1
|
Pak YK, Im S, Choi HS, Lind L, Lind M, Lee HK. Correlation between environmental pollutant exposure and cardiopulmonary health by serum biomarker analysis in the Swedish elderly population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-14. [PMID: 39037202 DOI: 10.1080/09603123.2024.2382306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Persistent organic pollutants (POPs) affect human health through the aryl hydrocarbon receptor (AhR) pathway and are implicated in mitochondrial dysfunction. Using data from the PIVUS study, we investigated the associations of serum AhR ligand (POP)-mediated luciferase activity (AhRL), mitochondrial ATP production inhibiting substances (MIS-ATP), and those affecting reactive oxygen species (MIS-ROS) with several metabolic syndrome (MetS) and cardiopulmonary function parameters. These include insulin resistance (HOMA-IR), inflammation, oxidative stress, and cardiopulmonary variables (FVC, FEV1, LV-EF, CCA distensibility). MIS-ATP showed significant correlations with HOMA-IR and pulmonary functions, indicating its direct impact of MIS-ATP on metabolic and pulmonary health. MIS-ROS correlated with oxidative stress markers and CCA distensibility, suggesting a role in systemic inflammatory responses. This study highlights the intricate relationships between environmental pollutant mixture and cardiopulmonary health in MetS as indicated by biomarkers of POP exposure in the elderly population, suggesting POP exposure may influence MetS onset and progression through mitochondrial dysfunction.
Collapse
Affiliation(s)
- Youngmi Kim Pak
- Department of Physiology, Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Kyung Hee University School of Medicine, Seoul, South Korea
- Department of Neuroscience, Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Kyung Hee University School of Medicine, Seoul, South Korea
| | - Suyeol Im
- Department of Neuroscience, Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Kyung Hee University School of Medicine, Seoul, South Korea
| | - Hoon Sung Choi
- Department of Internal Medicine, Chung Ang University College of Medicine, Seoul, South Korea
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Monica Lind
- Occupational and Environmental Medicine, Uppsala University, Uppsala, Sweden
| | - Hong Kyu Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
2
|
Mendelson AA, Erickson D, Villar R. The role of the microcirculation and integrative cardiovascular physiology in the pathogenesis of ICU-acquired weakness. Front Physiol 2023; 14:1170429. [PMID: 37234410 PMCID: PMC10206327 DOI: 10.3389/fphys.2023.1170429] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Skeletal muscle dysfunction after critical illness, defined as ICU-acquired weakness (ICU-AW), is a complex and multifactorial syndrome that contributes significantly to long-term morbidity and reduced quality of life for ICU survivors and caregivers. Historically, research in this field has focused on pathological changes within the muscle itself, without much consideration for their in vivo physiological environment. Skeletal muscle has the widest range of oxygen metabolism of any organ, and regulation of oxygen supply with tissue demand is a fundamental requirement for locomotion and muscle function. During exercise, this process is exquisitely controlled and coordinated by the cardiovascular, respiratory, and autonomic systems, and also within the skeletal muscle microcirculation and mitochondria as the terminal site of oxygen exchange and utilization. This review highlights the potential contribution of the microcirculation and integrative cardiovascular physiology to the pathogenesis of ICU-AW. An overview of skeletal muscle microvascular structure and function is provided, as well as our understanding of microvascular dysfunction during the acute phase of critical illness; whether microvascular dysfunction persists after ICU discharge is currently not known. Molecular mechanisms that regulate crosstalk between endothelial cells and myocytes are discussed, including the role of the microcirculation in skeletal muscle atrophy, oxidative stress, and satellite cell biology. The concept of integrated control of oxygen delivery and utilization during exercise is introduced, with evidence of physiological dysfunction throughout the oxygen delivery pathway - from mouth to mitochondria - causing reduced exercise capacity in patients with chronic disease (e.g., heart failure, COPD). We suggest that objective and perceived weakness after critical illness represents a physiological failure of oxygen supply-demand matching - both globally throughout the body and locally within skeletal muscle. Lastly, we highlight the value of standardized cardiopulmonary exercise testing protocols for evaluating fitness in ICU survivors, and the application of near-infrared spectroscopy for directly measuring skeletal muscle oxygenation, representing potential advancements in ICU-AW research and rehabilitation.
Collapse
Affiliation(s)
- Asher A. Mendelson
- Section of Critical Care Medicine, Department of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Dustin Erickson
- Section of Critical Care Medicine, Department of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Rodrigo Villar
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
3
|
Fu X, Zhuang CL, Hu P. Regulation of muscle stem cell fate. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:40. [PMID: 36456659 PMCID: PMC9715903 DOI: 10.1186/s13619-022-00142-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 09/29/2022] [Indexed: 12/03/2022]
Abstract
Skeletal muscle plays a critical role in human health. Muscle stem cells (MuSCs) serve as the major cell type contributing to muscle regeneration by directly differentiating to mature muscle cells. MuSCs usually remain quiescent with occasionally self-renewal and are activated to enter cell cycle for proliferation followed by differentiation upon muscle injury or under pathological conditions. The quiescence maintenance, activation, proliferation, and differentiation of MuSCs are tightly regulated. The MuSC cell-intrinsic regulatory network and the microenvironments work coordinately to orchestrate the fate transition of MuSCs. The heterogeneity of MuSCs further complicates the regulation of MuSCs. This review briefly summarizes the current progress on the heterogeneity of MuSCs and the microenvironments, epigenetic, and transcription regulations of MuSCs.
Collapse
Affiliation(s)
- Xin Fu
- grid.412987.10000 0004 0630 1330Spine Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| | - Cheng-le Zhuang
- grid.412538.90000 0004 0527 0050Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, 200072 China
| | - Ping Hu
- grid.412987.10000 0004 0630 1330Spine Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China ,grid.412538.90000 0004 0527 0050Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, 200072 China ,Guangzhou Laboratory, Guanghzou International Bio Lsland, No. 9 XingDaoHuan Road, Guangzhou, 510005 China ,grid.9227.e0000000119573309Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
4
|
Ribeiro IC, Aranda LC, Freitas TO, Degani-Costa LH, Ferreira EVM, Nery LE, Silva BM. Intercostal and vastus lateralis microcirculatory response to a sympathoexcitatory manoeuvre in patients with chronic obstructive pulmonary disease. Respir Physiol Neurobiol 2021; 290:103678. [PMID: 33957298 DOI: 10.1016/j.resp.2021.103678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/08/2021] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
Abstract
Patients with COPD present with systemic vascular malfunctioning and their microcirculation is possibly more fragile to overcome an increase in the sympathetic vasoconstrictor outflow during sympathoexcitatory situations. To test the skeletal muscle microvascular responsiveness to sympathoexcitation, we asked patients with COPD and age- and sex-matched controls to immerse a hand in iced water [Cold Pressor Test (CPT)]. Near-infrared spectroscopy detection of the indocyanine green dye in the intercostal and vastus lateralis microcirculation provided a blood flow index (BFI). BFI divided by mean blood pressure (MBP) provided an index of microvascular conductance (BFI/MBP). The CPT decreased BFI and BFI/MBP in the intercostal (P = 0.01 and < 0.01, respectively) and vastus lateralis (P = 0.08 and 0.03, respectively) only in the COPD group, and the per cent BFI and BFI/MBP decrease was similar between muscles (P = 0.78 and 0.85, respectively). Thus, our findings support that sympathoexcitation similarly impairs intercostal and vastus lateralis microvascular regulation in patients with COPD.
Collapse
Affiliation(s)
- Indyanara C Ribeiro
- Division of Respiratory Medicine, Federal University of Sao Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Liliane C Aranda
- Division of Respiratory Medicine, Federal University of Sao Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Tiago O Freitas
- Division of Respiratory Medicine, Federal University of Sao Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Luiza H Degani-Costa
- Division of Respiratory Medicine, Federal University of Sao Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Eloara V M Ferreira
- Division of Respiratory Medicine, Federal University of Sao Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Luiz E Nery
- Division of Respiratory Medicine, Federal University of Sao Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Bruno M Silva
- Division of Respiratory Medicine, Federal University of Sao Paulo (UNIFESP), São Paulo, SP, Brazil; Department of Physiology, UNIFESP, São Paulo, SP, Brazil.
| |
Collapse
|
5
|
Remesar X, Alemany M. Dietary Energy Partition: The Central Role of Glucose. Int J Mol Sci 2020; 21:E7729. [PMID: 33086579 PMCID: PMC7593952 DOI: 10.3390/ijms21207729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022] Open
Abstract
Humans have developed effective survival mechanisms under conditions of nutrient (and energy) scarcity. Nevertheless, today, most humans face a quite different situation: excess of nutrients, especially those high in amino-nitrogen and energy (largely fat). The lack of mechanisms to prevent energy overload and the effective persistence of the mechanisms hoarding key nutrients such as amino acids has resulted in deep disorders of substrate handling. There is too often a massive untreatable accumulation of body fat in the presence of severe metabolic disorders of energy utilization and disposal, which become chronic and go much beyond the most obvious problems: diabetes, circulatory, renal and nervous disorders included loosely within the metabolic syndrome. We lack basic knowledge on diet nutrient dynamics at the tissue-cell metabolism level, and this adds to widely used medical procedures lacking sufficient scientific support, with limited or nil success. In the present longitudinal analysis of the fate of dietary nutrients, we have focused on glucose as an example of a largely unknown entity. Even most studies on hyper-energetic diets or their later consequences tend to ignore the critical role of carbohydrate (and nitrogen disposal) as (probably) the two main factors affecting the substrate partition and metabolism.
Collapse
Affiliation(s)
- Xavier Remesar
- Department of Biochemistry and Molecular Biomedicine Faculty of Biology, University Barcelona, 08028 Barcelona, Spain;
- IBUB Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, 08028 Barcelona, Spain
| | - Marià Alemany
- Department of Biochemistry and Molecular Biomedicine Faculty of Biology, University Barcelona, 08028 Barcelona, Spain;
- IBUB Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, 08028 Barcelona, Spain
| |
Collapse
|