1
|
The evolution and development of human swallowing: the most important function we least appreciate. Otolaryngol Clin North Am 2014; 46:923-35. [PMID: 24262951 DOI: 10.1016/j.otc.2013.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As mammals evolved, the larynx accrued added importance in new activities such as effectuating intra-abdominal pressure control during the transition from egg-laying to birthing and control of intrathoracic stabilization as movement of the upper limb required rib stabilization during climbing. The proper development of the larynx during the embryonic period is crucial to its later normal function. The permanent intersection of the respiratory and digestive pathways has created a de novo aerodigestive tract; a first of its kind in mammals. The lowered position of the human larynx has provided a greatly expanded supralaryngeal portion of the pharynx.
Collapse
|
2
|
Spruijt NE, Rana MS, Christoffels VM, Mink van der Molen AB. Exploring a neurogenic basis of velopharyngeal dysfunction in Tbx1 mutant mice: no difference in volumes of the nucleus ambiguus. Int J Pediatr Otorhinolaryngol 2013; 77:1002-7. [PMID: 23642587 DOI: 10.1016/j.ijporl.2013.03.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/25/2013] [Accepted: 03/28/2013] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Velopharyngeal hypotonia seems to be an important factor in velopharyngeal dysfunction in 22q11.2 deletion syndrome, but the etiology is not understood. Because TBX1 maps within the typical 22q11.2 deletion and Tbx1-deficient mice phenocopy many findings in patients with the 22q11.2 deletion syndrome, TBX1 is considered the major candidate gene in the etiology of these defects. Tbx1 heterozygosity in mice results in abnormal vocalization 7 days postnatally, suggestive of velopharyngeal dysfunction. Previous case-control studies on muscle specimens from patients and mice revealed no evidence for a myogenic cause of velopharyngeal dysfunction. Velopharyngeal muscles are innervated by cranial nerves that receive signals from the nucleus ambiguus in the brainstem. In this study, a possible neurogenic cause underlying velopharyngeal dysfunction in Tbx1 heterozygous mice was explored by determining the size of the nucleus ambiguus in Tbx1 heterozygous and wild type mice. METHODS The cranial motor nuclei in the brainstems of postnatal day 7 wild type (n=4) and Tbx1 heterozygous (n=4) mice were visualized by in situ hybridization on transverse sections to detect Islet-1 mRNA, a transcription factor known to be expressed in motor neurons. The volumes of the nucleus ambiguus were calculated. RESULTS No substantial histological differences were noted between the nucleus ambiguus of the two groups. Tbx1 mutant mice had mean nucleus ambiguus volumes of 4.6 million μm(3) (standard error of the mean 0.9 million μm(3)) and wild type mice had mean volumes of 3.4 million μm(3) (standard error of the mean 0.6 million μm(3)). Neither the difference nor the variance between the means were statistically significant (t-test p=0.30, Levene's test p=0.47, respectively). CONCLUSIONS Based on the histology, there is no difference or variability between the volumes of the nucleus ambiguus of Tbx1 heterozygous and wild type mice. The etiology of velopharyngeal hypotonia and variable speech in children with 22q11.2 deletion syndrome warrants further investigation.
Collapse
Affiliation(s)
- Nicole E Spruijt
- Department of Plastic Surgery, University Medical Center Utrecht, Postbus 85090, KE 04.140.0, 3508 AB Utrecht, The Netherlands
| | | | | | | |
Collapse
|
3
|
Basken JN, Connor NP, Ciucci MR. Effect of aging on ultrasonic vocalizations and laryngeal sensorimotor neurons in rats. Exp Brain Res 2012; 219:351-61. [PMID: 22562586 DOI: 10.1007/s00221-012-3096-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 04/12/2012] [Indexed: 12/21/2022]
Abstract
While decline in vocal quality is prevalent in an aging population, the underlying neurobiological mechanisms contributing to age-related dysphonia are unknown and difficult to study in humans. Development of an animal model appears critical for investigating this issue. Using an established aging rat model, we evaluated if 50-kHz ultrasonic vocalizations in 10, 32-month-old (old) Fischer 344/Brown Norway rats differed from those in 10, 9-month-old (young adult) rats. The retrograde tracer, Cholera Toxin β, was injected to the thyroarytenoid muscle to determine if motoneuron loss in the nucleus ambiguus was associated with age. Results indicated that older rats had vocalizations with diminished acoustic complexity as demonstrated by reduced bandwidth, intensity, and peak frequency, and these changes were dependent on the type of 50-kHz vocalization. Simple calls of old rats had reduced bandwidth, peak frequency, and intensity while frequency-modulated calls of old rats had reduced bandwidth and intensity. Surprisingly, one call type, step calls, had increased duration in the aged rats. These findings reflect phonatory changes observed in older humans. We also found significant motoneuron loss in the nucleus ambiguus of aged rats, which suggests that motoneuron loss may be a contributing factor to decreased complexity and quality of ultrasonic vocalizations. These findings suggest that a rat ultrasonic phonation model may be useful for studying age-related changes in vocalization observed in humans.
Collapse
Affiliation(s)
- Jaime N Basken
- Department of Communicative Disorders, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | |
Collapse
|
4
|
Functional development of the vagal and glossopharyngeal nerve-related nuclei in the embryonic rat brainstem: optical mapping with a voltage-sensitive dye. Neuroscience 2011; 192:781-92. [DOI: 10.1016/j.neuroscience.2011.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/06/2011] [Accepted: 06/07/2011] [Indexed: 11/22/2022]
|
5
|
Pagliardini S, Ren J, Wevrick R, Greer JJ. Developmental abnormalities of neuronal structure and function in prenatal mice lacking the prader-willi syndrome gene necdin. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 167:175-91. [PMID: 15972963 PMCID: PMC1603432 DOI: 10.1016/s0002-9440(10)62964-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Necdin (Ndn) is one of a cluster of genes deleted in the neurodevelopmental disorder Prader-Willi syndrome (PWS). Ndntm2Stw mutant mice die shortly after birth because of abnormal respiratory rhythmogenesis generated by a key medullary nucleus, the pre-Bötzinger complex (preBötC). Here, we address two fundamental issues relevant to its pathogenesis. First, we performed a detailed anatomical study of the developing medulla to determine whether there were defects within the preBötC or synaptic inputs that regulate respiratory rhythmogenesis. Second, in vitro studies determined if the unstable respiratory rhythm in Ndntm2Stw mice could be normalized by neuromodulators. Anatomical defects in Ndntm2Stw mice included defasciculation and irregular projections of axonal tracts, aberrant neuronal migration, and a major defect in the cytoarchitecture of the cuneate/gracile nuclei, including dystrophic axons. Exogenous application of neuromodulators alleviated the long periods of slow respiratory rhythms and apnea, but some instability of rhythmogenesis persisted. We conclude that deficiencies in the neuromodulatory drive necessary for preBötC function contribute to respiratory dysfunction of Ndntm2Stw mice. These abnormalities are part of a more widespread deficit in neuronal migration and the extension, arborization, and fasciculation of axons during early stages of central nervous system development that may account for respiratory, sensory, motor, and behavioral problems associated with PWS.
Collapse
Affiliation(s)
- Silvia Pagliardini
- Department of Physiology, Centre of Neuroscience, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | | | | | | |
Collapse
|
6
|
Pagnotta SE, Lape R, Quitadamo C, Nistri A. Pre- and postsynaptic modulation of glycinergic and gabaergic transmission by muscarinic receptors on rat hypoglossal motoneurons in vitro. Neuroscience 2005; 130:783-95. [PMID: 15590160 DOI: 10.1016/j.neuroscience.2004.09.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2004] [Indexed: 11/16/2022]
Abstract
The motor output of hypoglossal motoneurons to tongue muscles takes place in concert with the respiratory rhythm and is determined by the balance between excitatory glutamatergic transmission and inhibitory transmission mediated by glycine or GABA. The relative contribution by these transmitters is a phasic phenomenon modulated by other transmitters. We examined how metabotropic muscarinic receptors, widely expressed in the brainstem where they excite cranial motor nuclei, might influence synaptic activity mediated by GABA or glycine. For this purpose, using thin slices of the neonatal rat brainstem, we recorded (under whole-cell patch clamp) glycinergic or GABAergic responses from visually identified hypoglossal motoneurons after pharmacological block of glutamatergic transmission. Muscarine inhibited spontaneous and electrically induced events mediated by GABA or glycine. The amplitude of glycinergic miniature inhibitory postsynaptic currents was slightly reduced by muscarine, while GABAergic miniature inhibitory postsynaptic currents were unaffected. Motoneuron currents induced by focally applied GABA and glycine were depressed by muscarine with stronger reduction in glycine-mediated responses. Histochemical observations indicated the presence of M1, M2 and M5 subtypes of muscarinic receptors in the neonatal hypoglossal nucleus. These results suggest that muscarine potently depressed inhibitory neurotransmission on brainstem motoneurons, and that this action was exerted via preterminal and extrasynaptic receptors. Since the large reduction in inhibitory neurotransmission may contribute to overall excitation of brainstem motoneurons by muscarinic receptors, these data might help to understand the central components of action of antimuscarinic agents in preanesthetic medication or against motion sickness.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Data Interpretation, Statistical
- Electric Stimulation
- Electrophysiology
- Excitatory Postsynaptic Potentials
- Glycine/physiology
- Hypoglossal Nerve/drug effects
- Hypoglossal Nerve/physiology
- Immunohistochemistry
- In Vitro Techniques
- Motor Neurons/drug effects
- Motor Neurons/physiology
- Muscarine/pharmacology
- Muscarinic Agonists/pharmacology
- Patch-Clamp Techniques
- Rats
- Rats, Wistar
- Receptors, GABA/drug effects
- Receptors, GABA/physiology
- Receptors, Glycine/drug effects
- Receptors, Glycine/physiology
- Receptors, Muscarinic/drug effects
- Receptors, Muscarinic/physiology
- Receptors, Presynaptic/drug effects
- Receptors, Presynaptic/physiology
- Synapses/drug effects
- Synapses/physiology
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- gamma-Aminobutyric Acid/physiology
Collapse
Affiliation(s)
- S E Pagnotta
- Neurobiology Sector and INFM Unit, International School for Advanced Studies (SISSA), Via Beirut 4, 34014 Trieste, Italy
| | | | | | | |
Collapse
|
7
|
Setsu T, Ikeda Y, Woodhams PL, Terashima T. Branchiogenic motoneurons innervating facial, masticatory, and esophageal muscles show aberrant distribution in the reeler-phenotype mutant rat, Shaking Rat Kawasaki. J Comp Neurol 2001; 439:275-90. [PMID: 11596054 DOI: 10.1002/cne.1350] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Shaking Rat Kawasaki (SRK) is an autosomal recessive mutant rat that is characterized by cerebellar ataxia. Although previous studies indicated many points of similarity between this mutant rat and the reeler mouse, nonlaminated structures such as the facial nucleus have not been studied in this mutant rat. Nissl-stained sections through the brainstem showed that the cytoarchitecture of the facial, motor trigeminal, and ambiguus nuclei was abnormal in SRK, especially in the lateral cell group of the facial nucleus and the compact formation of the ambiguus nucleus. To examine whether orofacial motoneurons are also malpositioned in the SRK rat, horseradish peroxidase (HRP) was injected into the facial, masticatory, and abdominal esophageal muscles of the SRK rats and normal controls to label facial, trigeminal, and ambiguus motoneurons, respectively. HRP-labeled facial, trigeminal, and ambiguus motoneurons of the SRK rat were distributed more widely than those of their normal counterparts, as in the case of the reeler mouse, with the one exception that labeled facial motoneurons innervating the nasolabial muscle were distributed more widely in the ventrolateral-to-dorsomedial direction in comparison with those of the reeler mutant. These data demonstrate that nonlaminated structures in the brainstem of the SRK rat are affected severely, as is the case in the reeler mutant mouse.
Collapse
Affiliation(s)
- T Setsu
- Department of Anatomy, Kobe University School of Medicine, Kobe 650-0017, Japan
| | | | | | | |
Collapse
|
8
|
Abstract
Movement, the fundamental component of behavior and the principal extrinsic action of the brain, is produced when skeletal muscles contract and relax in response to patterns of action potentials generated by motoneurons. The processes that determine the firing behavior of motoneurons are therefore important in understanding the transformation of neural activity to motor behavior. Here, we review recent studies on the control of motoneuronal excitability, focusing on synaptic and cellular properties. We first present a background description of motoneurons: their development, anatomical organization, and membrane properties, both passive and active. We then describe the general anatomical organization of synaptic input to motoneurons, followed by a description of the major transmitter systems that affect motoneuronal excitability, including ligands, receptor distribution, pre- and postsynaptic actions, signal transduction, and functional role. Glutamate is the main excitatory, and GABA and glycine are the main inhibitory transmitters acting through ionotropic receptors. These amino acids signal the principal motor commands from peripheral, spinal, and supraspinal structures. Amines, such as serotonin and norepinephrine, and neuropeptides, as well as the glutamate and GABA acting at metabotropic receptors, modulate motoneuronal excitability through pre- and postsynaptic actions. Acting principally via second messenger systems, their actions converge on common effectors, e.g., leak K(+) current, cationic inward current, hyperpolarization-activated inward current, Ca(2+) channels, or presynaptic release processes. Together, these numerous inputs mediate and modify incoming motor commands, ultimately generating the coordinated firing patterns that underlie muscle contractions during motor behavior.
Collapse
Affiliation(s)
- J C Rekling
- Department of Neurobiology, University of California, Los Angeles, California 90095-1763, USA
| | | | | | | | | |
Collapse
|
9
|
Abstract
In this review, the maturational changes occurring in the mammalian respiratory network from fetal to adult ages are analyzed. Most of the data presented were obtained on rodents using in vitro approaches. In gestational day 18 (E18) fetuses, this network functions but is not yet able to sustain a stable respiratory activity, and most of the neonatal modulatory processes are not yet efficient. Respiratory motoneurons undergo relatively little cell death, and even if not yet fully mature at E18, they are capable of firing sustained bursts of potentials. Endogenous serotonin exerts a potent facilitation on the network and appears to be necessary for the respiratory rhythm to be expressed. In E20 fetuses and neonates, the respiratory activity has become quite stable. Inhibitory processes are not yet necessary for respiratory rhythmogenesis, and the rostral ventrolateral medulla (RVLM) contains inspiratory bursting pacemaker neurons that seem to constitute the kernel of the network. The activity of the network depends on CO2 and pH levels, via cholinergic relays, as well as being modulated at both the RVLM and motoneuronal levels by endogenous serotonin, substance P, and catecholamine mechanisms. In adults, the inhibitory processes become more important, but the RVLM is still a crucial area. The neonatal modulatory processes are likely to continue during adulthood, but they are difficult to investigate in vivo. In conclusion, 1) serotonin, which greatly facilitates the activity of the respiratory network at all developmental ages, may at least partly define its maturation; 2) the RVLM bursting pacemaker neurons may be the kernel of the network from E20 to adulthood, but their existence and their role in vivo need to be further confirmed in both neonatal and adult mammals.
Collapse
Affiliation(s)
- G Hilaire
- Unité Propre de Recherche, Centre National de la Recherche Scientifique 9011, Biologie des Rythmes et du Développement, Marseille; and Laboratoire de Neurophysiologie Clinique et Expérimentale, Amiens, France
| | | |
Collapse
|
10
|
Fujimoto Y, Setsu T, Ikeda Y, Miwa A, Okado H, Terashima T. Ambiguus nucleus neurons innervating the abdominal esophagus are malpositioned in the reeler mouse. Brain Res 1998; 811:156-60. [PMID: 9804938 DOI: 10.1016/s0006-8993(98)00910-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To examine whether the migration of ambiguus nucleus (NA) neurons is affected in the reeler mouse, recombinant replication-deficient adenoviral vector carrying E. coli-galactosidase gene (lacZ) was injected into the abdominal esophagus of the reeler mouse and normal control at two months of age prior to 5 days of sacrifice of the animals. In the normal control, lacZ-positive neurons were found in the compact formation of the NA, whereas, in the reeler, they were scattered from the base of the fourth ventricle to the ventro-lateral margin of the medulla. The present study confirmed that NA neurons are malpositioned in the reeler mouse, suggesting that the migration of NA neurons is guided by the reelin-related protein (Reelin).
Collapse
Affiliation(s)
- Y Fujimoto
- Department of Anatomy and Embryology, Tokyo Metropolitan Institute for Neuroscience, Fuchu, Tokyo 183-8526, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Friedland DR, Eden AR, Laitman JT. Naturally occurring motoneuron cell death in rat upper respiratory tract motor nuclei: a histological, fast DiI and immunocytochemical study in the hypoglossal nucleus. JOURNAL OF NEUROBIOLOGY 1995; 27:520-34. [PMID: 7561831 DOI: 10.1002/neu.480270407] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have previously reported on our investigation of motoneuron cell death (MCD) in the rat nucleus ambiguus (NA). This article focuses on the other major upper respiratory tract motor nucleus: the hypoglossal. The hypoglossal nucleus (XII) contains motoneurons to the tongue and, as such, plays a critical role in defining patterns of respiration, deglutition, and vocalization. Motoneuron counts were made in XII in a developmental series of rats. In addition, the neural tracer fast DiI was used to ensure that all hypoglossal motoneurons had migrated into the nucleus at the time cell death was assessed. Furthermore, an antibody to gamma-aminobutyric acid (GABA) was used to determine the potential effect of inadvertently counting large interneurons on motoneuron counts. Cell death in XII was shown to occur entirely prenatally with a loss of 35% of cells between embryonic day 16 (E16) and birth. Fast DiI tracings of the prenatal hypoglossal nerve indicated that all motoneurons were present in a well-defined nucleus by E15. Immunocytochemical staining for GABA demonstrated considerably fewer interneurons than motoneurons in XII. These findings in XII, in comparison with those previously reported for NA, demonstrate differences in the timing and amount of cell death between upper respiratory tract motor nuclei. These differences establish periods during which one nucleus may be preferentially insulted by environmental or teratogenic factors. Preferential insults may underlie some of the upper respiratory tract incoordination pathologies seen in the newborn such as the sudden infant death syndrome (SIDS).
Collapse
Affiliation(s)
- D R Friedland
- Department of Cell Biology and Anatomy, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|