1
|
Horak M, Fairweather D, Kokkonen P, Bednar D, Bienertova-Vasku J. Follistatin-like 1 and its paralogs in heart development and cardiovascular disease. Heart Fail Rev 2022; 27:2251-2265. [PMID: 35867287 PMCID: PMC11140762 DOI: 10.1007/s10741-022-10262-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2022] [Indexed: 11/29/2022]
Abstract
Cardiovascular diseases (CVDs) are a group of disorders affecting the heart and blood vessels and a leading cause of death worldwide. Thus, there is a need to identify new cardiokines that may protect the heart from damage as reported in GBD 2017 Causes of Death Collaborators (2018) (The Lancet 392:1736-1788). Follistatin-like 1 (FSTL1) is a cardiokine that is highly expressed in the heart and released to the serum after cardiac injury where it is associated with CVD and predicts poor outcome. The action of FSTL1 likely depends not only on the tissue source but also post-translation modifications that are target tissue- and cell-specific. Animal studies examining the effect of FSTL1 in various models of heart disease have exploded over the past 15 years and primarily report a protective effect spanning from inhibiting inflammation via transforming growth factor, preventing remodeling and fibrosis to promoting angiogenesis and hypertrophy. A better understanding of FSTL1 and its homologs is needed to determine whether this protein could be a useful novel biomarker to predict poor outcome and death and whether it has therapeutic potential. The aim of this review is to provide a comprehensive description of the literature for this family of proteins in order to better understand their role in normal physiology and CVD.
Collapse
Affiliation(s)
- Martin Horak
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Piia Kokkonen
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - David Bednar
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Julie Bienertova-Vasku
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
| |
Collapse
|
2
|
Fishman ES, Louie M, Miltner AM, Cheema SK, Wong J, Schlaeger NM, Moshiri A, Simó S, Tarantal AF, La Torre A. MicroRNA Signatures of the Developing Primate Fovea. Front Cell Dev Biol 2021; 9:654385. [PMID: 33898453 PMCID: PMC8060505 DOI: 10.3389/fcell.2021.654385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/16/2021] [Indexed: 11/22/2022] Open
Abstract
Rod and cone photoreceptors differ in their shape, photopigment expression, synaptic connection patterns, light sensitivity, and distribution across the retina. Although rods greatly outnumber cones, human vision is mostly dependent on cone photoreceptors since cones are essential for our sharp visual acuity and color discrimination. In humans and other primates, the fovea centralis (fovea), a specialized region of the central retina, contains the highest density of cones. Despite the vast importance of the fovea for human vision, the molecular mechanisms guiding the development of this region are largely unknown. MicroRNAs (miRNAs) are small post-transcriptional regulators known to orchestrate developmental transitions and cell fate specification in the retina. Here, we have characterized the transcriptional landscape of the developing rhesus monkey retina. Our data indicates that non-human primate fovea development is significantly accelerated compared to the equivalent retinal region at the other side of the optic nerve head, as described previously. Notably, we also identify several miRNAs differentially expressed in the presumptive fovea, including miR-15b-5p, miR-342-5p, miR-30b-5p, miR-103-3p, miR-93-5p as well as the miRNA cluster miR-183/-96/-182. Interestingly, miR-342-5p is enriched in the nasal primate retina and in the peripheral developing mouse retina, while miR-15b is enriched in the temporal primate retina and increases over time in the mouse retina in a central-to-periphery gradient. Together our data constitutes the first characterization of the developing rhesus monkey retinal miRNome and provides novel datasets to attain a more comprehensive understanding of foveal development.
Collapse
Affiliation(s)
- Elizabeth S Fishman
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Mikaela Louie
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Adam M Miltner
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Simranjeet K Cheema
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Joanna Wong
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Nicholas M Schlaeger
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Ala Moshiri
- Department of Ophthalmology, University of California, Davis, Davis, CA, United States
| | - Sergi Simó
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Alice F Tarantal
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States.,Department of Pediatrics, University of California, Davis, Davis, CA, United States.,California National Primate Research Center, University of California, Davis, Davis, CA, United States
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| |
Collapse
|
3
|
Enhanced extinction of aversive memories in mice lacking SPARC-related protein containing immunoglobulin domains 1 (SPIG1/FSTL4). Neurobiol Learn Mem 2018; 152:61-70. [PMID: 29783061 DOI: 10.1016/j.nlm.2018.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/11/2018] [Accepted: 05/16/2018] [Indexed: 01/23/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) plays an important role in synaptic plasticity related to learning and memory. We previously reported that SPARC-related protein containing immunoglobulin domains 1 (SPIG1, also known as Follistatin-like protein 4, FSTL4) binds to pro-BDNF and negatively regulates BDNF maturation; however, its neurological functions, particularly in learning and memory, have not yet been elucidated. We herein examined the electrophysiological and behavioral phenotypes of Spig1-knockout (Spig1-KO) mice. Adult Spig1-KO mice exhibited greater excitability and facilitated long-term potentiation (LTP) in the CA1 region of hippocampal slices than age- and sex-matched wild-type (WT) mice. Facilitated LTP was reduced to the level of WT by the bath application of an anti-BDNF antibody to hippocampal slices. A step-through inhibitory avoidance learning paradigm revealed that the extinction of aversive memories was significantly enhanced in adult Spig1-KO mice, while they showed the normal acquisition of aversive memories; besides, spatial reference memory formation was also normal in the standard Morris water maze task. An intracerebroventricular (icv) injection of anti-BDNF in the process of extinction learning transiently induced the recurrence of aversive memories in Spig1-KO mice, but exerted no effects in WT mice. These results indicate a critical role for SPIG1 in BDNF-mediated synaptic plasticity in extinction of inhibitory avoidance memory.
Collapse
|
4
|
Abstract
We previously identified SPARC-related protein-containing immunoglobulin domains 1 (SPIG1, also known as Follistatin-like protein 4) as one of the dorsal-retina-specific molecules expressed in the developing chick retina. We here demonstrated that the knockdown of SPIG1 in the retinal ganglion cells (RGCs) of developing chick embryos induced the robust ectopic branching of dorsal RGC axons and failed to form a tight terminal zone at the proper position on the tectum. The knockdown of SPIG1 in RGCs also led to enhanced axon branching in vitro. However, this was canceled by the addition of a neutralizing antibody against brain-derived neurotrophic factor (BDNF) to the culture medium. SPIG1 and BDNF were colocalized in vesicle-like structures in cells. SPIG1 bound with the proform of BDNF (proBDNF) but very weakly with mature BDNF in vitro. The expression and secretion of mature BDNF were significantly decreased when SPIG1 was exogenously expressed with BDNF in HEK293T or PC12 cells. The amount of mature BDNF proteins as well as the tyrosine phosphorylation level of the BDNF receptor, tropomyosin-related kinase B (TrkB), in the hippocampus were significantly higher in SPIG1-knockout mice than in wild-type mice. Here the spine density of CA1 pyramidal neurons was consistently increased. Together, these results suggest that SPIG1 negatively regulated BDNF maturation by binding to proBDNF, thereby suppressing axonal branching and spine formation.
Collapse
|
5
|
Sasaki T, Komatsu Y, Watakabe A, Sawada K, Yamamori T. Prefrontal-enriched SLIT1 expression in Old World monkey cortex established during the postnatal development. Cereb Cortex 2010; 20:2496-510. [PMID: 20123755 PMCID: PMC2936805 DOI: 10.1093/cercor/bhp319] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To elucidate the molecular basis of the specialization of cortical architectures, we searched for genes differentially expressed among neocortical areas of Old World monkeys by restriction landmark cDNA scanning . We found that mRNA of SLIT1, an axon guidance molecule, was enriched in the prefrontal cortex but with developmentally related changes. In situ hybridization analysis revealed that SLIT1 mRNA was mainly distributed in the middle layers of most cortical areas, robustly in the prefrontal cortex and faintly in primary sensory areas. The lowest expression was in the primary visual area. Analyses of other SLIT (SLIT2 and SLIT3) mRNAs showed preferential expression in the prefrontal cortex with a distinct laminar pattern. By contrast, the receptor Roundabout (ROBO1 and ROBO2) mRNAs were widely distributed throughout the cortex. Perinatally, SLIT1 mRNA was abundantly expressed in the cortex with modest area specificity. Downregulation of expression initially occurred in early sensory areas around postnatal day 60 and followed in the association areas. The prefrontal area-enriched SLIT1 mRNA expression results from a relatively greater attenuation of this expression in the other areas. These results suggest that its role is altered postnatally and that this is particularly important for prefrontal connectivity in the Old World monkey cortex.
Collapse
Affiliation(s)
- Tetsuya Sasaki
- Division of Brain Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| | - Yusuke Komatsu
- Division of Brain Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Present address: Section of Primate Model Development for Brain Research, National Institute for Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
| | - Akiya Watakabe
- Division of Brain Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| | - Kaoru Sawada
- Division of Brain Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Present address: Center for Radioisotope Facilities, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
| | - Tetsuo Yamamori
- Division of Brain Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
- National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| |
Collapse
|
6
|
Watakabe A, Komatsu Y, Sadakane O, Shimegi S, Takahata T, Higo N, Tochitani S, Hashikawa T, Naito T, Osaki H, Sakamoto H, Okamoto M, Ishikawa A, Hara SI, Akasaki T, Sato H, Yamamori T. Enriched expression of serotonin 1B and 2A receptor genes in macaque visual cortex and their bidirectional modulatory effects on neuronal responses. Cereb Cortex 2009; 19:1915-28. [PMID: 19056862 PMCID: PMC2705701 DOI: 10.1093/cercor/bhn219] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To study the molecular mechanism how cortical areas are specialized in adult primates, we searched for area-specific genes in macaque monkeys and found striking enrichment of serotonin (5-hydroxytryptamine, 5-HT) 1B receptor mRNA, and to a lesser extent, of 5-HT2A receptor mRNA, in the primary visual area (V1). In situ hybridization analyses revealed that both mRNA species were highly concentrated in the geniculorecipient layers IVA and IVC, where they were coexpressed in the same neurons. Monocular inactivation by tetrodotoxin injection resulted in a strong and rapid (<3 h) downregulation of these mRNAs, suggesting the retinal activity dependency of their expression. Consistent with the high expression level in V1, clear modulatory effects of 5-HT1B and 5-HT2A receptor agonists on the responses of V1 neurons were observed in in vivo electrophysiological experiments. The modulatory effect of the 5-HT1B agonist was dependent on the firing rate of the recorded neurons: The effect tended to be facilitative for neurons with a high firing rate, and suppressive for those with a low firing rate. The 5-HT2A agonist showed opposite effects. These results suggest that this serotonergic system controls the visual response in V1 for optimization of information processing toward the incoming visual inputs.
Collapse
Affiliation(s)
- Akiya Watakabe
- Division of Brain Biology, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
- Department of Basic Biology, Graduate University for Advanced Studies, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
| | - Yusuke Komatsu
- Division of Brain Biology, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
| | - Osamu Sadakane
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Medicine, Osaka University, Toyonaka 560-0043, Japan
| | - Satoshi Shimegi
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Medicine, Osaka University, Toyonaka 560-0043, Japan
| | - Toru Takahata
- Division of Brain Biology, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
| | - Noriyuki Higo
- System Neuroscience Group, Neuroscience Research Institute, National Institute of Advanced Industrial Science and Technology, Umezono 1-1-1, Tsukuba 305-8568, Japan
| | - Shiro Tochitani
- Division of Brain Biology, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
- Department of Basic Biology, Graduate University for Advanced Studies, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
| | - Tsutomu Hashikawa
- Laboratory for Neural Architecture, Brain Science Institute, RIKEN, Wako 351-0198, Japan
| | - Tomoyuki Naito
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Medicine, Osaka University, Toyonaka 560-0043, Japan
| | - Hironobu Osaki
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Medicine, Osaka University, Toyonaka 560-0043, Japan
| | - Hiroshi Sakamoto
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Medicine, Osaka University, Toyonaka 560-0043, Japan
| | - Masahiro Okamoto
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Medicine, Osaka University, Toyonaka 560-0043, Japan
| | - Ayako Ishikawa
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Medicine, Osaka University, Toyonaka 560-0043, Japan
| | - Shin-ichiro Hara
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Medicine, Osaka University, Toyonaka 560-0043, Japan
| | - Takafumi Akasaki
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Medicine, Osaka University, Toyonaka 560-0043, Japan
| | - Hiromichi Sato
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Medicine, Osaka University, Toyonaka 560-0043, Japan
| | - Tetsuo Yamamori
- Division of Brain Biology, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
- Department of Basic Biology, Graduate University for Advanced Studies, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
- National Institute for Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
| |
Collapse
|
7
|
Functional mode of FoxD1/CBF2 for the establishment of temporal retinal specificity in the developing chick retina. Dev Biol 2009; 331:300-10. [PMID: 19450575 DOI: 10.1016/j.ydbio.2009.05.549] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 05/12/2009] [Accepted: 05/12/2009] [Indexed: 12/13/2022]
Abstract
Two winged-helix transcription factors, FoxG1 (previously called chick brain factor1, CBF1) and FoxD1 (chick brain factor2, CBF2), are expressed specifically in the nasal and temporal regions of the developing chick retina, respectively. We previously demonstrated that FoxG1 controls the expression of topographic molecules including FoxD1, and determines the regional specificity of the nasal retina. FoxD1 is known to prescribe temporal specificity, however, molecular mechanisms and downstream targets have not been elucidated. Here we addressed the genetic mechanisms for establishing temporal specificity in the developing retina using an in ovo electroporation technique. Fibroblast growth factor (Fgf) and Wnt first play pivotal roles in inducing the region-specific expression of FoxG1 and FoxD1 in the optic vesicle. Misexpression of FoxD1 represses the expression of FoxG1, GH6, SOHo1, and ephrin-A5, and induces that of EphA3 in the retina. GH6 and SOHo1 repress the expression of FoxD1. In contrast to the inhibitory effect of FoxG1 on bone morphogenic protein (BMP) signaling, FoxD1 does not alter the expression of BMP4 or BMP2. Studies with chimeric mutants of FoxD1 showed that FoxD1 acts as a transcription repressor in controlling its downstream targets in the retina. Taken together with previous findings, our data suggest that FoxG1 and FoxD1 are located at the top of the gene cascade for regional specification along the nasotemporal (anteroposterior) axis in the retina, and FoxD1 determines temporal specificity.
Collapse
|
8
|
Takaji M, Komatsu Y, Watakabe A, Hashikawa T, Yamamori T. Paraneoplastic antigen-like 5 gene (PNMA5) is preferentially expressed in the association areas in a primate specific manner. ACTA ACUST UNITED AC 2009; 19:2865-79. [PMID: 19366867 PMCID: PMC2774394 DOI: 10.1093/cercor/bhp062] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To understand the relationship between the structure and function of primate neocortical areas at a molecular level, we have been screening for genes differentially expressed across macaque neocortical areas by restriction landmark cDNA scanning (RLCS). Here, we report enriched expression of the paraneoplastic antigen-like 5 gene (PNMA5) in association areas but not in primary sensory areas, with the lowest expression level in primary visual cortex. In situ hybridization in the primary sensory areas revealed PNMA5 mRNA expression restricted to layer II. Along the ventral visual pathway, the expression gradually increased in the excitatory neurons from the primary to higher visual areas. This differential expression pattern was very similar to that of retinol-binding protein (RBP) mRNA, another association-area-enriched gene that we reported previously. Additional expression analysis for comparison of other genes in the PNMA gene family, PNMA1, PNMA2, PNMA3, and MOAP1 (PNMA4), showed that they were widely expressed across areas and layers but without the differentiated pattern of PNMA5. In mouse brains, PNMA1 was only faintly expressed and PNMA5 was not detected. Sequence analysis showed divergence of PNMA5 sequences among mammals. These findings suggest that PNMA5 acquired a certain specialized role in the association areas of the neocortex during primate evolution.
Collapse
Affiliation(s)
- Masafumi Takaji
- Division of Brain Biology, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
| | | | | | | | | |
Collapse
|
9
|
Takahata T, Komatsu Y, Watakabe A, Hashikawa T, Tochitani S, Yamamori T. Differential expression patterns of occ1-related genes in adult monkey visual cortex. ACTA ACUST UNITED AC 2008; 19:1937-51. [PMID: 19073625 PMCID: PMC2705702 DOI: 10.1093/cercor/bhn220] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We have previously revealed that occ1 is preferentially expressed in the primary visual area (V1) of the monkey neocortex. In our attempt to identify more area-selective genes in the macaque neocortex, we found that testican-1, an occ1-related gene, and its family members also exhibit characteristic expression patterns along the visual pathway. The expression levels of testican-1 and testican-2 mRNAs as well as that of occ1 mRNA start of high in V1, progressively decrease along the ventral visual pathway, and end of low in the temporal areas. Complementary to them, the neuronal expression of SPARC mRNA is abundant in the association areas and scarce in V1. Whereas occ1, testican-1, and testican-2 mRNAs are preferentially distributed in thalamorecipient layers including “blobs,” SPARC mRNA expression avoids these layers. Neither SC1 nor testican-3 mRNA expression is selective to particular areas, but SC1 mRNA is abundantly observed in blobs. The expressions of occ1, testican-1, testican-2, and SC1 mRNA were downregulated after monocular tetrodotoxin injection. These results resonate with previous works on chemical and functional gradients along the primate occipitotemporal visual pathway and raise the possibility that these gradients and functional architecture may be related to the visual activity–dependent expression of these extracellular matrix glycoproteins.
Collapse
Affiliation(s)
- Toru Takahata
- Division of Brain Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Yonehara K, Shintani T, Suzuki R, Sakuta H, Takeuchi Y, Nakamura-Yonehara K, Noda M. Expression of SPIG1 reveals development of a retinal ganglion cell subtype projecting to the medial terminal nucleus in the mouse. PLoS One 2008; 3:e1533. [PMID: 18253481 PMCID: PMC2217595 DOI: 10.1371/journal.pone.0001533] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 01/02/2008] [Indexed: 01/25/2023] Open
Abstract
Visual information is transmitted to the brain by roughly a dozen distinct types of retinal ganglion cells (RGCs) defined by a characteristic morphology, physiology, and central projections. However, our understanding about how these parallel pathways develop is still in its infancy, because few molecular markers corresponding to individual RGC types are available. Previously, we reported a secretory protein, SPIG1 (clone name; D/Bsp120I #1), preferentially expressed in the dorsal region in the developing chick retina. Here, we generated knock-in mice to visualize SPIG1-expressing cells with green fluorescent protein. We found that the mouse retina is subdivided into two distinct domains for SPIG1 expression and SPIG1 effectively marks a unique subtype of the retinal ganglion cells during the neonatal period. SPIG1-positive RGCs in the dorsotemporal domain project to the dorsal lateral geniculate nucleus (dLGN), superior colliculus, and accessory optic system (AOS). In contrast, in the remaining region, here named the pan-ventronasal domain, SPIG1-positive cells form a regular mosaic and project exclusively to the medial terminal nucleus (MTN) of the AOS that mediates the optokinetic nystagmus as early as P1. Their dendrites costratify with ON cholinergic amacrine strata in the inner plexiform layer as early as P3. These findings suggest that these SPIG1-positive cells are the ON direction selective ganglion cells (DSGCs). Moreover, the MTN-projecting cells in the pan-ventronasal domain are apparently composed of two distinct but interdependent regular mosaics depending on the presence or absence of SPIG1, indicating that they comprise two functionally distinct subtypes of the ON DSGCs. The formation of the regular mosaic appears to be commenced at the end of the prenatal stage and completed through the peak period of the cell death at P6. SPIG1 will thus serve as a useful molecular marker for future studies on the development and function of ON DSGCs.
Collapse
Affiliation(s)
- Keisuke Yonehara
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Japan
- School of Life Science, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Takafumi Shintani
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Japan
- School of Life Science, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Ryoko Suzuki
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Japan
| | - Hiraki Sakuta
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Japan
- School of Life Science, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Yasushi Takeuchi
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Japan
| | - Kayo Nakamura-Yonehara
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Japan
| | - Masaharu Noda
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Japan
- School of Life Science, The Graduate University for Advanced Studies, Okazaki, Japan
- *E-mail:
| |
Collapse
|
11
|
Sakuta H, Takahashi H, Shintani T, Etani K, Aoshima A, Noda M. Role of bone morphogenic protein 2 in retinal patterning and retinotectal projection. J Neurosci 2006; 26:10868-78. [PMID: 17050724 PMCID: PMC6674735 DOI: 10.1523/jneurosci.3027-06.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It has been long believed that the anteroposterior (A-P) and dorsoventral (D-V) axes in the developing retina are determined independently and also that the retinotectal projection along the two axes is controlled independently. However, we recently demonstrated that misexpression of Ventroptin, a bone morphogenic protein (BMP) antagonist, in the developing chick retina alters the retinotectal projection not only along the D-V (or mediolateral) axis but also along the A-P axis. Moreover, the dorsal-high expression of BMP4 is relieved by the dorsotemporal-high expression of BMP2 at embryonic day 5 (E5) in the retina, during which Ventroptin continuously counteracts the two BMPs keeping on the countergradient expression pattern, respectively. Here, we show that the topographic molecules so far reported to have a gradient only along the D-V axis and ephrin-A2 so far only along the A-P axis are both controlled by the BMP signal, and that they are expressed in a gradient manner along the tilted axis from E6 on in the developing chick retina: the expression patterns of these oblique-gradient molecules are all changed, when BMP2 expression is manipulated in the developing retina. Furthermore, in both BMP2 knockdown embryos and ephrin-A2-misexpressed embryos, the retinotectal projection is altered along the two orthogonal axes. The expressional switching from BMP4 to BMP2 thus appears to play a key role in the retinal patterning and topographic retinotectal projection by tilting the D-V axis toward the posterior side during retinal development. Our results also indicate that BMP2 expression is essential for the maintenance of regional specificity along the revised D-V axis.
Collapse
Affiliation(s)
- Hiraki Sakuta
- Division of Molecular Neurobiology, National Institute for Basic Biology and School of Life Science, The Graduate University for Advanced Studies, Myodaiji-cho, Okazaki 444-8787, Japan
| | - Hiroo Takahashi
- Division of Molecular Neurobiology, National Institute for Basic Biology and School of Life Science, The Graduate University for Advanced Studies, Myodaiji-cho, Okazaki 444-8787, Japan
| | - Takafumi Shintani
- Division of Molecular Neurobiology, National Institute for Basic Biology and School of Life Science, The Graduate University for Advanced Studies, Myodaiji-cho, Okazaki 444-8787, Japan
| | - Kazuma Etani
- Division of Molecular Neurobiology, National Institute for Basic Biology and School of Life Science, The Graduate University for Advanced Studies, Myodaiji-cho, Okazaki 444-8787, Japan
| | - Akihiro Aoshima
- Division of Molecular Neurobiology, National Institute for Basic Biology and School of Life Science, The Graduate University for Advanced Studies, Myodaiji-cho, Okazaki 444-8787, Japan
| | - Masaharu Noda
- Division of Molecular Neurobiology, National Institute for Basic Biology and School of Life Science, The Graduate University for Advanced Studies, Myodaiji-cho, Okazaki 444-8787, Japan
| |
Collapse
|
12
|
Shintani T, Ihara M, Sakuta H, Takahashi H, Watakabe I, Noda M. Eph receptors are negatively controlled by protein tyrosine phosphatase receptor type O. Nat Neurosci 2006; 9:761-9. [PMID: 16680165 DOI: 10.1038/nn1697] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 04/13/2006] [Indexed: 12/30/2022]
Abstract
Eph receptors are activated by the autophosphorylation of tyrosine residues upon the binding of their ligands, the ephrins; however, the protein tyrosine phosphatases (PTPs) responsible for the negative regulation of Eph receptors have not been elucidated. Here, we identified protein tyrosine phosphatase receptor type O (Ptpro) as a specific PTP that efficiently dephosphorylates both EphA and EphB receptors as substrates. Biochemical analyses revealed that Ptpro dephosphorylates a phosphotyrosine residue conserved in the juxtamembrane region, which is required for the activation and signal transmission of Eph receptors. Ptpro thus seems to moderate the amount of maximal activation of Eph receptors. Using the chick retinotectal projection system, we show that Ptpro controls the sensitivity of retinal axons to ephrins and thereby has a crucial role in the establishment of topographic projections. Our findings explain the molecular mechanism that determines the threshold of the response of Eph receptors to ephrins in vivo.
Collapse
Affiliation(s)
- Takafumi Shintani
- Division of Molecular Neurobiology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Yoshikawa T, Piao Y, Zhong J, Matoba R, Carter MG, Wang Y, Goldberg I, Ko MSH. High-throughput screen for genes predominantly expressed in the ICM of mouse blastocysts by whole mount in situ hybridization. Gene Expr Patterns 2005; 6:213-24. [PMID: 16325481 PMCID: PMC1850761 DOI: 10.1016/j.modgep.2005.06.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2005] [Revised: 06/03/2005] [Accepted: 06/06/2005] [Indexed: 02/02/2023]
Abstract
Mammalian preimplantation embryos provide an excellent opportunity to study temporal and spatial gene expression in whole mount in situ hybridization (WISH). However, large-scale studies are made difficult by the size of the embryos ( approximately 60mum diameter) and their fragility. We have developed a chamber system that allows parallel processing of embryos without the aid of a microscope. We first selected 91 candidate genes that were transcription factors highly expressed in blastocysts, and more highly expressed in embryonic (ES) than in trophoblast (TS) stem cells. We then used the WISH to identify 48 genes expressed predominantly in the inner cell mass (ICM) and to follow several of these genes in all seven preimplantation stages. The ICM-predominant expressions of these genes suggest their involvement in the pluripotency of embryonic cells. This system provides a useful tool to a systematic genome-scale analysis of preimplantation embryos.
Collapse
Affiliation(s)
- Toshiyuki Yoshikawa
- Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Ohkawara T, Shintani T, Saegusa C, Yuasa-Kawada J, Takahashi M, Noda M. A novel basic helix–loop–helix (bHLH) transcriptional repressor, NeuroAB, expressed in bipolar and amacrine cells in the chick retina. ACTA ACUST UNITED AC 2004; 128:58-74. [PMID: 15337318 DOI: 10.1016/j.molbrainres.2004.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2004] [Indexed: 10/26/2022]
Abstract
Basic helix-loop-helix (bHLH) transcription factors are implicated in cell fate determination and differentiation in neurogenesis. We identified a novel chick bHLH transcription factor, NeuroAB. A phylogenetic tree prepared from bHLH sequences suggested that NeuroAB belongs to the BETA3 group in the Atonal-related protein family (ARPs). In situ hybridization and immunostaining indicated that NeuroAB is expressed predominantly in postmitotic bipolar cells and GABAergic amacrine cells in the retina. Reporter and DNA pull down assays indicated that NeuroAB functions as a transcriptional repressor by binding to the E-box sequence, and its activity is modulated by phosphorylation at a specific serine residue that fits the consensus phosphorylation site for glycogen synthase kinase 3beta (GSK3beta). Since members of the BETA3 group possess this consensus site, it is suggested that their activities are commonly regulated by GSK3beta or other kinases bearing the same substrate specificity. We found that the expression of GSK3beta is spatially and temporally regulated in the developing retina; its strong expression was observed in ganglion cells from E8 and a subset of amacrine cells from E12. These findings suggest that NeuroAB is involved in the maturation and maintenance of bipolar cells and GABAergic amacrine cells and regulation by GSK3beta plays an important role in retinogenesis.
Collapse
Affiliation(s)
- Takeshi Ohkawara
- Division of Molecular Neurobiology, National Institute for Basic Biology, and Department of Molecular Biomechanics, Graduate University for Advanced Studies, Okazaki 444-8787, Japan
| | | | | | | | | | | |
Collapse
|