1
|
Yang Y, He X, Tan S, Qu X, Huang W, Cai J, You J, Fu X, He Y, Yang H. The association between immunoinflammatory biomarkers NLR, PLR, LMR and nonalcoholic fatty liver disease: a systematic review and meta-analysis. Clin Exp Med 2025; 25:39. [PMID: 39812894 PMCID: PMC11735594 DOI: 10.1007/s10238-024-01539-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disorder closely linked to metabolic syndrome. Identifying novel, easily measurable biomarkers could significantly enhance the diagnosis and management of NAFLD in clinical settings. Recent studies suggest that immunoinflammatory biomarkers-specifically, the neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and lymphocyte-to-monocyte ratio (LMR)-may offer diagnostic value for NAFLD. However, the effectiveness of these biomarkers has not been comprehensively assessed in this patient population. This systematic review and meta-analysis aimed to evaluate the association between these immunoinflammatory biomarkers and NAFLD. As of August 8, 2024, databases including PubMed, EMBASE, Cochrane Library, Web of Science, and Scopus were systematically searched to compare NLR, PLR, and LMR levels in NAFLD patients and healthy controls. Study quality was assessed using the Newcastle-Ottawa Scale, and standardized mean differences (SMDs) with 95% confidence intervals (CIs) were calculated (PROSPERO registry number: CRD42024580812). A total of 20 studies were included in the meta-analysis. Results indicated that NAFLD patients had significantly higher NLR levels (SMD = 0.43; 95% CI 0.28-0.58; p < 0.001) and lower PLR levels (SMD = - 0.29; 95% CI - 0.41 to - 0.17; p < 0.001) compared to controls. However, no significant difference in LMR was observed between NAFLD patients and controls(SMD = 0.08; 95% CI - 0.00 to 0.17; p = 0.051). These findings suggest that NLR and PLR may hold promise as diagnostic markers for NAFLD, while LMR appears to have limited diagnostic utility. Further research is warranted to explore the potential role of these biomarkers in tracking disease progression.
Collapse
Affiliation(s)
- Yunyi Yang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Shanghai, 200437, China
| | - Xiaoli He
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Shanghai, 200437, China
| | - Shufa Tan
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaoxiao Qu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Shanghai, 200437, China
| | - Weijin Huang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Shanghai, 200437, China
| | - Jiayuan Cai
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Shanghai, 200437, China
| | - Jiawen You
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Shanghai, 200437, China
| | - Xinyi Fu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Shanghai, 200437, China
| | - Yanming He
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Shanghai, 200437, China.
| | - Hongjie Yang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Shanghai, 200437, China.
| |
Collapse
|
2
|
Flam E, Haas JT, Staels B. Liver metabolism in human MASLD: A review of recent advancements using human tissue metabolomics. Atherosclerosis 2025; 400:119054. [PMID: 39586140 DOI: 10.1016/j.atherosclerosis.2024.119054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/27/2024]
Abstract
Global incidence of Metabolic dysfunction-Associated Steatotic Liver Disease (MASLD) is on the rise while treatments remain elusive. MASLD is a disease of dysregulated systemic and hepatic metabolism. Current understanding of disease pathophysiology as it relates to metabolome changes largely comes from studies on animal models and human plasma. However, human tissue data are crucial for transitioning from mechanisms to clinical therapies. The close relationship between MASLD and comorbidities like obesity, type 2 diabetes and dyslipidemia make it difficult to determine the contribution from liver disease itself. Here, we review recent metabolomics studies in liver tissue from human MASLD patients, which have predominately focused on lipid metabolism, but also include bile acid, tricarboxylic acid (TCA) cycle, and branched chain amino acid (BCAA) metabolism. Several clinical trials are underway to target various of these lipid-related pathways in MASLD. Although only the β-selective thyroid hormone receptor agonist resmetirom has so far been approved for use, many metabolism-targeting pharmaceuticals show promising results for halting disease progression, if not promoting outright reversal. Ultimately, the scarcity of human tissue data and the variability of confounding factors, like obesity, within and between cohorts are impediments to the pathophysiological understanding required for efficient development of metabolic treatments.
Collapse
Affiliation(s)
- Emily Flam
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Joel T Haas
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Bart Staels
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
| |
Collapse
|
3
|
Tan EY, Muthiah MD, Sanyal AJ. Metabolomics at the cutting edge of risk prediction of MASLD. Cell Rep Med 2024; 5:101853. [PMID: 39657668 PMCID: PMC11722125 DOI: 10.1016/j.xcrm.2024.101853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/12/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major public health threat globally. Management of patients afflicted with MASLD and research in this domain are limited by the lack of robust well-established non-invasive biomarkers for diagnosis, prognostication, and monitoring. The circulating metabolome reflects both the systemic metabo-inflammatory milieu and changes in the liver in affected individuals. In this review we summarize the available literature on changes in the different components of the metabolome in MASLD with a focus on changes that are linked to the presence of underlying steatohepatitis, severity of disease activity, and fibrosis stage. We further summarize the existing literature around biomarker panels that are derived from interrogation of the metabolome. Their relevance to disease biology and utility in practice are also discussed. We further highlight potential direction for future studies particularly to ensure they are fit for purpose and suitable for widespread use.
Collapse
Affiliation(s)
- En Ying Tan
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore.
| | - Mark D Muthiah
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Arun J Sanyal
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
4
|
Chen J, Lu RS, Diaz-Canestro C, Song E, Jia X, Liu Y, Wang C, Cheung CK, Panagiotou G, Xu A. Distinct changes in serum metabolites and lipid species in the onset and progression of NAFLD in Obese Chinese. Comput Struct Biotechnol J 2024; 23:791-800. [PMID: 38318437 PMCID: PMC10839226 DOI: 10.1016/j.csbj.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 02/07/2024] Open
Abstract
Introduction Metabolic disturbances are major contributors to the onset and progression of non-alcoholic fatty liver disease (NAFLD), which includes a histological spectrum ranging from single steatosis (SS) to non-alcoholic steatohepatitis (NASH). This study aimed to identify serum metabolites and lipids enriched in different histological stages of NAFLD and to explore metabolites/lipids as non-invasive biomarkers in risk prediction of NAFLD and NASH in obese Chinese. Methods Serum samples and liver biopsies were obtained from 250 NAFLD subjects. Untargeted metabolomic and lipidomic profiling were performed using Liquid Chromatography-Mass Spectrometry. Significantly altered metabolites and lipids were identified by MaAsLin2. Pathway enrichment was conducted with MetaboAnalyst and LIPEA. WGCNA was implemented to construct the co-expression network. Logistic regression models were developed to classify different histological stages of NAFLD. Results A total of 263 metabolites and 550 lipid species were detected in serum samples. Differential analysis and pathway enrichment analysis revealed the progressive patterns in metabolic mechanisms during the transition from normal liver to SS and to NASH, including N-palmitoyltaurine, tridecylic acid, and branched-chain amino acid signaling pathways. The co-expression network showed a distinct correlation between different triglyceride and phosphatidylcholine species with disease severity. Multiple models classifying NAFLD versus normal liver and NASH versus SS identified important metabolic features associated with significant improvement in disease prediction compared to conventional clinical parameters. Conclusion Different histological stages of NAFLD are enriched with distinct sets of metabolites, lipids, and metabolic pathways. Integrated algorithms highlight the important metabolic and lipidomic features for diagnosis and staging of NAFLD in obese individuals.
Collapse
Affiliation(s)
- Jiarui Chen
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administrative Region
- Department of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
- Leibniz Insitute for Natural Product Research and Infection Biology, Microbiome Dynamics, Hans Knöll Institute, Jena, Germany
| | - Ronald Siyi Lu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administrative Region
- Department of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Candela Diaz-Canestro
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administrative Region
- Department of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Erfei Song
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administrative Region
- Department of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xi Jia
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administrative Region
- Department of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Yan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administrative Region
- Department of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Cunchuan Wang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Cynthia K.Y. Cheung
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administrative Region
- Department of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Gianni Panagiotou
- Department of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
- Leibniz Insitute for Natural Product Research and Infection Biology, Microbiome Dynamics, Hans Knöll Institute, Jena, Germany
- Friedrich Schiller University, Faculty of Biological Sciences, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administrative Region
- Department of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
- Department of Pharmacology and Pharmacy, the University of Hong Kong, Hong Kong Special Administrative Region
| |
Collapse
|
5
|
Gillard J, Roumain M, Picalausa C, Thibaut MM, Clerbaux LA, Tailleux A, Staels B, Muccioli GG, Bindels LB, Leclercq IA. A gut microbiota-independent mechanism shapes the bile acid pool in mice with MASH. JHEP Rep 2024; 6:101148. [PMID: 39741697 PMCID: PMC11686050 DOI: 10.1016/j.jhepr.2024.101148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/02/2024] [Accepted: 06/13/2024] [Indexed: 01/03/2025] Open
Abstract
Background & Aims An imbalance between primary and secondary bile acids contributes to the development of metabolic dysfunction-associated steatohepatitis (MASH). The precise mechanisms underlying changes in the bile acid pool in MASH remain to be identified. As gut bacteria convert primary bile acids to secondary bile acids, we investigated the contribution of the gut microbiota and its metabolizing activities to bile acid alterations in MASH. Methods To disentangle the influence of MASH from environmental and dietary factors, high-fat diet fed foz/foz mice were compared with their high-fat diet fed wildtype littermates. We developed functional assays (stable isotope labeling and in vitro experiments) to extend the analyses beyond a mere study of gut microbiota composition (16S rRNA gene sequencing). Key findings were confirmed in C57BL/6J mice were fed a Western and high-fructose diet, as an independent mouse model of MASH. Results Although mice with MASH exhibited lower levels of secondary 7α-dehydroxylated bile acids (3.5-fold lower, p = 0.0008), the gut microbial composition was similar in mice with and without MASH. Similar gut microbial bile salt hydrolase and 7α-dehydroxylating activities could not explain the low levels of secondary 7α-dehydroxylated bile acids. Furthermore, the 7α-dehydroxylating activity was unaffected by Clostridium scindens administration in mice with a non-standardized gut microbiota. By exploring alternative mechanisms, we identified an increased bile acid 7α-rehydroxylation mediated by liver CYP2A12 and CYP2A22 enzymes (4.0-fold higher, p <0.0001), that reduces secondary 7α-dehydroxylated bile acid levels in MASH. Conclusions This study reveals a gut microbiota-independent mechanism that alters the level of secondary bile acids and contributes to the development of MASH in mice. Impact and implications Although changes in bile acid levels are implicated in the development of metabolic dysfunction-associated steatohepatitis (MASH), the precise mechanisms underpinning these alterations remain elusive. In this study, we investigated the mechanisms responsible for the changes in bile acid levels in mouse models of MASH. Our results support that neither the composition nor the metabolic activity of the gut microbiota can account for the alterations in the bile acid pool. Instead, we identified hepatic 7α-rehydroxylation of secondary bile acids as a gut microbiota-independent factor contributing to the reduced levels of secondary bile acids in mice with MASH. Further investigation is warranted to understand bile acid metabolism and its physiological implications in clinical MASH. Nonetheless, our findings hold promise for exploring novel therapeutic interventions for MASH.
Collapse
Affiliation(s)
- Justine Gillard
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Martin Roumain
- Bioanalysis and Pharmacology of Bioactive Lipids, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Corinne Picalausa
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | - Morgane M. Thibaut
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Laure-Alix Clerbaux
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | - Anne Tailleux
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Bart Staels
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Giulio G. Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Laure B. Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
- Welbio department, WEL Research Institute, Wavre, Belgium
| | - Isabelle A. Leclercq
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
6
|
Bilson J, Scorletti E, Swann JR, Byrne CD. Bile Acids as Emerging Players at the Intersection of Steatotic Liver Disease and Cardiovascular Diseases. Biomolecules 2024; 14:841. [PMID: 39062555 PMCID: PMC11275019 DOI: 10.3390/biom14070841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Affecting approximately 25% of the global population, steatotic liver disease (SLD) poses a significant health concern. SLD ranges from simple steatosis to metabolic dysfunction-associated steatohepatitis and fibrosis with a risk of severe liver complications such as cirrhosis and hepatocellular carcinoma. SLD is associated with obesity, atherogenic dyslipidaemia, and insulin resistance, increasing cardiovascular risks. As such, identifying SLD is vital for cardiovascular disease (CVD) prevention and treatment. Bile acids (BAs) have critical roles in lipid digestion and are signalling molecules regulating glucose and lipid metabolism and influencing gut microbiota balance. BAs have been identified as critical mediators in cardiovascular health, influencing vascular tone, cholesterol homeostasis, and inflammatory responses. The cardio-protective or harmful effects of BAs depend on their concentration and composition in circulation. The effects of certain BAs occur through the activation of a group of receptors, which reduce atherosclerosis and modulate cardiac functions. Thus, manipulating BA receptors could offer new avenues for treating not only liver diseases but also CVDs linked to metabolic dysfunctions. In conclusion, this review discusses the intricate interplay between BAs, metabolic pathways, and hepatic and extrahepatic diseases. We also highlight the necessity for further research to improve our understanding of how modifying BA characteristics affects or ameliorates disease.
Collapse
Affiliation(s)
- Josh Bilson
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.S.)
- National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton, University Hospital Southampton National Health Service Foundation Trust, Southampton SO16 6YD, UK
| | - Eleonora Scorletti
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.S.)
- National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton, University Hospital Southampton National Health Service Foundation Trust, Southampton SO16 6YD, UK
- Division of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan R. Swann
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.S.)
- National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton, University Hospital Southampton National Health Service Foundation Trust, Southampton SO16 6YD, UK
| | - Christopher D. Byrne
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.S.)
- National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton, University Hospital Southampton National Health Service Foundation Trust, Southampton SO16 6YD, UK
| |
Collapse
|
7
|
Long Q, Luo F, Li B, Li Z, Guo Z, Chen Z, Wu W, Hu M. Gut microbiota and metabolic biomarkers in metabolic dysfunction-associated steatotic liver disease. Hepatol Commun 2024; 8:e0310. [PMID: 38407327 PMCID: PMC10898672 DOI: 10.1097/hc9.0000000000000310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/05/2023] [Indexed: 02/27/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), a replacement of the nomenclature employed for NAFLD, is the most prevalent chronic liver disease worldwide. Despite its high global prevalence, NAFLD is often under-recognized due to the absence of reliable noninvasive biomarkers for diagnosis and staging. Growing evidence suggests that the gut microbiome plays a significant role in the occurrence and progression of NAFLD by causing immune dysregulation and metabolic alterations due to gut dysbiosis. The rapid advancement of sequencing tools and metabolomics has enabled the identification of alterations in microbiome signatures and gut microbiota-derived metabolite profiles in numerous clinical studies related to NAFLD. Overall, these studies have shown a decrease in α-diversity and changes in gut microbiota abundance, characterized by increased levels of Escherichia and Prevotella, and decreased levels of Akkermansia muciniphila and Faecalibacterium in patients with NAFLD. Furthermore, bile acids, short-chain fatty acids, trimethylamine N-oxide, and tryptophan metabolites are believed to be closely associated with the onset and progression of NAFLD. In this review, we provide novel insights into the vital role of gut microbiome in the pathogenesis of NAFLD. Specifically, we summarize the major classes of gut microbiota and metabolic biomarkers in NAFLD, thereby highlighting the links between specific bacterial species and certain gut microbiota-derived metabolites in patients with NAFLD.
Collapse
|
8
|
Engin A. The Definition and Prevalence of Obesity and Metabolic Syndrome: Correlative Clinical Evaluation Based on Phenotypes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:1-25. [PMID: 39287847 DOI: 10.1007/978-3-031-63657-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Increase in the prevalence of obesity has become a major worldwide health problem in adults as well as among children and adolescents. In the last four decades, studies have revealed that the significant increase in the prevalence of obesity has become a pandemic. Obesity is the result of complex interactions between biological, genetic, environmental, and behavioral factors. Indeed, almost all of the children suffering from obesity in early childhood face with being overweight or obese in adolescence. Different phenotypes have different risk factors in the clinical evaluation of obesity. Individuals suffering from metabolically unhealthy obesity (MUO) are at an excess risk of developing cardiovascular diseases (CVDs), several cancer types, and metabolic syndrome (MetS), whereas the metabolically healthy obesity (MHO) phenotype has a high risk of all-cause mortality and cardiometabolic events but not MetS. While most obese individuals have the MUO phenotype, the frequency of the MHO phenotype is at most 10-20%. Over time, approximately three-quarters of obese individuals transform from MHO to MUO. Total adiposity and truncal subcutaneous fat accumulation during adolescence are positively and independently associated with atherosclerosis in adulthood. Obesity, in general, causes a large reduction in life expectancy. However, the mortality rate of morbid obesity is greater among younger than older adults. Insulin resistance (IR) develops with the central accumulation of body fat. MHO patients are insulin-sensitive like healthy normal-weight individuals and have lower visceral fat content and cardiovascular consequences than do the majority of MUO patients. MetS includes clustering of abdominal obesity, dyslipidemia, hyperglycemia, and hypertension. The average incidence of MetS is 3%, with a 1.5-fold increase in the risk of death from all causes in these patients. If lifestyle modifications, dietary habits, and pharmacotherapy do not provide any benefit, then bariatric surgery is recommended to reduce weight and improve comorbid diseases. However, obesity treatment should be continuous in obese patients by monitoring the accompanying diseases and their consequences. In addition to sodium-glucose co-transporter-2 (SGLT2) inhibitors, the long-acting glucagon-like peptide-1 (GLP-1) receptor agonist reduces the mean body weight. However, caloric restriction provides more favorable improvement in body composition than does treatment with the GLP-1 receptor (GLP1R) agonist alone. Combination therapy with orlistat and phentermine are the US Food and Drug Administration (FDA)-approved anti-obesity drugs. Recombinant leptin and synthetic melanocortin-4-receptor agonists are used in rarely occurring, monogenic obesity, which is due to loss of function in the leptin-melanocortin pathway.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
9
|
Lai J, Luo L, Zhou T, Feng X, Ye J, Zhong B. Alterations in Circulating Bile Acids in Metabolic Dysfunction-Associated Steatotic Liver Disease: A Systematic Review and Meta-Analysis. Biomolecules 2023; 13:1356. [PMID: 37759756 PMCID: PMC10526305 DOI: 10.3390/biom13091356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Background: Previous studies have suggested that bile acids (BAs) may participate in the development and/or progression of metabolic dysfunction-associated steatotic liver disease (MASLD). The present study aimed to define whether specific BA molecular species are selectively associated with MASLD development, disease severity, or geographic region. Methods: We comprehensively identified all eligible studies reporting circulating BAs in both MASLD patients and healthy controls through 30 July 2023. The pooled results were expressed as the standard mean difference (SMD) and 95% confidence interval (CI). Subgroup, sensitivity, and meta-regression analyses were performed to address heterogeneity. Results: Nineteen studies with 154,807 individuals were included. Meta-analysis results showed that total BA levels in MASLD patients were higher than those in healthy controls (SMD = 1.03, 95% CI: 0.63-1.42). When total BAs were divided into unconjugated and conjugated BAs or primary and secondary BAs, the pooled results were consistent with the overall estimates except for secondary BAs. Furthermore, we examined each individual BA and found that 9 of the 15 BAs were increased in MASLD patients, especially ursodeoxycholic acids (UDCA), taurococholic acid (TCA), chenodeoxycholic acids (CDCA), taurochenodeoxycholic acids (TCDCA), and glycocholic acids (GCA). Subgroup analysis revealed that different geographic regions or disease severities led to diverse BA profiles. Notably, TCA, taurodeoxycholic acid (TDCA), taurolithocholic acids (TLCA), and glycolithocholic acids (GLCA) showed a potential ability to differentiate metabolic dysfunction-associated steatohepatitis (MASH) (all p < 0.05). Conclusions: An altered profile of circulating BAs was shown in MASLD patients, providing potential targets for the diagnosis and treatment of MASLD.
Collapse
Affiliation(s)
| | | | | | | | - Junzhao Ye
- Department of Gastroenterology of the First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan II Road, Yuexiu District, Guangzhou 510080, China; (J.L.); (L.L.); (T.Z.); (X.F.)
| | - Bihui Zhong
- Department of Gastroenterology of the First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan II Road, Yuexiu District, Guangzhou 510080, China; (J.L.); (L.L.); (T.Z.); (X.F.)
| |
Collapse
|
10
|
Tveter KM, Mezhibovsky E, Wu Y, Roopchand DE. Bile acid metabolism and signaling: Emerging pharmacological targets of dietary polyphenols. Pharmacol Ther 2023; 248:108457. [PMID: 37268113 PMCID: PMC10528343 DOI: 10.1016/j.pharmthera.2023.108457] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/03/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
Beyond their role as emulsifiers of lipophilic compounds, bile acids (BAs) are signaling endocrine molecules that show differential affinity and specificity for a variety of canonical and non-canonical BA receptors. Primary BAs (PBAs) are synthesized in the liver while secondary BAs (SBAs) are gut microbial metabolites of PBA species. PBAs and SBAs signal to BA receptors that regulate downstream pathways of inflammation and energy metabolism. Dysregulation of BA metabolism or signaling has emerged as a feature of chronic disease. Dietary polyphenols are non-nutritive plant-derived compounds associated with decreased risk of metabolic syndrome, type-2 diabetes, hepatobiliary and cardiovascular disease. Evidence suggests that the health promoting effects of dietary polyphenols are linked to their ability to alter the gut microbial community, the BA pool, and BA signaling. In this review we provide an overview of BA metabolism and summarize studies that link the cardiometabolic improvements of dietary polyphenols to their modulation of BA metabolism and signaling pathways, and the gut microbiota. Finally, we discuss approaches and challenges in deciphering cause-effect relationships between dietary polyphenols, BAs, and gut microbes.
Collapse
Affiliation(s)
- Kevin M Tveter
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA
| | - Esther Mezhibovsky
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA
| | - Yue Wu
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA
| | - Diana E Roopchand
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
11
|
Kaufmann B, Seyfried N, Hartmann D, Hartmann P. Probiotics, prebiotics, and synbiotics in nonalcoholic fatty liver disease and alcohol-associated liver disease. Am J Physiol Gastrointest Liver Physiol 2023; 325:G42-G61. [PMID: 37129252 PMCID: PMC10312326 DOI: 10.1152/ajpgi.00017.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
The use of probiotics, prebiotics, and synbiotics has become an important therapy in numerous gastrointestinal diseases in recent years. Modifying the gut microbiota, this therapeutic approach helps to restore a healthy microbiome. Nonalcoholic fatty liver disease and alcohol-associated liver disease are among the leading causes of chronic liver disease worldwide. A disrupted intestinal barrier, microbial translocation, and an altered gut microbiome metabolism, or metabolome, are crucial in the pathogenesis of these chronic liver diseases. As pro-, pre-, and synbiotics modulate these targets, they were identified as possible new treatment options for liver disease. In this review, we highlight the current findings on clinical and mechanistic effects of this therapeutic approach in nonalcoholic fatty liver disease and alcohol-associated liver disease.
Collapse
Affiliation(s)
- Benedikt Kaufmann
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Nick Seyfried
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Daniel Hartmann
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Phillipp Hartmann
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States
| |
Collapse
|
12
|
Liu AN, Xu CF, Liu YR, Sun DQ, Jiang L, Tang LJ, Zhu PW, Chen SD, Liu WY, Wang XD, Targher G, Byrne CD, Wong VWS, Fu J, Su MM, Loomba R, Zheng MH, Ni Y. Secondary bile acids improve risk prediction for non-invasive identification of mild liver fibrosis in nonalcoholic fatty liver disease. Aliment Pharmacol Ther 2023; 57:872-885. [PMID: 36670060 PMCID: PMC10792530 DOI: 10.1111/apt.17362] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/03/2022] [Accepted: 12/07/2022] [Indexed: 01/22/2023]
Abstract
BACKGROUND Dysregulated bile acid (BA) metabolism has been linked to steatosis, inflammation, and fibrosis in nonalcoholic fatty liver disease (NAFLD). AIM To determine whether circulating BA levels accurately stage liver fibrosis in NAFLD. METHODS We recruited 550 Chinese adults with biopsy-proven NAFLD and varying levels of fibrosis. Ultra-performance liquid chromatography coupled with tandem mass spectrometry was performed to quantify 38 serum BAs. RESULTS Compared to those without fibrosis, patients with mild fibrosis (stage F1) had significantly higher levels of secondary BAs, and increased diastolic blood pressure (DBP), alanine aminotransferase (ALT), body mass index, and waist circumstance (WC). The combination of serum BAs with WC, DBP, ALT, or Homeostatic Model Assessment for Insulin Resistance performed well in identifying mild fibrosis, in men and women, and in those with/without obesity, with AUROCs 0.80, 0.88, 0.75 and 0.78 in the training set (n = 385), and 0.69, 0.80, 0.61 and 0.69 in the testing set (n = 165), respectively. In comparison, the combination of BAs and clinical/biochemical biomarkers performed less well in identifying significant fibrosis (F2-4). In women and in non-obese subjects, AUROCs were 0.75 and 0.71 in the training set, 0.65 and 0.66 in the validation set, respectively. However, these AUROCs were higher than those observed for the fibrosis-4 index, NAFLD fibrosis score, and Hepamet fibrosis score. CONCLUSIONS Secondary BA levels were significantly increased in NAFLD, especially in those with mild fibrosis. The combination of serum BAs and clinical/biochemical biomarkers for identifying mild fibrosis merits further assessment.
Collapse
Affiliation(s)
- A-Na Liu
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cui-Fang Xu
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ya-Ru Liu
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan-Qin Sun
- Department of Nephrology, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, China
- Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Ling Jiang
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liang-Jie Tang
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Pei-Wu Zhu
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sui-Dan Chen
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wen-Yue Liu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Dong Wang
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Verona, Verona, Italy
| | - Christopher D. Byrne
- Southampton National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton & University of Southampton, Southampton General Hospital, Southampton, UK
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Junfen Fu
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming-Ming Su
- Clinical Mass Spectrometry Innovation Center, Shanghai Keyi Biotechnology Co., Ltd., Shanghai, China
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology, University of California, San Diego, La Jolla, California, USA
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
| | - Yan Ni
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Gillard J, Leclercq IA. Biological tuners to reshape the bile acid pool for therapeutic purposes in non-alcoholic fatty liver disease. Clin Sci (Lond) 2023; 137:65-85. [PMID: 36601783 PMCID: PMC9816373 DOI: 10.1042/cs20220697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023]
Abstract
Bile acids synthesized within the hepatocytes are transformed by gut microorganisms and reabsorbed into the portal circulation. During their enterohepatic cycling, bile acids act as signaling molecules by interacting with receptors to regulate pathways involved in many physiological processes. The bile acid pool, composed of a variety of bile acid species, has been shown to be altered in diseases, hence contributing to disease pathogenesis. Thus, understanding the changes in bile acid pool size and composition in pathological processes will help to elaborate effective pharmacological treatments. Five crucial steps along the enterohepatic cycle shape the bile acid pool size and composition, offering five possible targets for therapeutic intervention. In this review, we provide an insight on the strategies to modulate the bile acid pool, and then we discuss the potential benefits in non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Justine Gillard
- Laboratory of Hepato‐Gastroenterology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Isabelle A. Leclercq
- Laboratory of Hepato‐Gastroenterology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
14
|
Zhang YL, Li ZJ, Gou HZ, Song XJ, Zhang L. The gut microbiota–bile acid axis: A potential therapeutic target for liver fibrosis. Front Cell Infect Microbiol 2022; 12:945368. [PMID: 36189347 PMCID: PMC9519863 DOI: 10.3389/fcimb.2022.945368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/01/2022] [Indexed: 11/15/2022] Open
Abstract
Liver fibrosis involves the proliferation and deposition of extracellular matrix on liver tissues owing to various etiologies (including viral, alcohol, immune, and metabolic factors), ultimately leading to structural and functional abnormalities in the liver. If not effectively treated, liver fibrosis, a pivotal stage in the path to chronic liver disease, can progress to cirrhosis and eventually liver cancer; unfortunately, no specific clinical treatment for liver fibrosis has been established to date. In liver fibrosis cases, both the gut microbiota and bile acid metabolism are disrupted. As metabolites of the gut microbiota, bile acids have been linked to the progression of liver fibrosis via various pathways, thus implying that the gut microbiota–bile acid axis might play a critical role in the progression of liver fibrosis and could be a target for its reversal. Therefore, in this review, we examined the involvement of the gut microbiota–bile acid axis in liver fibrosis progression to the end of discovering new targets for the prevention, diagnosis, and therapy of chronic liver diseases, including liver fibrosis.
Collapse
Affiliation(s)
- Yu-Lin Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhen-Jiao Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Hong-Zhong Gou
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiao-Jing Song
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Lei Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Lei Zhang,
| |
Collapse
|
15
|
Shavakhi M, Nourigheimasi S, Dioso E, Goutnik M, Lucke-Wold B, Khanzadeh S, Heidari F. Prognostic Role of Neutrophil to Lymphocyte Ratio in Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Can J Gastroenterol Hepatol 2022; 2022:1554079. [PMID: 37601979 PMCID: PMC10432763 DOI: 10.1155/2022/1554079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 08/22/2023] Open
Abstract
Introduction Nonalcoholic steatohepatitis (NASH) and liver fibrosis are the most common complications of nonalcoholic fatty liver disease (NAFLD). In this systematic review and meta-analysis, we aim to analyze the current literature to evaluate the association of neutrophil to lymphocyte ratio (NLR) with NASH and fibrosis in patients with NAFLD. Methods PubMed, Web of Science, and Scopus were used to conduct a systematic search for relevant publications published before May 24, 2022. The Newcastle-Ottawa scale was used for quality assessment. Results Thirteen studies were included in our study. The pooled results showed that NAFLD patients with significant NASH had elevated levels of NLR compared to those with nonsignificant or without NASH (SMD = 0.97, 95% CI = 0.59-1.39, p < 0.001). The pooled sensitivity and specificity of NLR were 78.16% (95% CI = 73.70%-82.04%), and 76.93% (95% CI = 70.22%-82.50%), respectively. In addition, NAFLD patients with significant liver fibrosis had elevated levels of NLR compared to those with nonsignificant or without fibrosis (SMD = 1.59, 95% CI = 0.76-2.43, p < 0.001). The pooled sensitivity and specificity of NLR were 82.62% (95% CI = 70.235%-90.55%) and 81.22% (95% CI = 75.62%-85.78%), respectively. Conclusion Our findings support NLR to be a promising biomarker that can be readily integrated into clinical settings to aid in the prediction and prevention of NASH and fibrosis among patients with NAFLD.
Collapse
Affiliation(s)
- Mitra Shavakhi
- Department of Pathology, School of Medicine, Isfahan University of Medical Sciences, Iran
| | | | - Emma Dioso
- Department of Neurosurgery, University of Utah, Salt Lake City, USA
| | - Michael Goutnik
- Department of Neurosurgery, University of Florida, Gainesville, USA
| | | | - Shokoufeh Khanzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Heidari
- Department of Community and Family Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Zhou Y, Zhou Y, Li Y, Sun W, Wang Z, Chen L, He Y, Niu X, Chen J, Yao G. Targeted bile acid profiles reveal the liver injury amelioration of Da-Chai-Hu decoction against ANIT- and BDL-induced cholestasis. Front Pharmacol 2022; 13:959074. [PMID: 36059946 PMCID: PMC9437253 DOI: 10.3389/fphar.2022.959074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/18/2022] [Indexed: 11/26/2022] Open
Abstract
Multiple types of liver diseases, particularly cholestatic liver diseases (CSLDs) and biliary diseases, can disturb bile acid (BA) secretion; however, BA accumulation is currently seen as an important incentive of various types of liver diseases’ progression. Da-Chai-Hu decoction (DCHD) has long been used for treating cholestatic liver diseases; however, the exact mechanisms remain unclear. Currently, our study indicates that the liver damage and cholestasis status of the α-naphthylisothiocyanate (ANIT)-induced intrahepatic cholestasis and bile duct ligation (BDL)-induced extrahepatic cholestasis, following DCHD treatment, were improved; the changes of BA metabolism post-DCHD treatment were investigated by targeted metabolomics profiling by UPLC-MS/MS. DCHD treatment severely downregulated serum biochemical levels and relieved inflammation and the corresponding pathological changes including necrosis, inflammatory infiltration, ductular proliferation, and periductal fibrosis in liver tissue. The experimental results suggested that DCHD treatment altered the size, composition, and distribution of the BAs pool, led the BAs pool of the serum and liver to sharply shrink, especially TCA and TMCA, and enhanced BA secretion into the gallbladder and the excretion of BAs by the urinary and fecal pathway; the levels of BAs synthesized by the alternative pathway were increased in the liver, and the conjugation of BAs and the pathway of BA synthesis were actually affected. In conclusion, DCHD ameliorated ANIT- and BDL-induced cholestatic liver injury by reversing the disorder of BAs profile.
Collapse
Affiliation(s)
- YueHua Zhou
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - YunZhong Zhou
- Institute of Pharmaceutical Preparation Research, Jinghua Pharmaceutical Group Co., Ltd., Jiangsu, China
| | - YiFei Li
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Sun
- Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - ZhaoLong Wang
- Institute of Pharmaceutical Preparation Research, Jinghua Pharmaceutical Group Co., Ltd., Jiangsu, China
| | - Long Chen
- Experimental Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ye He
- Institute of Pharmaceutical Preparation Research, Jinghua Pharmaceutical Group Co., Ltd., Jiangsu, China
| | - XiaoLong Niu
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jialiang Chen
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangtao Yao
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Guangtao Yao,
| |
Collapse
|
17
|
Understanding the Role of the Gut Microbiome and Microbial Metabolites in Non-Alcoholic Fatty Liver Disease: Current Evidence and Perspectives. Biomolecules 2021; 12:biom12010056. [PMID: 35053205 PMCID: PMC8774162 DOI: 10.3390/biom12010056] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. NAFLD begins as a relatively benign hepatic steatosis which can evolve to non-alcoholic steatohepatitis (NASH); the risk of cirrhosis and hepatocellular carcinoma (HCC) increases when fibrosis is present. NAFLD represents a complex process implicating numerous factors—genetic, metabolic, and dietary—intertwined in a multi-hit etiopathogenetic model. Recent data have highlighted the role of gut dysbiosis, which may render the bowel more permeable, leading to increased free fatty acid absorption, bacterial migration, and a parallel release of toxic bacterial products, lipopolysaccharide (LPS), and proinflammatory cytokines that initiate and sustain inflammation. Although gut dysbiosis is present in each disease stage, there is currently no single microbial signature to distinguish or predict which patients will evolve from NAFLD to NASH and HCC. Using 16S rRNA sequencing, the majority of patients with NAFLD/NASH exhibit increased numbers of Bacteroidetes and differences in the presence of Firmicutes, resulting in a decreased F/B ratio in most studies. They also present an increased proportion of species belonging to Clostridium, Anaerobacter, Streptococcus, Escherichia, and Lactobacillus, whereas Oscillibacter, Flavonifaractor, Odoribacter, and Alistipes spp. are less prominent. In comparison to healthy controls, patients with NASH show a higher abundance of Proteobacteria, Enterobacteriaceae, and Escherichia spp., while Faecalibacterium prausnitzii and Akkermansia muciniphila are diminished. Children with NAFLD/NASH have a decreased proportion of Oscillospira spp. accompanied by an elevated proportion of Dorea, Blautia, Prevotella copri, and Ruminococcus spp. Gut microbiota composition may vary between population groups and different stages of NAFLD, making any conclusive or causative claims about gut microbiota profiles in NAFLD patients challenging. Moreover, various metabolites may be involved in the pathogenesis of NAFLD, such as short-chain fatty acids, lipopolysaccharide, bile acids, choline and trimethylamine-N-oxide, and ammonia. In this review, we summarize the role of the gut microbiome and metabolites in NAFLD pathogenesis, and we discuss potential preventive and therapeutic interventions related to the gut microbiome, such as the administration of probiotics, prebiotics, synbiotics, antibiotics, and bacteriophages, as well as the contribution of bariatric surgery and fecal microbiota transplantation in the therapeutic armamentarium against NAFLD. Larger and longer-term prospective studies, including well-defined cohorts as well as a multi-omics approach, are required to better identify the associations between the gut microbiome, microbial metabolites, and NAFLD occurrence and progression.
Collapse
|
18
|
Xie AJ, Mai CT, Zhu YZ, Liu XC, Xie Y. Bile acids as regulatory molecules and potential targets in metabolic diseases. Life Sci 2021; 287:120152. [PMID: 34793769 DOI: 10.1016/j.lfs.2021.120152] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/06/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023]
Abstract
Bile acids are important hydroxylated steroids that are synthesized in the liver from cholesterol for intestinal absorption of lipids and other fatty-nutrient. They also display remarkable and immense functions such as regulating immune responses, managing the apoptosis of cells, participating in glucose metabolism, and so on. Some bile acids were used for the treatment or prevention of diseases such as gallstones, primary biliary cirrhosis, and colorectal cancer. Meanwhile, the accumulation of toxic bile acids leads to apoptosis, necrosis, and inflammation. Alteration of bile acids metabolism, as well as the gut microbiota that interacted with bile acids, contributes to the pathogenesis of metabolic diseases. Therefore, the purpose of this review is to summarize the current functions and pre-clinical or clinical applications of bile acids, and to further discuss the alteration of bile acids in metabolic disorders as well as the manipulation of bile acids metabolism as potential therapeutic targets.
Collapse
Affiliation(s)
- Ai-Jin Xie
- School of Pharmacy, Macau University of Science and Technology, Taipa, Macau
| | - Chu-Tian Mai
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Yi-Zhun Zhu
- School of Pharmacy, Macau University of Science and Technology, Taipa, Macau
| | - Xian-Cheng Liu
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, PR China.
| | - Ying Xie
- School of Pharmacy, Macau University of Science and Technology, Taipa, Macau.
| |
Collapse
|
19
|
Masoodi M, Gastaldelli A, Hyötyläinen T, Arretxe E, Alonso C, Gaggini M, Brosnan J, Anstee QM, Millet O, Ortiz P, Mato JM, Dufour JF, Orešič M. Metabolomics and lipidomics in NAFLD: biomarkers and non-invasive diagnostic tests. Nat Rev Gastroenterol Hepatol 2021; 18:835-856. [PMID: 34508238 DOI: 10.1038/s41575-021-00502-9] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide and is often associated with aspects of metabolic syndrome. Despite its prevalence and the importance of early diagnosis, there is a lack of robustly validated biomarkers for diagnosis, prognosis and monitoring of disease progression in response to a given treatment. In this Review, we provide an overview of the contribution of metabolomics and lipidomics in clinical studies to identify biomarkers associated with NAFLD and nonalcoholic steatohepatitis (NASH). In addition, we highlight the key metabolic pathways in NAFLD and NASH that have been identified by metabolomics and lipidomics approaches and could potentially be used as biomarkers for non-invasive diagnostic tests. Overall, the studies demonstrated alterations in amino acid metabolism and several aspects of lipid metabolism including circulating fatty acids, triglycerides, phospholipids and bile acids. Although we report several studies that identified potential biomarkers, few have been validated.
Collapse
Affiliation(s)
- Mojgan Masoodi
- Institute of Clinical Chemistry, Bern University Hospital, Bern, Switzerland.
| | | | - Tuulia Hyötyläinen
- School of Natural Sciences and Technology, Örebro University, Örebro, Sweden
| | - Enara Arretxe
- OWL Metabolomics, Bizkaia Technology Park, Derio, Spain
| | | | | | | | - Quentin M Anstee
- Clinical & Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Oscar Millet
- Precision Medicine & Metabolism, CIC bioGUNE, CIBERehd, BRTA, Bizkaia Technology Park, Derio, Spain
| | - Pablo Ortiz
- OWL Metabolomics, Bizkaia Technology Park, Derio, Spain
| | - Jose M Mato
- Precision Medicine & Metabolism, CIC bioGUNE, CIBERehd, BRTA, Bizkaia Technology Park, Derio, Spain
| | - Jean-Francois Dufour
- University Clinic of Visceral Surgery and Medicine, Inselspital Bern, Bern, Switzerland.,Hepatology, Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Matej Orešič
- School of Medical Sciences, Örebro University, Örebro, Sweden. .,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|
20
|
Gillard J, Clerbaux LA, Nachit M, Sempoux C, Staels B, Bindels LB, Tailleux A, Leclercq IA. Bile acids contribute to the development of non-alcoholic steatohepatitis in mice. JHEP REPORTS : INNOVATION IN HEPATOLOGY 2021; 4:100387. [PMID: 34825156 PMCID: PMC8604813 DOI: 10.1016/j.jhepr.2021.100387] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/20/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023]
Abstract
Background & Aims Through FXR and TGR5 signaling, bile acids (BAs) modulate lipid and glucose metabolism, inflammation and fibrosis. Hence, BAs returning to the liver after enteric secretion, modification and reabsorption may contribute to the pathogenesis of non-alcoholic steatohepatitis (NASH). Herein, we characterized the enterohepatic profile and signaling of BAs in preclinical models of NASH, and explored the consequences of experimental manipulation of BA composition. Methods We used high-fat diet (HFD)-fed foz/foz and high-fructose western diet-fed C57BL/6J mice, and compared them to their respective controls. Mice received a diet supplemented with deoxycholic acid (DCA) to modulate BA composition. Results Compared to controls, mice with NASH had lower concentrations of BAs in their portal blood and bile, while systemic BA concentrations were not significantly altered. Notably, the concentrations of secondary BAs, and especially of DCA, and the ratio of secondary to primary BAs were strikingly lower in bile and portal blood of mice with NASH. Hence, portal blood was poor in FXR and TGR5 ligands, and conferred poor anti-inflammatory protection in mice with NASH. Enhanced primary BAs synthesis and conversion of secondary to primary BAs in NASH livers contributed to the depletion in secondary BAs. Dietary DCA supplementation in HFD-fed foz/foz mice restored the BA concentrations in portal blood, increased TGR5 and FXR signaling, improved the dysmetabolic status, protected from steatosis and hepatocellular ballooning, and reduced macrophage infiltration. Conclusions BA composition in the enterohepatic cycle, but not in systemic circulation, is profoundly altered in preclinical models of NASH, with specific depletion in secondary BAs. Dietary correction of the BA profile protected from NASH, supporting a role for enterohepatic BAs in the pathogenesis of NASH. Lay summary This study clearly demonstrates that the alterations of enterohepatic bile acids significantly contribute to the development of non-alcoholic steatohepatitis in relevant preclinical models. Indeed, experimental modulation of bile acid composition restored perturbed FXR and TGR5 signaling and prevented non-alcoholic steatohepatitis and associated metabolic disorders.
Collapse
Key Words
- ASBT, apical sodium-dependent BA transporter
- BA, bile acid
- CA, cholic acid
- CDCA, chenodeoxycholic acid
- CYP27A1, sterol 27-hydroxylase
- CYP2A12, bile acid 7α-hydroxylase
- CYP7A1, cholesterol 7α-hydroxylase
- CYP7B1, oxysterol 7α-hydroxylase
- CYP8B1, sterol 12α-hydroxylase
- DCA, deoxycholic acid
- FABP6, fatty acid binding protein 6
- FGF15, fibroblast growth factor 15
- FGFR4, fibroblast growth factor receptor 4
- FXR
- FXR, Farnesoid X receptor
- GLP-1, glucagon-like peptide-1
- HFD, high-fat diet
- LCA, lithocholic acid
- LPS, lipopolysaccharide
- NAFLD
- NAFLD, non-alcoholic fatty liver disease
- NAS, NAFLD activity score
- NASH
- NASH, non-alcoholic steatohepatitis
- ND, normal diet
- OGTT, oral glucose tolerance test
- OST, organic solute transporter
- SHP, small heterodimer protein
- TGR5
- TGR5, Takeda G-protein coupled receptor 5
- TLCA, tauro-lithocholic acid
- TNFα, tumor necrosis factor α
- WDF, western and high-fructose diet
- WT, wild-type
- metabolic syndrome
- αMCA, α-muricholic acid
- βMCA, β-muricholic acid
- ωMCA, ω-muricholic acid
Collapse
Affiliation(s)
- Justine Gillard
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium.,Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Laure-Alix Clerbaux
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Maxime Nachit
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Christine Sempoux
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Anne Tailleux
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Isabelle A Leclercq
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
21
|
Zheng Q, Shen L, Zhao D, Zhang H, Liang Y, Zhu Y, Khan NU, Liu X, Zhang J, Lin J, Tang X. Metabolic characteristics of plasma bile acids in patients with intrahepatic cholestasis of pregnancy-mass spectrometric study. Metabolomics 2021; 17:93. [PMID: 34595616 DOI: 10.1007/s11306-021-01844-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/21/2021] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Intrahepatic cholestasis of pregnancy (ICP) is one of the more common complications in the middle and late stages of pregnancy, which requires early detection and intervention. OBJECTIVE The aim of the study is to investigate the changes in the metabolic profile of bile acids (BAs) in plasma of pregnant women with ICP and to look biomarkers for the diagnosis and grading of ICP, and to explore the disease mechanism. METHODS The targeted metabolomics based on high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was used to analyze plasma BAs. RESULTS Twenty-seven BAs can be quantified in all participants. Among them, 22 BAs were identified as differential BAs between ICP and control groups. Five BAs include 3β-CA, 3β-DCA, CDCA-3Gln, NCA, and Tβ-MCA, were found to be associated with ICP for the first time. Nine BAs include NCA, GCA, GCDCA, GHCA, GUDCA, HCA, TCA, TCDCA and THCA, can be used as possible ICP diagnostic biomarkers. Four BAs, i.e., GLCA, THCA, GHCA and TLCA-3S may be used as potential biomarkers for ICP grading. CONCLUSION There were significant differences in plasma BA profiles between ICP patients and the control. The BA profiles of mild ICP group and severe ICP group partially overlapped. Potential diagnostic and grading BA markers were identified. A significant characteristic of ICP group was the increase of conjugated BAs. A mechanism to sustain the equilibrium of BA metabolism and adaptive response has been developed in ICP patients to accelerate excretion and detoxification.
Collapse
Affiliation(s)
- Qihong Zheng
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China.
- Brain Disease and Big Data Research Institute, Shenzhen University, Shenzhen, 518071, People's Republic of China.
| | - Danqing Zhao
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Yi Liang
- Department of Clinical Nutrition, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Yuhua Zhu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Naseer Ullah Khan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Jun Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, People's Republic of China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen, 518071, People's Republic of China
| |
Collapse
|
22
|
Common Transcriptional Program of Liver Fibrosis in Mouse Genetic Models and Humans. Int J Mol Sci 2021; 22:ijms22020832. [PMID: 33467660 PMCID: PMC7830925 DOI: 10.3390/ijms22020832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Multifactorial metabolic diseases, such as non-alcoholic fatty liver disease, are a major burden to modern societies, and frequently present with no clearly defined molecular biomarkers. Herein we used system medicine approaches to decipher signatures of liver fibrosis in mouse models with malfunction in genes from unrelated biological pathways: cholesterol synthesis-Cyp51, notch signaling-Rbpj, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling-Ikbkg, and unknown lysosomal pathway-Glmp. Enrichment analyses of Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome and TRANScription FACtor (TRANSFAC) databases complemented with genome-scale metabolic modeling revealed fibrotic signatures highly similar to liver pathologies in humans. The diverse genetic models of liver fibrosis exposed a common transcriptional program with activated estrogen receptor alpha (ERα) signaling, and a network of interactions between regulators of lipid metabolism and transcription factors from cancer pathways and the immune system. The novel hallmarks of fibrosis are downregulated lipid pathways, including fatty acid, bile acid, and steroid hormone metabolism. Moreover, distinct metabolic subtypes of liver fibrosis were proposed, supported by unique enrichment of transcription factors based on the type of insult, disease stage, or potentially, also sex. The discovered novel features of multifactorial liver fibrotic pathologies could aid also in improved stratification of other fibrosis related pathologies.
Collapse
|
23
|
Zhou J, Tripathi M, Sinha RA, Singh BK, Yen PM. Gut microbiota and their metabolites in the progression of non-alcoholic fatty liver disease. ACTA ACUST UNITED AC 2021; 7:11. [PMID: 33490737 PMCID: PMC7116620 DOI: 10.20517/2394-5079.2020.134] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent liver disorder worldwide. It comprises a spectrum of conditions that range from steatosis to non-alcoholic steatohepatitis, with progression to cirrhosis and hepatocellular carcinoma. Currently, there is no FDA-approved pharmacological treatment for NAFLD. The pathogenesis of NAFLD involves genetic and environmental/host factors, including those that cause changes in intestinal microbiota and their metabolites. In this review, we discuss recent findings on the relationship(s) of microbiota signature with severity of NAFLD and the role(s) microbial metabolites in NAFLD progression. We discuss how metabolites may affect NAFLD progression and their potential to serve as biomarkers for NAFLD diagnosis or therapeutic targets for disease management.
Collapse
Affiliation(s)
- Jin Zhou
- Program of Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Madhulika Tripathi
- Program of Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Brijesh Kumar Singh
- Program of Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Paul M Yen
- Program of Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore.,Duke Molecular Physiology Institute, Durham, NC 27701, USA.,Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
24
|
Chen X, Sun X, Shen T, Chen Q, Chen S, Pang J, Mi J, Tang Y, You Y, Xu H, Ling W. Lower adropin expression is associated with oxidative stress and severity of nonalcoholic fatty liver disease. Free Radic Biol Med 2020; 160:191-198. [PMID: 32810635 DOI: 10.1016/j.freeradbiomed.2020.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/06/2020] [Accepted: 08/09/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Adropin has been reported to be involved in metabolic disorders, including nonalcoholic fatty liver disease (NAFLD). However, the clinical relevance of adropin expression to the histological severity of NAFLD is unclear. This study aimed to investigate adropin expression in biopsy-proven NAFLD patients. METHODS This case-control study enrolled a total of 109 participants, including 15 normal histological controls, 26 nonalcoholic fatty liver (NAFL), 21 nonalcoholic steatohepatitis (NASH) subjects and B-ultrasound NAFLD-free normal controls matched to the cases based on age and sex (the case:control ratio was 1:1). Liver biopsies were obtained and histological characteristics were assessed. Primary murine hepatocytes were isolated from C57BL/6J mice and incubated with doses of palmitate to induce oxidative stress. RESULTS The serum adropin level in NASH patients was 9.99 ± 5.51 ng/ml, significantly lower than that in B-ultrasound normal controls (22.70 ± 6.32 ng/ml), histological normal controls (21.93 ± 6.63 ng/ml) and NAFL patients (17.82 ± 6.90 ng/ml). Serum adropin levels were negatively correlated with the histological severity of NAFLD. The lower serum adropin level predicted NASH (area under the ROC curve: 87.1%). Adropin expression in serum and liver was also negatively associated with hepatic MDA and serum 8-iso-PGF2α levels. Furthermore, palmitate rather than oleate induced oxidative stress in a dose-dependent manner with a gradient decrease in adropin expression in primary murine hepatocytes. Adropin overexpression or treatment ameliorated palmitate-induced oxidative stress in hepatocytes. CONCLUSIONS Circulating adropin was inversely associated with the oxidative stress and histological severity of NAFLD. It may play an important role in the development of NAFLD.
Collapse
Affiliation(s)
- Xu Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, PR China
| | - Xiaoyuan Sun
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, PR China
| | - Tianran Shen
- Department of Nutrition, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510080, PR China
| | - Qian Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, PR China; Department of Cardiology, Sun Yat-sen Memorial Hospital, Guangzhou, 510080, PR China
| | - Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, 510080, PR China
| | - Juan Pang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, PR China
| | - Jiaxin Mi
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, PR China
| | - Yi Tang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, PR China
| | - Yiran You
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, PR China
| | - Huihui Xu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, PR China
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, PR China.
| |
Collapse
|
25
|
Li Q, Li M, Li F, Zhou W, Dang Y, Zhang L, Ji G. Qiang-Gan formula extract improves non-alcoholic steatohepatitis via regulating bile acid metabolism and gut microbiota in mice. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112896. [PMID: 32325178 DOI: 10.1016/j.jep.2020.112896] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 04/13/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qiang-Gan formula is a traditional Chinese medicine formula, which has been widely used in treating liver diseases in China. AIM OF THE STUDY To investigate the effect of Qiang-Gan formula extract (QGE) on non-alcoholic steatohepatitis (NASH) and its underlying possible mechanisms. MATERIALS AND METHODS The high-performance liquid chromatography finger-print method was used for the quality control of chemical components in QGE. Methionine- and choline-deficient diet-induced NASH mice were administrated with QGE via gavage for four weeks. Phenotypic parameters including liver histological change as well as serum levels of alanine transaminase (ALT), aspartate transaminase (AST) were detected. Bile acid profile in the serum, liver and fecal samples was analyzed by gas chromatography-mass spectrometer technique, and fecal microbiota was detected by 16S rDNA sequencing. Expression of liver G protein-coupled bile acid receptor 1 (TGR5), farnesiod X receptor (FXR), tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β) as well as molecules in nuclear factor kappa B (NF-κB) pathway was assayed by immunohistochemistry staining, RT-qPCR, or Western blot, respectively. RESULTS QGE alleviated liver inflammation, reduced serum ALT and AST levels and liver TNF-α and IL-1β expression in NASH mice. It also decreased liver and serum BA concentration and increased fecal lithocholicacid (LCA) production in this animal model. QGE altered the structure of gut microbiota, predominantly increased LCA-producing bacteria Bacteroides and Clostridium in NASH mice. In addition, the expression of liver TGR5 but not FXR was increased, and the molecules in NF-κB pathway were decreased in QGE-treated NASH mice. CONCLUSIONS QGE was effective in preventing NASH, possibly by regulation of gut microbiota-mediated LCA production, promotion of TGR5 expression and suppression of the NF-κB activation.
Collapse
Affiliation(s)
- Qiong Li
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Meng Li
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Fenghua Li
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Yanqi Dang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
26
|
Chen J, Vitetta L. Gut Microbiota Metabolites in NAFLD Pathogenesis and Therapeutic Implications. Int J Mol Sci 2020; 21:ijms21155214. [PMID: 32717871 PMCID: PMC7432372 DOI: 10.3390/ijms21155214] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota dysregulation plays a key role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD) through its metabolites. Therefore, the restoration of the gut microbiota and supplementation with commensal bacterial metabolites can be of therapeutic benefit against the disease. In this review, we summarize the roles of various bacterial metabolites in the pathogenesis of NAFLD and their therapeutic implications. The gut microbiota dysregulation is a feature of NAFLD, and the signatures of gut microbiota are associated with the severity of the disease through altered bacterial metabolites. Disturbance of bile acid metabolism leads to underactivation of bile acid receptors FXR and TGR5, causal for decreased energy expenditure, increased lipogenesis, increased bile acid synthesis and increased macrophage activity. Decreased production of butyrate results in increased intestinal inflammation, increased gut permeability, endotoxemia and systemic inflammation. Dysregulation of amino acids and choline also contributes to lipid accumulation and to a chronic inflammatory status. In some NAFLD patients, overproduction of ethanol produced by bacteria is responsible for hepatic inflammation. Many approaches including probiotics, prebiotics, synbiotics, faecal microbiome transplantation and a fasting-mimicking diet have been applied to restore the gut microbiota for the improvement of NAFLD.
Collapse
Affiliation(s)
- Jiezhong Chen
- Medlab Clinical, Sydney 2015, Australia
- Correspondence: (J.C.); (L.V.)
| | - Luis Vitetta
- Medlab Clinical, Sydney 2015, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
- Correspondence: (J.C.); (L.V.)
| |
Collapse
|
27
|
Lonardo A, Mantovani A, Lugari S, Targher G. Epidemiology and pathophysiology of the association between NAFLD and metabolically healthy or metabolically unhealthy obesity. Ann Hepatol 2020; 19:359-366. [PMID: 32349939 DOI: 10.1016/j.aohep.2020.03.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) is continuing to rise in many countries, paralleling the epidemic of obesity worldwide. In the last years, the concept of metabolically healthy obesity [MHO, generally defined as obesity without metabolic syndrome (MetS)] has raised considerable scientific interest. MHO is a complex phenotype with risks intermediate between metabolically healthy individuals with normal-weight (NWMH) and patients who are obese and metabolically unhealthy (MUO, i.e. obesity with MetS). In this review we aimed to examine the association and pathophysiological link of NAFLD with MHO and MUO. Compared to NWMH individuals, patients with obesity, regardless of the presence of MetS features, are at higher risk of all-cause mortality and cardiovascular events. Moreover, MHO patients have a greater risk of NAFLD development and progression compared to NWMH individuals. However, this risk is generally lower than that of MUO patients, suggesting a stronger adverse effect of coexisting MetS disorders than obesity per se on the severity of NAFLD. Nevertheless, since MHO is a dynamic state (with a significant proportion of MHO subjects progressing to MUO over time) and NAFLD itself may predict the transition from MHO to MUO, we believe that any effort should be made to identify NAFLD in all obese individuals, although they appear to be "metabolically healthy". Future research is needed to better understand the role of NAFLD and other pathogenic factors potentially involved in the transition from MHO to MUO and to elucidate how this transition may affect the presence and severity of NAFLD.
Collapse
Affiliation(s)
- Amedeo Lonardo
- Operating Unit of Metabolic Syndrome, Azienda Ospedaliero-Universitaria di Modena, Ospedale Civile di Baggiovara, Modena, Italy.
| | - Alessandro Mantovani
- Section of Endocrinology, Diabetes and Metabolism, University of Verona, Verona, Italy
| | | | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, University of Verona, Verona, Italy
| |
Collapse
|