IIB, which participate in neuronal adhesion, outgrowth and retraction. To determine myosin IIC function, we have applied a comparative functional knockdown approach by using isoform-specific antisense oligodeoxyribonucleotides to deplete expression within neuronally derived cells. Myosin IIC was found to be critical for driving neuronal process outgrowth, a function that it shares with myosin IIB. Additionally, myosin IIC modulates neuronal cell adhesion, a function that it shares with myosin IIA but not myosin IIB. Consistent with this role, myosin IIC knockdown caused a concomitant decrease in paxillin-phospho-Tyr118 immunofluorescence, similar to knockdown of myosin IIA but not myosin IIB. Myosin IIC depletion also created a distinctive phenotype with increased cell body diameter, increased vacuolization, and impaired responsiveness to triggered neurite collapse by lysophosphatidic acid. This novel combination of properties suggests that myosin IIC must participate in distinctive cellular roles and reinforces our view that closely related motor isoforms drive diverse functions within neuronal cells.
Collapse
Affiliation(s)
- Steven R Wylie
- Unit of Molecular and Cellular Biology, Royal Veterinary College, University of London, London NW1 0TU, United Kingdom
| | | |
Collapse
|
19
|
Rösner H, Möller W, Wassermann T, Mihatsch J, Blum M. Attenuation of actinomyosinII contractile activity in growth cones accelerates filopodia-guided and microtubule-based neurite elongation. Brain Res 2007; 1176:1-10. [PMID: 17888886 DOI: 10.1016/j.brainres.2007.07.081] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 06/28/2007] [Accepted: 07/02/2007] [Indexed: 01/01/2023]
Abstract
The myosinII-specific inhibitor blebbistatin was used to attenuate actinomyosinII contractility in E7-chicken retina explant, medulla and spinal cord neuronal cell cultures. Addition of 20-100 microM blebbistatin, a concentration range that reversibly disrupts actin stress fibers, led to a reduction of growth cone lamellipodial areas and to an elongation of filopodia within 5 to 10 min. These morphological changes were completely reversed after removing the inhibitor. In the continued presence of blebbistatin for several hours, a dose-dependent acceleration (up to 6-fold) of neurite outgrowth was observed. The rapidly elongating neuritic processes displayed narrowed growth cones with one to three long filopodia at the leading edge. At the same time, thin neuritic branches emerged in a "push"-like fashion guided by filopodial extensions. Immunocytochemical characterization of these thin sprouts revealed that they contained actin filaments, myosinIIA, phosphorylated neurofilament/tau epitopes, MAP2, NCAM-PSA, and microtubules, demonstrating that these processes presented neurites and not filopodia. The crucial involvement of microtubules in blebbistatin-induced accelerated neurite extension was confirmed by its inhibition in the presence of nocodazole or taxol. The promotion by blebbistatin of neurite outgrowth occurred on polylysine, laminin, as well as on fibronectin as substrate. The presence of the Rho/ROCK-inhibitor Y-27632 also caused a dose-dependent promotion of neurite growth which was, however, 3-fold less pronounced as compared to blebbistatin. In contrast to blebbistatin, Y-27632 led to the enlargement of growth cone lamellipodial extensions. Our data demonstrate that neurite outgrowth and branching are inversely correlated with the degree of actinomyosinII contractility which determines the speed of retrograde flow and turnover of actin filaments and, by this, microtubule extension.
Collapse
Affiliation(s)
- Harald Rösner
- Institute of Zoology, Cell- and Developmental Neuro-Biology, University of Hohenheim, Stuttgart, Germany.
| | | | | | | | | |
Collapse
|
20
|
Abstract
Neuronal motility is a fundamental feature that underlies the development, regeneration, and plasticity of the nervous system. Two major developmental events--directed migration of neuronal precursor cells to the proper positions and guided elongation of axons to their target cells--depend on large-scale neuronal motility. At a finer scale, motility is also manifested in many aspects of neuronal structures and functions, ranging from differentiation and refinement of axonal and dendritic morphology during development to synapse remodeling associated with learning and memory in the adult brain. As a primary second messenger that conveys the cytoplasmic actions of electrical activity and many neuroactive ligands, Ca(2+) plays a central role in the regulation of neuronal motility. Recent studies have revealed common Ca(2+)-dependent signaling pathways that are deployed for regulating cytoskeletal dynamics associated with neuronal migration, axon and dendrite development and regeneration, and synaptic plasticity.
Collapse
Affiliation(s)
- James Q Zheng
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | | |
Collapse
|
21
|
Chan CCM, Khodarahmi K, Liu J, Sutherland D, Oschipok LW, Steeves JD, Tetzlaff W. Dose-dependent beneficial and detrimental effects of ROCK inhibitor Y27632 on axonal sprouting and functional recovery after rat spinal cord injury. Exp Neurol 2005; 196:352-64. [PMID: 16154567 DOI: 10.1016/j.expneurol.2005.08.011] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 08/17/2005] [Accepted: 08/17/2005] [Indexed: 10/25/2022]
Abstract
Axonal regeneration within the injured central nervous system (CNS) is hampered by multiple inhibitory molecules in the glial scar and the surrounding disrupted myelin. Many of these inhibitors stimulate, either directly or indirectly, the Rho intracellular signaling pathway, providing a strong rationale to target it following spinal cord injuries. In this study, we infused either control (PBS) or a ROCK inhibitor, Y27632 (2 mM or 20 mM, 12 microl/day for 14 days) into the intrathecal space of adult rats starting immediately after a cervical 4/5 dorsal column transection. Histological analysis revealed that high dose-treated animals displayed significantly more axon sprouts in the grey matter distal to injury compared to low dose-treated rats. Only the high dose regimen stimulated sprouting of the dorsal ascending axons along the walls of the lesion cavity. Footprint analysis revealed that the increased base of support normalized significantly faster in control and high dose-treated animals compared to low dose animals. Forepaw rotation angle, and the number of footslips on a horizontal ladder improved significantly more by 6 weeks in high dose animals compared to the other two groups. In a food pellet reaching test, high dose animals performed significantly better than low dose animals, which failed to recover. There was no evidence of mechanical allodynia in any treatment group; however, the slightly shortened heat withdrawal times normalized only with the high dose treatment. Collectively, our data support beneficial effects of high dose Y27632 treatment but indicate that low doses might be detrimental.
Collapse
Affiliation(s)
- Carmen C M Chan
- ICORD (International Collaboration On Repair Discoveries), University of British Columbia, 2469-6270 University Blvd., Vancouver, British Columbia, Canada V6T 1Z4
| | | | | | | | | | | | | |
Collapse
|
22
|
Polo-Parada L, Plattner F, Bose C, Landmesser LT. NCAM 180 acting via a conserved C-terminal domain and MLCK is essential for effective transmission with repetitive stimulation. Neuron 2005; 46:917-31. [PMID: 15953420 DOI: 10.1016/j.neuron.2005.05.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 04/01/2005] [Accepted: 05/06/2005] [Indexed: 12/31/2022]
Abstract
NCAM 180 isoform null neuromuscular junctions are unable to effectively mobilize and exocytose synaptic vesicles and thus exhibit periods of total transmission failure during high-frequency repetitive stimulation. We have identified a highly conserved C-terminal (KENESKA) domain on NCAM that is required to maintain effective transmission and demonstrate that it acts via a pathway involving MLCK and probably myosin light chain (MLC) and myosin II. By perfecting a method of introducing peptides into adult NMJs, we tested the hypothesized role of proteins in this pathway by competitive disruption of protein-protein interactions. The effects of KENESKA and other peptides on MLCK and MLC activation and on failures in both wild-type and NCAM 180 null junctions supported this pathway, and serine phosphorylation of KENESKA was critical. We propose that this pathway is required to replenish synaptic vesicles utilized during high levels of exocytosis by facilitating myosin-driven delivery of synaptic vesicles to active zones or their subsequent exocytosis.
Collapse
Affiliation(s)
- Luis Polo-Parada
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
23
|
Zhang G, Jin LQ, Sul JY, Haydon PG, Selzer ME. Live imaging of regenerating lamprey spinal axons. Neurorehabil Neural Repair 2005; 19:46-57. [PMID: 15673843 DOI: 10.1177/1545968305274577] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND The sea lamprey has been used as a model for the study of axonal regeneration after spinal cord injury. Although the growing tips of developing axons in lamprey have not been described, in all species studied, growth cones are complex in shape, consisting of a lamellipodium and filopodia, rich in F-actin and lacking neurofilaments (NF). By contrast, static immunohistochemical and electron microscopic observations of fixed tissue suggested that the tips of regenerating lamprey spinal axons are simple in shape, densely packed with NF, but contain very little F-actin. Thus, it has been proposed that regeneration of axons in the CNS of mature animals is not based on the canonical pulling mechanism of growth cones but involves an internal protrusive force, perhaps generated by the transport and assembly of NF. To eliminate the possibility that these histological features are due to fixation artifact, fluorescently labeled regenerating axon tips were imaged live. METHODS Spinal cords were transected, and after 0 to 10 weeks, the CNS was isolated in lamprey Ringer at 5 degrees C to 12 degrees C and the large reticulospinal axons were microinjected with fluorescent tracers. The proximal axon tips were imaged with a fluorescence dissecting microscope repeatedly over 2 to 5 days and photographed with confocal microscopy. Experiments were also performed through a dorsal incision in the living animal. Axon tips were microinjected as above or retrogradely labeled with tracer applied to the transection site and photographed through the fluorescence dissecting scope or with two-photon microscopy. The spinal cords were then fixed and processed for wholemount NF immunohistochemistry. RESULTS The living axon tips were simple in shape, not significantly different from those in fixed spinal cords, and filled with NF. In isolated CNS preparations, very little axon retraction and no regeneration was observed. In the living animal, rapid retraction, up to 3 mm/day, was seen during the 1st few days posttransection. At more than 2 weeks posttransection, some fibers showed regeneration of up to 35 microm/day. CONCLUSIONS 1) The tips of regenerating lamprey axons are simple in shape and filled with NF. 2) Both axon retraction and axon extension are active processes, requiring factors present in the living animal that are missing in the isolated CNS.
Collapse
Affiliation(s)
- Guixin Zhang
- Department of Neurology and the David Mahoney Institute of Neurological Sciences, University of Pennsylvania Medical Center, Philadelphia 19104, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
Our brain serves as a center for cognitive function and neurons within the brain relay and store information about our surroundings and experiences. Modulation of this complex neuronal circuitry allows us to process that information and respond appropriately. Proper development of neurons is therefore vital to the mental health of an individual, and perturbations in their signaling or morphology are likely to result in cognitive impairment. The development of a neuron requires a series of steps that begins with migration from its birth place and initiation of process outgrowth, and ultimately leads to differentiation and the formation of connections that allow it to communicate with appropriate targets. Over the past several years, it has become clear that the Rho family of GTPases and related molecules play an important role in various aspects of neuronal development, including neurite outgrowth and differentiation, axon pathfinding, and dendritic spine formation and maintenance. Given the importance of these molecules in these processes, it is therefore not surprising that mutations in genes encoding a number of regulators and effectors of the Rho GTPases have been associated with human neurological diseases. This review will focus on the role of the Rho GTPases and their associated signaling molecules throughout neuronal development and discuss how perturbations in Rho GTPase signaling may lead to cognitive disorders.
Collapse
Affiliation(s)
- Eve-Ellen Govek
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | |
Collapse
|
25
|
Ballestar E, Ropero S, Alaminos M, Armstrong J, Setien F, Agrelo R, Fraga MF, Herranz M, Avila S, Pineda M, Monros E, Esteller M. The impact of MECP2 mutations in the expression patterns of Rett syndrome patients. Hum Genet 2004; 116:91-104. [PMID: 15549394 DOI: 10.1007/s00439-004-1200-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Accepted: 09/07/2004] [Indexed: 01/10/2023]
Abstract
Rett syndrome (RTT), the second most common cause of mental retardation in females, has been associated with mutations in MeCP2, the archetypical member of the methyl-CpG binding domain (MBD) family of proteins. MeCP2 additionally possesses a transcriptional repression domain (TRD). We have compared the gene expression profiles of RTT- and normal female-derived lymphoblastoid cells by using cDNA microarrays. Clustering analysis allowed the classification of RTT patients according to the localization of the MeCP2 mutation (MBD or TRD) and those with clinically diagnosed RTT but without detectable MeCP2 mutations. Numerous genes were observed to be overexpressed in RTT patients compared with control samples, including excellent candidate genes for neurodevelopmental disease. Chromatin immunoprecipitation analysis confirmed that binding of MeCP2 to corresponding promoter CpG islands was lost in RTT-derived cells harboring a mutation in the region of the MECP2 gene encoding the MBD. Bisulfite genomic sequencing demonstrated that the majority of MeCP2 binding occurred in DNA sequences with methylation-associated silencing. Most importantly, the finding that these genes are also methylated and bound by MeCP2 in neuron-related cells suggests a role in this neurodevelopmental disease. Our results provide new data of the underlying mechanisms of RTT and unveil novel targets of MeCP2-mediated gene repression.
Collapse
Affiliation(s)
- Esteban Ballestar
- Cancer Epigenetics Laboratory, Molecular Pathology Programme, Spanish National Cancer Centre, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gallo G. Myosin II activity is required for severing-induced axon retraction in vitro. Exp Neurol 2004; 189:112-21. [PMID: 15296841 DOI: 10.1016/j.expneurol.2004.05.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Revised: 04/28/2004] [Accepted: 05/14/2004] [Indexed: 11/23/2022]
Abstract
Understanding the mechanistic basis of the response of neurons to injury is directly relevant to the development of effective therapeutic approaches aimed at the amelioration of nervous system damage. Axons retract in response to severing. We investigated the mechanism of axon retraction in response to severing in vitro, testing the hypothesis that actomyosin contractility drives severing-induced axon retraction. Axon retraction commenced within 5 min following severing and correlated with actin filament accumulation at the site of severing. Depolymerization of actin filaments prevented retraction, demonstrating that actin filaments are required for severing-induced axon retraction. Direct inhibition of myosin II, using blebbistatin, minimized axon retraction in response to severing. Blocking RhoA-kinase (ROCK), a modulator of myosin II activity, inhibited axon retraction. Similarly, inhibiting myosin light chain kinase (MLCK) with a cell-permeable pseudo-substrate peptide also inhibited axon retraction. These data demonstrate that myosin II activity is required for severing-induced axon retraction in vitro, and suggest myosin II as a target for therapeutic interventions aimed at minimizing retraction following severing in vivo.
Collapse
Affiliation(s)
- Gianluca Gallo
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| |
Collapse
|
27
|
Schmidt JT. Activity-driven sharpening of the retinotectal projection: the search for retrograde synaptic signaling pathways. ACTA ACUST UNITED AC 2004; 59:114-33. [PMID: 15007831 DOI: 10.1002/neu.10343] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Patterned visual activity, acting via NMDA receptors, refines developing retinotectal maps by shaping individual retinal arbors. Because NMDA receptors are postsynaptic but the retinal arbors are presynaptic, there must be retrograde signals generated downstream of Ca(++) entry through NMDA receptors that direct the presynaptic retinal terminals to stabilize and grow or to withdraw. This review defines criteria for retrograde synaptic messengers, and then applies them to the leading candidates: nitric oxide (NO), brain-derived neurotrophic factor (BDNF), and arachidonic acid (AA). NO is not likely to be a general mechanism, as it operates only in selected projections of warm blooded vertebrates to speed up synaptic refinement, but is not essential. BDNF is a neurotrophin with strong growth promoting properties and complex interactions with activity both in its release and receptor signaling, but may modulate rather than mediate the retrograde signaling. AA promotes growth and stabilization of synaptic terminals by tapping into a pre-existing axonal growth-promoting pathway that is utilized by L1, NCAM, N-cadherin, and FGF and acts via PKC, GAP43, and F-actin stabilization, and it shares some overlap with BDNF pathways. The actions of both are consistent with recent demonstrations that activity-driven stabilization includes directed growth of new synaptic contacts. Certain nondiffusible factors (synapse-specific CAMs, ephrins, neurexin/neuroligin, and matrix molecules) may also play a role in activity-driven synapse stabilization. Interactions between these pathways are discussed.
Collapse
Affiliation(s)
- John T Schmidt
- Department of Biological Sciences and Center for Neuroscience Research, University at Albany-SUNY, 1400 Washington Avenue, Albany, New York 12222, USA.
| |
Collapse
|
28
|
Morris JS, Davies CR, Griffiths MR, Page MJ, Bruce JA, Patel T, Herath A, Gusterson BA. Proteomic analysis of mouse mammary terminal end buds identifies axonal growth cone proteins. Proteomics 2004; 4:1802-10. [PMID: 15174146 DOI: 10.1002/pmic.200300699] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ductal morphogenesis in the mouse mammary gland occurs mainly postnatally and is driven by specialized structures at the ends of the developing ducts, the terminal end buds (TEBs), which later regress once ductal growth is complete. To identify proteins that are specifically associated with migration of TEBs we developed a novel method of isolating TEBs, which eliminated the mammary stroma. The protein expression profile of the TEBs was then compared with that of isolates taken from the 4th inguinal mammary gland of adult virgin mice using two-dimensional (2-D) gel electrophoresis and mass spectrometry (MS) analysis (matrix-assisted laser desorption/ionization and quadrupole time of flight). Following construction of an integrated protein expression database, 44 protein features which showed differential expression levels between the two sets were chosen for MS analysis. Of these, 24 gave protein annotations whereas the other 20 produced unidentified peptides. Fourteen unequivocal proteins were identified from these 24, whereas the remaining 10 matched more than one protein within a single 2-D gel feature. Several of the identified proteins were associated with the cytoskeleton and have previously been reported in axonal growth cones, suggesting that they may influence cell shape and motility within the advancing TEBs, in a similar fashion to migrating axons.
Collapse
Affiliation(s)
- Joanna S Morris
- University of Glasgow, Division of Cancer Sciences and Molecular Pathology, Department of Pathology, Western Infirmary, Glasgow, Scotland.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Development of the nervous system requires remarkable changes in cell structure that are dependent upon the cytoskeleton. The importance of specific components of the neuronal cytoskeleton, such as microtubules and neurofilaments, to neuronal function and development has been well established. Recently, increasing focus has been put on understanding the functional role of the actin cytoskeleton in neurons. Important modulators of the actin cytoskeleton are the large family of myosins, many of which (classes I, II, III, V, VI, VII, IX, and XV; Fig. 1) are expressed in developing neurons or sensory cells. Myosins are force-producing proteins that have been implicated in a wide variety of cellular functions in the developing nervous system, including neuronal migration, process outgrowth, and growth cone motility, as well as other aspects of morphogenesis, axonal transport, and synaptic and sensory functions. We review the roles that neuronal myosins play in these functions with particular focus on the first three events listed above, as well as sensory function.
Collapse
Affiliation(s)
- Michael E Brown
- Department of Anatomy and Neurobiology, Washington University School of Medicine, Box 8108, 660 S. Euclid Avenue, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
30
|
Zhu HQ, Wang Y, Hu RL, Ren B, Zhou Q, Jiang ZK, Gui SY. Distribution and expression of non-muscle myosin light chain kinase in rabbit livers. World J Gastroenterol 2003; 9:2715-9. [PMID: 14669320 PMCID: PMC4612039 DOI: 10.3748/wjg.v9.i12.2715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the distribution and expression of non-muscle myosin light chain kinase (nmMLCK) in rabbit livers.
METHODS: Human nmMLCK N-terminal cDNA was amplified by polymerase chain reaction (PCR) and was inserted into pBKcmv to construct expression vectors. The recombinant plasmid was transformed into XL1-blue. Expression protein was induced by IPTG and then purified by SDS-PAGE and electroelution, which was used to prepare the polycolonal antibody to detect the distribution and expression of nmMLCK in rabbit livers with immunofluorescene techniques.
RESULTS: The polyclonal antibody was prepared, by which nmMLCK expression was detected and distributed mainly in peripheral hepatocytes.
CONCLUSION: nmMLCK can express in hepatocytes peripherally, and may play certain roles in the regulation of hepatic functions.
Collapse
Affiliation(s)
- Hua-Qing Zhu
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei 230032, Anhui Provience, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Zhang XF, Schaefer AW, Burnette DT, Schoonderwoert VT, Forscher P. Rho-Dependent Contractile Responses in the Neuronal Growth Cone Are Independent of Classical Peripheral Retrograde Actin Flow. Neuron 2003; 40:931-44. [PMID: 14659092 DOI: 10.1016/s0896-6273(03)00754-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rho family GTPases have been implicated in neuronal growth cone guidance; however, the underlying cytoskeletal mechanisms are unclear. We have used multimode fluorescent speckle microscopy (FSM) to directly address this problem. We report that actin arcs that form in the transition zone are incorporated into central actin bundles in the C domain. These actin structures are Rho/Rho Kinase (ROCK) effectors. Specifically, LPA mediates growth cone retraction by ROCK-dependent increases in actin arc and central actin bundle contractility and stability. In addition, these treatments had marked effects on MT organization as a consequence of strong MT-actin arc interactions. In contrast, LPA or constitutively active Rho had no effect on P domain retrograde actin flow or filopodium bundle number. This study reveals a novel mechanism for domain-specific spatial control of actin-based motility in the growth cone with implications for understanding chemorepellant growth cone responses and nerve regeneration.
Collapse
Affiliation(s)
- Xiao-Feng Zhang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
32
|
Abstract
To construct the intricate network of connections that supports the functions of an adult nervous system, neurons must form highly elaborate processes, extending in the appropriate direction across long distances to form synapses with their partners. As the nervous system takes shape, the process of neuronal morphogenesis is controlled by a broad repertoire of cellular signals. These extracellular cues and cellular interactions are translated by receptors at the cell surface into physical forces that control the dynamic architecture of the neuron as it explores the surrounding terrain. The interpretation of these cues involves a large set of intracellular proteins, whose functional logic we are just beginning to appreciate. We shall consider the basic mechanics of neuronal morphogenesis and some of the emerging pathways that seem to link the outer and inner worlds of the neuron.
Collapse
Affiliation(s)
- Haeryun Lee
- Department of Cell Biology, Program in Neuroscience, and Harvard Center for Neurodegeneration and Repair, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|