1
|
Catalán M, González-Herrera F, Maya JD, Lorenzo O, Pedrozo Z, Olmedo I, Suarez-Rozas C, Molina-Berrios A, Díaz-Araya G, Vivar R. Boldine prevents the inflammatory response of cardiac fibroblasts induced by SGK1-NFκB signaling pathway activation. Cell Signal 2024; 120:111241. [PMID: 38825173 DOI: 10.1016/j.cellsig.2024.111241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/14/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
Cardiac fibroblasts (CF) are mesenchymal-type cells responsible for maintaining the homeostasis of the heart's extracellular matrix (ECM). Their dysfunction leads to excessive secretion of ECM proteins, tissue stiffening, impaired nutrient and oxygen exchange, and electrical abnormalities in the heart. Additionally, CF act as sentinel cells in the cardiac tissue microenvironment, responding to various stimuli that may affect heart function. Deleterious stimuli induce an inflammatory response in CF, increasing the secretion of cytokines such as IL-1β and TNF-α and the expression of cell adhesion molecules like ICAM1 and VCAM1, initially promoting damage resolution by recruiting immune cells. However, constant harmful stimuli lead to a chronic inflammatory process and heart dysfunction. Therefore, it is necessary to study the mechanisms that govern CF inflammation. NFκB is a key regulator of the cardiac inflammatory process, making the search for mechanisms of NFκB regulation and CF inflammatory response crucial for developing new treatment options for cardiovascular diseases. SGK1, a serine-threonine protein kinase, is one of the regulators of NFκB and is involved in the fibrotic effects of angiotensin II and aldosterone, as well as in CF differentiation. However, its role in the CF inflammatory response is unknown. On the other hand, many bioactive natural products have demonstrated anti-inflammatory effects, but their role in CF inflammation is unknown. One such molecule is boldine, an alkaloid obtained from Boldo (Peumus boldus), a Chilean endemic tree with proven cytoprotective effects. However, its involvement in the regulation of SGK1 and CF inflammation is unknown. In this study, we evaluated the role of SGK1 and boldine in the inflammatory response in CF isolated from neonatal Sprague-Dawley rats. The involvement of SGK1 was analyzed using GSK650394, a specific SGK1 inhibitor. Our results demonstrate that SGK1 is crucial for LPS- and IFN-γ-induced inflammatory responses in CF (cytokine expression, cell adhesion molecule expression, and leukocyte adhesion). Furthermore, a conditioned medium (intracellular content of CF subject to freeze/thaw cycles) was used to simulate a sterile inflammation condition. The conditioned medium induced a potent inflammatory response in CF, which was completely prevented by the SGK1 inhibitor. Finally, our results indicate that boldine inhibits both SGK1 activation and the CF inflammatory response induced by LPS, IFN-γ, and CF-conditioned medium. Taken together, our results position SGK1 as an important regulator of the CF inflammatory response and boldine as a promising anti-inflammatory drug in the context of cardiovascular diseases.
Collapse
Affiliation(s)
- M Catalán
- Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - F González-Herrera
- Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - J D Maya
- Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - O Lorenzo
- IIS-Fundación Jiménez Díaz, Faculty of Medicine, Universidad Autónoma de Madrid, Spain
| | - Z Pedrozo
- Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - I Olmedo
- Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - C Suarez-Rozas
- Medicinal Chemistry Center, Faculty of Medicine, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - A Molina-Berrios
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - G Díaz-Araya
- Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile
| | - R Vivar
- Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
2
|
Figueroa M, Hall S, Mattia V, Mendoza A, Brown A, Xiong Y, Mukherjee R, Jones JA, Richardson W, Ruddy JM. Vascular smooth muscle cell mechanotransduction through serum and glucocorticoid inducible kinase-1 promotes interleukin-6 production and macrophage accumulation in murine hypertension. JVS Vasc Sci 2023; 4:100124. [PMID: 37920479 PMCID: PMC10618507 DOI: 10.1016/j.jvssci.2023.100124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 08/01/2023] [Indexed: 11/04/2023] Open
Abstract
Objective The objective of this investigation was to demonstrate that in vivo induction of hypertension (HTN) and in vitro cyclic stretch of aortic vascular smooth muscle cells (VSMCs) can cause serum and glucocorticoid-inducible kinase (SGK-1)-dependent production of cytokines to promote macrophage accumulation that may promote vascular pathology. Methods HTN was induced in C57Bl/6 mice with angiotensin II infusion (1.46 mg/kg/day × 21 days) with or without systemic infusion of EMD638683 (2.5 mg/kg/day × 21 days), a selective SGK-1 inhibitor. Systolic blood pressure was recorded. Abdominal aortas were harvested to quantify SGK-1 activity (pSGK-1/SGK-1) by immunoblot. Flow cytometry quantified the abundance of CD11b+/F480+ cells (macrophages). Plasma interleukin (IL)-6 and monocyte chemoattractant protein-1 (MCP-1) was assessed by enzyme-linked immunosorbent assay. Aortic VSMCs from wild-type mice were subjected to 12% biaxial cyclic stretch (Stretch) for 3 or 12 hours with or without EMD638683 (10 μM) and with or without SGK-1 small interfering RNA with subsequent quantitative polymerase chain reaction for IL-6 and MCP-1 expression. IL-6 and MCP-1 in culture media were analyzed by enzyme-linked immunosorbent assay. Aortic VSMCs from SGK-1flox+/+ mice were transfected with Cre-Adenovirus to knockdown SGK-1 (SGK-1KD VSMCs) and underwent parallel tension experimentation. Computational modeling was used to simulate VSMC signaling. Statistical analysis included analysis of variance with significance at a P value of <.05. Results SGK-1 activity, abundance of CD11b+/F4-80+ cells, and plasma IL-6 were increased in the abdominal aorta of mice with HTN and significantly reduced by treatment with EMD638683. This outcome mirrored the increased abundance of IL-6 in media from Stretch C57Bl/6 VSMCs and attenuation of the effect with EMD638683 or SGK-1 small interfering RNA. C57Bl/6 VSMCs also responded to Stretch with increased MCP-1 expression and secretion into the culture media. Further supporting the integral role of mechanical signaling through SGK-1, target gene expression and cytokine secretion was unchanged in SGK-1KD VSMCs with Stretch, and computer modeling confirmed SGK-1 as an intersecting node of signaling owing to mechanical strain and angiotensin II. Conclusions Mechanical activation of SGK-1 in aortic VSMCs can promote inflammatory signaling and increased macrophage abundance, therefore this kinase warrants further exploration as a pharmacotherapeutic target to abrogate hypertensive vascular pathology.
Collapse
Affiliation(s)
- Mario Figueroa
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC
| | - SarahRose Hall
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC
| | - Victoria Mattia
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC
| | - Alex Mendoza
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC
| | - Adam Brown
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC
| | - Ying Xiong
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC
| | - Rupak Mukherjee
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC
| | - Jeffrey A. Jones
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC
- Ralph H. Johnson VA Medical Center, Charleston, SC
| | - William Richardson
- Department of Chemical Engineering, University of Arkansas, Fayetteville, AK
| | - Jean Marie Ruddy
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC
- Ralph H. Johnson VA Medical Center, Charleston, SC
| |
Collapse
|
3
|
Vasamsetti SB, Natarajan N, Sadaf S, Florentin J, Dutta P. Regulation of cardiovascular health and disease by visceral adipose tissue-derived metabolic hormones. J Physiol 2023; 601:2099-2120. [PMID: 35661362 PMCID: PMC9722993 DOI: 10.1113/jp282728] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/04/2022] [Indexed: 11/08/2022] Open
Abstract
Visceral adipose tissue (VAT) is a metabolic organ known to regulate fat mass, and glucose and nutrient homeostasis. VAT is an active endocrine gland that synthesizes and secretes numerous bioactive mediators called 'adipocytokines/adipokines' into systemic circulation. These adipocytokines act on organs of metabolic importance like the liver and skeletal muscle. Multiple preclinical and in vitro studies showed strong evidence of the roles of adipocytokines in the regulation of metabolic disorders like diabetes, obesity and insulin resistance. Adipocytokines, such as adiponectin and omentin, are anti-inflammatory and have been shown to prevent atherogenesis by increasing nitric oxide (NO) production by the endothelium, suppressing endothelium-derived inflammation and decreasing foam cell formation. By inhibiting differentiation of vascular smooth muscle cells (VSMC) into osteoblasts, adiponectin and omentin prevent vascular calcification. On the other hand, adipocytokines like leptin and resistin induce inflammation and endothelial dysfunction that leads to vasoconstriction. By promoting VSMC migration and proliferation, extracellular matrix degradation and inflammatory polarization of macrophages, leptin and resistin increase the risk of atherosclerotic plaque vulnerability and rupture. Additionally, the plasma concentrations of these adipocytokines alter in ageing, rendering older humans vulnerable to cardiovascular disease. The disturbances in the normal physiological concentrations of these adipocytokines secreted by VAT under pathological conditions impede the normal functions of various organs and affect cardiovascular health. These adipokines could be used for both diagnostic and therapeutic purposes in cardiovascular disease.
Collapse
Affiliation(s)
- Sathish Babu Vasamsetti
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA 15213
- Pittsburgh VA Medical Center-University Drive, University Drive C, Pittsburgh, PA, USA
| | - Niranjana Natarajan
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA 15213
| | - Samreen Sadaf
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA 15213
- Pittsburgh VA Medical Center-University Drive, University Drive C, Pittsburgh, PA, USA
| | - Jonathan Florentin
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA 15213
| | - Partha Dutta
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA 15213
- Pittsburgh VA Medical Center-University Drive, University Drive C, Pittsburgh, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA, 15213
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA, 15213
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
4
|
Neuronal Nitric Oxide Synthase as a Shared Target for the Effects of Adiponectin and Resistin on the Mechanical Responses of the Mouse Gastric Fundus. Int J Mol Sci 2022; 23:ijms232416113. [PMID: 36555750 PMCID: PMC9781802 DOI: 10.3390/ijms232416113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
It has been reported that adiponectin (ADPN) and resistin are co-secreted by white mouse adipocytes and exert similar inhibitory effects in the mouse gastric fundus, in which resistin was observed to increase neuronal nitric oxide synthase (nNOS) expression. On these grounds, the present work aimed to investigate whether the effects of the two adipokines on the neurally-induced relaxant responses potentiate each other and whether there is a possible correlation with changes in nNOS expression in preparations from the mouse gastric fundus. In carbachol (CCh)-precontracted strips, electrical field stimulation elicited nitrergic relaxant responses, whose amplitude was increased by ADPN or resistin, but no additional enhancements were observed in their concomitant presence. Western blot and immunofluorescence analyses revealed that ADPN, like resistin, was able to up-regulate nNOS expression and to increase the percentage of nNOS-positive neurons in the myenteric plexus: co-treatment with the two adipokines did not induce additional changes. The results indicate that the two adipokines modulate nitrergic neurotransmission, and both do so by up-regulating nNOS expression. Therefore, nNOS appears to be a shared target for the two adipokines' effects, which, rather than mutually reinforcing each other, may represent a dual physiological control mechanism to guarantee gastric fundus relaxation.
Collapse
|
5
|
Bapat A, Li G, Xiao L, Yeri A, Hulsmans M, Grune J, Yamazoe M, Schloss MJ, Iwamoto Y, Tedeschi J, Yang X, Nahrendorf M, Rosenzweig A, Ellinor PT, Das S, Milan D. Genetic inhibition of serum glucocorticoid kinase 1 prevents obesity-related atrial fibrillation. JCI Insight 2022; 7:160885. [PMID: 35998035 PMCID: PMC9675459 DOI: 10.1172/jci.insight.160885] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/19/2022] [Indexed: 01/19/2023] Open
Abstract
Obesity is an important risk factor for atrial fibrillation (AF), but a better mechanistic understanding of obesity-related atrial fibrillation is required. Serum glucocorticoid kinase 1 (SGK1) is a kinase positioned within multiple obesity-related pathways, and prior work has shown a pathologic role of SGK1 signaling in ventricular arrhythmias. We validated a mouse model of obesity-related AF using wild-type mice fed a high-fat diet. RNA sequencing of atrial tissue demonstrated substantial differences in gene expression, with enrichment of multiple SGK1-related pathways, and we showed upregulated of SGK1 transcription, activation, and signaling in obese atria. Mice expressing a cardiac specific dominant-negative SGK1 were protected from obesity-related AF, through effects on atrial electrophysiology, action potential characteristics, structural remodeling, inflammation, and sodium current. Overall, this study demonstrates the promise of targeting SGK1 in a mouse model of obesity-related AF.
Collapse
Affiliation(s)
- Aneesh Bapat
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Demoulas Family Foundation Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Guoping Li
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ling Xiao
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ashish Yeri
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Maarten Hulsmans
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jana Grune
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
- German Centre for Cardiovascular Research, Berlin, Germany
| | - Masahiro Yamazoe
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Maximilian J. Schloss
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Yoshiko Iwamoto
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Justin Tedeschi
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Xinyu Yang
- Fangshan Hospital of Beijing, University of Traditional Chinese Medicine, Beijing, China
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Internal Medicine I, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Anthony Rosenzweig
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Patrick T. Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Demoulas Family Foundation Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Demoulas Family Foundation Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David Milan
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Leducq Foundation, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Idrizaj E, Garella R, Nistri S, Squecco R, Baccari MC. Evidence that resistin acts on the mechanical responses of the mouse gastric fundus. Front Physiol 2022; 13:930197. [PMID: 35910552 PMCID: PMC9334560 DOI: 10.3389/fphys.2022.930197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
Resistin, among its several actions, has been reported to exert central anorexigenic effects in rodents. Some adipokines which centrally modulate food intake have also been reported to affect the activity of gastric smooth muscle, whose motor responses represent a source of peripheral signals implicated in the control of the hunger-satiety cycle through the gut-brain axis. On this basis, in the present experiments, we investigated whether resistin too could affect the mechanical responses in the mouse longitudinal gastric fundal strips. Electrical field stimulation (EFS) elicited tetrodotoxin- and atropine-sensitive contractile responses. Resistin reduced the amplitude of the EFS-induced contractile responses. This effect was no longer detected in the presence of L-NNA, a nitric oxide (NO) synthesis inhibitor. Resistin did not influence the direct muscular response to methacholine. In the presence of carbachol and guanethidine, EFS elicited inhibitory responses whose amplitude was increased by resistin. L-NNA abolished the inhibitory responses evoked by EFS, indicating their nitrergic nature. In the presence of L-NNA, resistin did not have any effect on the EFS-evoked inhibitory responses. Western blot and immunofluorescence analysis revealed a significant increase in neuronal nitric oxide synthase (nNOS) expression in neurons of the myenteric plexus following resistin exposure. In conclusion, the present results offer the first evidence that resistin acts on the gastric fundus, likely through a modulatory action on the nitrergic neurotransmission.
Collapse
Affiliation(s)
- Eglantina Idrizaj
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
- *Correspondence: Eglantina Idrizaj, ; Maria Caterina Baccari,
| | - Rachele Garella
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Silvia Nistri
- Department of Experimental and Clinical Medicine, Research Unit of Histology and Embryology, University of Florence, Florence, Italy
| | - Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Maria Caterina Baccari
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
- *Correspondence: Eglantina Idrizaj, ; Maria Caterina Baccari,
| |
Collapse
|
7
|
Li J, Shen X. Oxidative stress and adipokine levels were significantly correlated in diabetic patients with hyperglycemic crises. Diabetol Metab Syndr 2019; 11:13. [PMID: 30774721 PMCID: PMC6364461 DOI: 10.1186/s13098-019-0410-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/31/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND To investigate the relationship between blood adipokine level and oxidative stress in diabetic patients with hyperglycemic crises before and after treatment. METHODS We measured superoxide dismutase (SOD) activity, malondialdehyde (MDA) content, total antioxidant capacity (TAC), and levels of 8-iso-prostaglandin F2α (8-iso-PGF2α), adiponectin, leptin, and resistin in 63 diabetic patients with hyperglycemic crises. RESULTS Prior to treatment, patients with hyperglycemic crises had significantly lower serum SOD activity, TAC, and adiponectin and leptin levels, and higher serum levels of MDA, 8-iso-PGF2α, and resistin compared with the healthy control individuals (all at P < 0.05). After treatment, SOD, TAC, adiponectin, and leptin levels increased significantly, while MDA, 8-iso-PGF2α, and resistin levels decreased significantly (all at P < 0.05) in the patients. CONCLUSIONS Diabetic patients with hyperglycemic crises have increased oxidative stress, which is associated with serum adipokine abnormalities; improved oxidative stress after treatment suggests that oxidative stress may serve as target and/or indicator for the treatment of hyperglycemic crises.
Collapse
Affiliation(s)
- Juan Li
- Department of Emergency, Zhongshan Hospital Xiamen University, Xiamen, 361004 Fujian China
| | - Xingping Shen
- Department of Endocrinology, Zhongshan Hospital Xiamen University, Xiamen, 361004 Fujian China
| |
Collapse
|
8
|
Ruscica M, Baragetti A, Catapano AL, Norata GD. Translating the biology of adipokines in atherosclerosis and cardiovascular diseases: Gaps and open questions. Nutr Metab Cardiovasc Dis 2017; 27:379-395. [PMID: 28237179 DOI: 10.1016/j.numecd.2016.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/14/2016] [Accepted: 12/16/2016] [Indexed: 01/10/2023]
Abstract
AIM Critically discuss the available data, to identify the current gaps and to provide key concepts that will help clinicians in translating the biology of adipokines in the context of atherosclerosis and cardio-metabolic diseases. DATA SYNTHESIS Adipose tissue is nowadays recognized as an active endocrine organ, a function related to the ability to secrete adipokines (such as leptin and adiponectin) and pro-inflammatory cytokines (tumor necrosis factor alpha and resistin). Studies in vitro and in animal models have observed that obesity status presents a chronic low-grade inflammation as the consequence of the immune cells infiltrating the adipose tissue as well as adipocytes. This inflammatory signature is often related to the presence of cardiovascular diseases, including atherosclerosis and thrombosis. These links are less clear in humans, where the role of adipokines as prognostic marker and/or player in cardiovascular diseases is not as clear as that observed in experimental models. Moreover, plasma adipokine levels might reflect a condition of adipokine-resistance in which adipokine redundancy occurs. The investigation of the cardio-metabolic phenotype of carriers of single nucleotide polymorphisms affecting the levels or function of a specific adipokine might help determine their relevance in humans. Thus, the aim of the present review is to critically discuss the available data, identify the current gaps and provide key concepts that will help clinicians translate the biology of adipokines in the context of atherosclerosis and cardio-metabolic diseases.
Collapse
Affiliation(s)
- M Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - A Baragetti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; SISA Center for the Study of Atherosclerosis, Bassini Hospital, Cinisello Balsamo, Italy
| | - A L Catapano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; IRCCS Multimedica Hospital, Sesto San Giovanni, Milan, Italy
| | - G D Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; SISA Center for the Study of Atherosclerosis, Bassini Hospital, Cinisello Balsamo, Italy; School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia.
| |
Collapse
|
9
|
Raghuraman G, Zuniga MC, Yuan H, Zhou W. PKCε mediates resistin-induced NADPH oxidase activation and inflammation leading to smooth muscle cell dysfunction and intimal hyperplasia. Atherosclerosis 2016; 253:29-37. [PMID: 27573736 DOI: 10.1016/j.atherosclerosis.2016.08.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/12/2016] [Accepted: 08/18/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND AIMS Resistin has been implicated in cardiovascular disease and poor interventional cardiovascular outcomes. Previous studies by our group demonstrated resistin promoted vascular smooth muscle cell (VSMC) migration through protein kinase C epsilon (PKCε) pathways, while few others showed that resistin induced reactive oxygen species (ROS) generation in various cell types. In this study, we aim to systemically examine the functional role of resistin at the cellular and tissue levels as well as the potential mechanistic relationship between resistin-induced PKCε activation and ROS production. METHODS Plasma collected from patients undergoing carotid interventions was analyzed for resistin level and ROS. VSMCs were treated with resistin in the presence or absence of PKCε and NADPH oxidase (Nox)-specific inhibitors. Intracellular ROS production was analyzed using confocal microscopy and Nox activity with chemiluminescence. In vivo studies were performed in apolipoprotein E knock out (ApoE-/-) mice to determine therapeutic effects of PKCε-specific inhibitor, using the guide-wire injury model. RESULTS We observed significant correlation between plasma resistin and circulating levels of oxidative stress in patients with severe atherosclerotic disease. We also demonstrated that resistin induced ROS production via PKCε-mediated Nox activation. Resistin-induced ROS production was time-dependent, and Nox4 was the primary isoform involved. Inhibition of Nox completely abolished resistin-exaggerated VSMC proliferation, migration and dedifferentiation, as well as pro-inflammatory cytokine release. Upstream modulation of PKCε significantly reduced resistin-mediated cytosolic ROS, Nox activity and VSMC dysfunction. Moreover, PKCε-specific inhibitor mitigated resistin-induced Nox activation and intimal hyperplasia in ApoE-/- mice. CONCLUSIONS Resistin-associated VSMC dysfunction and intimal hyperplasia are related to PKCε-dependent Nox activation and ROS generation. Targeting the PKCε-Nox pathway may represent a novel strategy in managing resistin-associated atherosclerotic complications.
Collapse
Affiliation(s)
| | - Mary C Zuniga
- Department of Vascular Surgery, VAPHCS, Palo Alto, CA, USA
| | - Hai Yuan
- Department of Vascular Surgery, VAPHCS, Palo Alto, CA, USA
| | - Wei Zhou
- Department of Vascular Surgery, VAPHCS, Palo Alto, CA, USA; Department of Surgery, Stanford University, Stanford, CA, USA.
| |
Collapse
|
10
|
Lou Y, Zhang F, Luo Y, Wang L, Huang S, Jin F. Serum and Glucocorticoid Regulated Kinase 1 in Sodium Homeostasis. Int J Mol Sci 2016; 17:ijms17081307. [PMID: 27517916 PMCID: PMC5000704 DOI: 10.3390/ijms17081307] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/13/2022] Open
Abstract
The ubiquitously expressed serum and glucocorticoid regulated kinase 1 (SGK1) is tightly regulated by osmotic and hormonal signals, including glucocorticoids and mineralocorticoids. Recently, SGK1 has been implicated as a signal hub for the regulation of sodium transport. SGK1 modulates the activities of multiple ion channels and carriers, such as epithelial sodium channel (ENaC), voltage-gated sodium channel (Nav1.5), sodium hydrogen exchangers 1 and 3 (NHE1 and NHE3), sodium-chloride symporter (NCC), and sodium-potassium-chloride cotransporter 2 (NKCC2); as well as the sodium-potassium adenosine triphosphatase (Na+/K+-ATPase) and type A natriuretic peptide receptor (NPR-A). Accordingly, SGK1 is implicated in the physiology and pathophysiology of Na+ homeostasis. Here, we focus particularly on recent findings of SGK1’s involvement in Na+ transport in renal sodium reabsorption, hormone-stimulated salt appetite and fluid balance and discuss the abnormal SGK1-mediated Na+ reabsorption in hypertension, heart disease, edema with diabetes, and embryo implantation failure.
Collapse
Affiliation(s)
- Yiyun Lou
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
- Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310007, Zhejiang, China.
| | - Fan Zhang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Yuqin Luo
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Liya Wang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Shisi Huang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Fan Jin
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
- Key Laboratory of Reproductive Genetics, National Ministry of Education (Zhejiang University), Women's Reproductive Healthy Laboratory of Zhejiang Province, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|