1
|
Mookherjee A, Van Stipdonk MJ, Armentrout PB. Thermodynamics and Reaction Mechanisms of Decomposition of the Simplest Protonated Tripeptide, Triglycine: A Guided Ion Beam and Computational Study. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:739-757. [PMID: 28197927 DOI: 10.1007/s13361-016-1590-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 06/06/2023]
Abstract
We present a thorough characterization of fragmentations observed in threshold collision-induced dissociation (TCID) experiments of protonated triglycine (H+GGG) with Xe using a guided ion beam tandem mass spectrometer (GIBMS). Kinetic energy-dependent cross-sections for 10 ionic products are observed and analyzed to provide 0 K barriers for six primary products: [b2]+, [y1 + 2H]+, [b3]+, CO loss, [y2 + 2H]+, and [a1]+; three secondary products: [a2]+, [a3]+, and [y2 + 2H - CO]+; and two tertiary products: high energy [y1 + 2H]+ and [a2 - CO]+ after accounting for multiple ion-molecule collisions, internal energy of reactant ions, unimolecular decay rates, competition between channels, and sequential dissociations. Relaxed potential energy surface scans performed at the B3LYP-D3/6-311+G(d,p) level of theory are used to identify transition states (TSs) and intermediates of the six primary and one secondary products. Geometry optimizations and single point energy calculations were performed at several levels of theory. These theoretical energies are compared with experimental energies and are found to give reasonably good agreement, in particular for the M06-2X level of theory. This good agreement between experiment and theory validates the reaction mechanisms explored computationally here and elsewhere and allows identification of the product structures formed at threshold energies. The present work presents the first measurement of absolute experimental threshold energies of important sequence ions and non-sequence ions: [y1 + 2H]+, [b3]+, CO loss, [a1]+, and [a3]+, and refines those for [b2]+ and [y2 + 2H]+ previously measured. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Abhigya Mookherjee
- Department of Chemistry, University of Utah, 315 S.1400 E. Rm 2020, Salt Lake City, UT, 84112, USA
| | - Michael J Van Stipdonk
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Ave., Pittsburg, PA, 15282, USA
| | - P B Armentrout
- Department of Chemistry, University of Utah, 315 S.1400 E. Rm 2020, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
2
|
Song T, Ma CY, Chu IK, Siu CK, Laskin J. Mechanistic Examination of Cβ–Cγ Bond Cleavages of Tryptophan Residues during Dissociations of Molecular Peptide Radical Cations. J Phys Chem A 2012; 117:1059-68. [PMID: 22697598 DOI: 10.1021/jp303562e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tao Song
- Department
of Chemistry and ‡School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Ching-Yung Ma
- Department
of Chemistry and ‡School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Ivan K. Chu
- Department
of Chemistry and ‡School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Chi-Kit Siu
- Department
of Biology and Chemistry, City University of Hong Kong, Hong Kong,
China
| | - Julia Laskin
- Chemical
and Materials Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
99354, United States
| |
Collapse
|
3
|
Obolensky OI, Wu WW, Shen RF, Yu YK. Using dissociation energies to predict observability of b- and y-peaks in mass spectra of short peptides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:915-20. [PMID: 22396027 PMCID: PMC3468955 DOI: 10.1002/rcm.6180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
RATIONALE Peptide identification reliability can be improved by excluding from analysis those m/z peaks of candidate peptides which cannot be observed in practice due to various physical, chemical or thermodynamic considerations. We propose using dissociation energies (as opposed to proton affinities) as a predictor of observability of different m/z peaks in spectra of short peptides. METHODS Mass spectra of the tetrapeptides AAAA, AAFA, AAVA, AFAA, AVAA, AFFA, and AVVA were measured in the collision-induced dissociation (CID) activation mode on a grid of activation times 0.05 to 100 ms and normalized collision energy 10 to 35%. The lowest energy geometries and vibrational spectra were calculated for the precursor ions and their charged and neutral fragments using density functional theory (DFT) at the TPSS/6-31G(d,p) level. Dissociation energies were calculated for all fragmentation channels leading to b- or y-fragments. RESULTS It is demonstrated that m/z peaks observed in the mass spectra correspond to the fragmentation channels with the lowest dissociation energies. Using 50 kcal/mol as the cut-off value of dissociation energy, it was predicted that 28 out of 42 possible peaks in the b- and y-series of the seven tetrapeptides can be observed in mass spectra. In the experiments, 26 b- or y-peaks were observed, all of which are among the 28 predicted ones. CONCLUSIONS The use of dissociation energies generalizes the use of proton affinities for semi-quantitative predictions of relative intensities of different m/z peaks of short peptides. Further advances in this direction will pave the way for reliable quantitative predictions and, hence, for a significant improvement in robustness and accuracy of peptide and protein identification tools.
Collapse
Affiliation(s)
- O I Obolensky
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | |
Collapse
|
4
|
Wang D, Gulyuz K, Stedwell CN, Polfer NC. Diagnostic NH and OH vibrations for oxazolone and diketopiperazine structures: b2 from protonated triglycine. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:1197-1203. [PMID: 21953102 DOI: 10.1007/s13361-011-0147-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/03/2011] [Accepted: 04/04/2011] [Indexed: 05/31/2023]
Abstract
We present infrared multiple photon dissociation (IRMPD) spectra in the hydrogen stretching region of the simplest b fragment, b(2) from protonated triglycine, contrasted to that of protonated cyclo(Gly-Gly). Both spectra confirm the presence of intense, diagnostic vibrations linked to the site of proton attachment. Protonated cyclo(Gly-Gly) serves as a reference spectrum for the diketopiperazine structure, showing a diagnostic O-H(+) stretch of the protonated carbonyl group at 3585 cm(-1). Conversely, b(2) from protonated triglycine exhibits a strong band at 3345 cm(-1), associated with the N-H stretching mode of the protonated oxazolone ring structure. Other weaker N-H stretches can also be discerned, such as the amino NH(2) and amide NH bands. These results demonstrate the usefulness of the hydrogen stretching region, and hence benchtop optical parametric oscillator/amplifier (OPO/A) set-ups, in making structural assignments of product ions in collision-induced dissociation (CID) of peptides.
Collapse
Affiliation(s)
- Da Wang
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| | | | | | | |
Collapse
|
5
|
Bleiholder C, Suhai S, Harrison AG, Paizs B. Towards understanding the tandem mass spectra of protonated oligopeptides. 2: The proline effect in collision-induced dissociation of protonated Ala-Ala-Xxx-Pro-Ala (Xxx = Ala, Ser, Leu, Val, Phe, and Trp). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:1032-9. [PMID: 21953044 DOI: 10.1007/s13361-011-0092-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 01/29/2011] [Accepted: 01/30/2011] [Indexed: 05/21/2023]
Abstract
The product ion spectra of proline-containing peptides are commonly dominated by y(n) ions generated by cleavage at the N-terminal side of proline residues. This proline effect is investigated in the current work by collision-induced dissociation (CID) of protonated Ala-Ala-Xxx-Pro-Ala (Xxx includes Ala, Ser, Leu, Val, Phe, and Trp) in an electrospray/quadrupole/time-of-flight (QqTOF) mass spectrometer and by quantum chemical calculations on protonated Ala-Ala-Ala-Pro-Ala. The CID spectra of all investigated peptides show a dominant y(2) ion (Pro-Ala sequence). Our computational results show that the proline effect mainly arises from the particularly low threshold energy for the amide bond cleavage N-terminal to the proline residue, and from the high proton affinity of the proline-containing C-terminal fragment produced by this cleavage. These theoretical results are qualitatively supported by the experimentally observed y(2)/b(3) abundance ratios for protonated Ala-Ala-Xxx-Pro-Ala (Xxx = Ala, Ser, Leu, Val, Phe, and Trp). In the post-cleavage phase of fragmentation the N-terminal oxazolone fragment with the Ala-Ala-Xxx sequence and Pro-Ala compete for the ionizing proton for these peptides. As the proton affinity of the oxazolone fragment increases, the y(2)/b(3) abundance ratio decreases.
Collapse
Affiliation(s)
- Christian Bleiholder
- Department of Molecular Biophysics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | |
Collapse
|
6
|
Competing gas-phase fragmentation pathways of asparagine-, glutamine-, and lysine-containing protonated dipeptides. Theor Chem Acc 2009. [DOI: 10.1007/s00214-009-0658-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Harrison AG. To b or not to b: the ongoing saga of peptide b ions. MASS SPECTROMETRY REVIEWS 2009; 28:640-654. [PMID: 19338048 DOI: 10.1002/mas.20228] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Modern soft ionization techniques readily produce protonated or multiply protonated peptides. Collision-induced dissociation (CID) of these protonated species is often used as a method to obtain sequence information. In many cases fragmentation occurs at amide bonds. When the charge resides on the C-terminal fragment so-called y ions are produced which are known to be protonated amino acids or truncated peptides. When the charge resides on the N-terminal fragment so-called b ions are produced. Often the sequence of y and b ions are essential for peptide sequencing. The b ions have many possible structures, a knowledge of which is useful in this sequencing. The structures of b ions are reviewed in the following with particular emphasis on the variation of structure with the number of amino acid residues in the b ion and the effect of peptide side chain on b ion structure. The recent discovery of full cyclization of larger b ions results in challenges in peptide sequencing. This aspect is discussed in detail.
Collapse
Affiliation(s)
- Alex G Harrison
- Department of Chemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
8
|
Siu CK, Ke Y, Orlova G, Hopkinson AC, Michael Siu KW. Dissociation of the N-C(alpha) bond and competitive formation of the [z(n) - H](+) and [c(n) + 2H](+) product ions in radical peptide ions containing tyrosine and tryptophan: the influence of proton affinities on product formation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2008; 19:1799-1807. [PMID: 18930412 DOI: 10.1016/j.jasms.2008.09.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 09/29/2008] [Accepted: 09/29/2008] [Indexed: 05/26/2023]
Abstract
Dissociations at the N-C(alpha) bond of tryptophan and tyrosine residues are the prevalent pathways in the fragmentations of radical cations of tripeptides that contain such as residues. This process involves a proton transfer from the beta-carbon of the tryptophan or tyrosine residue to the carbonyl oxygen of the amide group, followed by cleavage of the N-C(alpha) bond, generating low-lying proton-bound dimers that dissociate to give each an ionic and a neutral product. Formation of the [z(n) - H](*+) or [c(n) + 2H](+) ion is a competition between the two incipient fragments for the proton in a dissociating proton-bound dimer.
Collapse
Affiliation(s)
- Chi-Kit Siu
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
9
|
Lam AKY, Ramarathinam SH, Purcell AW, O'Hair RAJ. Can alpha- and beta-alanine containing peptides be distinguished based on the CID spectra of their protonated ions? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2008; 19:1743-1754. [PMID: 18964084 DOI: 10.1016/j.jasms.2008.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 09/05/2008] [Accepted: 09/05/2008] [Indexed: 05/27/2023]
Abstract
The fragmentation reactions of isomeric dipeptides containing alpha- and beta-alanine residues (alphaAla-alphaAla, alphaAla-betaAla, betaAla-alphaAla, and betaAla-betaAla) were studied using a combination of low-energy and energy resolved collision induced dissociation (CID). Each dipeptide gave a series of different fragment ions, allowing for differentiation. For example, peptides containing an N-terminal beta-Ala residue yield a diagnostic imine loss, while lactam ions at m/z 72 are unique to peptides containing beta-Ala residues. In addition, MS(3) experiments were performed. Structure-specific fragmentation reactions were observed for y(1) ions, which help identify the C-terminal residue. The MS(3) spectra of the b(2) ions are different suggesting they are unique for each peptide. Density functional theory (DFT) calculations predict that b(2) ions formed via a neighboring group attack by the amide are thermodynamically favored over those formed via neighboring group attack by the N-terminal amine. Finally, to gain further insight into the unique fragmentation chemistry of the peptides containing an N-terminal beta-alanine residue, the fragmentation reactions of protonated beta-Ala-NHMe were examined using a combination of experiment and DFT calculations. The relative transition-state energies involved in the four competing losses (NH(3), H(2)O, CH(3)NH(2), and CH(2)=NH) closely follow the relative abundances of these as determined via CID experiments.
Collapse
Affiliation(s)
- Adrian K Y Lam
- School of Chemistry, The University of Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
10
|
Lioe H, O'Hair RAJ. A novel salt bridge mechanism highlights the need for nonmobile proton conditions to promote disulfide bond cleavage in protonated peptides under low-energy collisional activation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:1109-23. [PMID: 17462910 DOI: 10.1016/j.jasms.2007.03.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 03/08/2007] [Accepted: 03/09/2007] [Indexed: 05/15/2023]
Abstract
The gas-phase fragmentation mechanisms of small models for peptides containing intermolecular disulfide links have been studied using a combination of tandem mass spectrometry experiments, isotopic labeling, structural labeling, accurate mass measurements of product ions, and theoretical calculations (at the MP2/6-311 + G(2d,p)//B3LYP/3-21G(d) level of theory). Cystine and its C-terminal derivatives were observed to fragment via a range of pathways, including loss of neutral molecules, amide bond cleavage, and S-S and C-S bond cleavages. Various mechanisms were considered to rationalize S-S and C-S bond cleavage processes, including charge directed neighboring group processes and nonmobile proton salt bridge mechanism. Three low-energy fragmentation pathways were identified from theoretical calculations on cystine N-methyl amide: (1) S-S bond cleavage dominated by a neighboring group process involving the C-terminal amide N to form either a protonated cysteine derivative or protonated sulfenyl amide product ion (44.3 kcal mol(-1)); (2) C-S bond cleavage via a salt bridge mechanism, involving abstraction of the alpha-hydrogen by the N-terminal amino group to form a protonated thiocysteine derivative (35.0 kcal mol(-1)); and (3) C-S bond cleavage via a Grob-like fragmentation process in which the nucleophilic N-terminal amino group forms a protonated dithiazolidine (57.9 kcal mol(-1)). Interestingly, C-S bond cleavage by neighboring group processes have high activation barriers (63.1 kcal mol(-1)) and are thus not expected to be accessible during low-energy CID experiments. In comparison to the energetics of simple amide bond cleavage, these S-S and C-S bond cleavage reactions are higher in energy, which helps rationalize why bond cleavage processes involving the disulfide bond are rarely observed for low-energy CID of peptides with mobile proton(s) containing intermolecular disulfide bonds. On the other hand, the absence of a mobile proton appears to "switch on" disulfide bond cleavage reactions, which can be rationalized by the salt bridge mechanism. This potentially has important ramifications in explaining the prevalence of disulfide bond cleavage in singly protonated peptides under MALDI conditions.
Collapse
Affiliation(s)
- Hadi Lioe
- School of Chemistry, University of Melbourne, Melbourne, Australia
| | | |
Collapse
|
11
|
Sierakowski J, Amunugama M, Roberts KD, Reid GE. Substituent effects on the gas-phase fragmentation reactions of sulfonium ion containing peptides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2007; 21:1230-8. [PMID: 17330214 DOI: 10.1002/rcm.2959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The multistage mass spectrometric (MS/MS and MS3) gas-phase fragmentation reactions of methionine side-chain sulfonium ion containing peptides formed by reaction with a series of para-substituted phenacyl bromide (XBr where X=CH2COC6H4R, and R=--COOH, --COOCH3, --H, --CH3 and --CH2CH3) alkylating reagents have been examined in a linear quadrupole ion trap mass spectrometer. MS/MS of the singly (M+) and multiply ([M++nH](n+1)+) charged precursor ions results in exclusive dissociation at the fixed charge containing side chain, independently of the amino acid composition and precursor ion charge state (i.e., proton mobility). However, loss of the methylphenacyl sulfide side-chain fragment as a neutral versus charged (protonated) species was observed to be highly dependent on the proton mobility of the precursor ion, and the identity of the phenacyl group para-substituent. Molecular orbital calculations were performed at the B3LYP/6-31+G** level of theory to calculate the theoretical proton affinities of the neutral side-chain fragments. The log of the ratio of neutral versus protonated side-chain fragment losses from the derivatized side chain were found to exhibit a linear dependence on the proton affinity of the side-chain fragmentation product, as well as the proton affinities of the peptide product ions. Finally, MS3 dissociation of the nominally identical neutral and protonated loss product ions formed by MS/MS of the [M++H]2+ and [M++2H]3+ precursor ions, respectively, from the peptide GAILM(X)GAILK revealed significant differences in the abundances of the resultant product ions. These results suggest that the protonated peptide product ions formed by gas-phase fragmentation of sulfonium ion containing precursors in an ion trap mass spectrometer do not necessarily undergo intramolecular proton 'scrambling' prior to their further dissociation, in contrast to that previously demonstrated for peptide ions introduced by external ionization sources.
Collapse
Affiliation(s)
- James Sierakowski
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
12
|
Paizs B, Suhai S. Fragmentation pathways of protonated peptides. MASS SPECTROMETRY REVIEWS 2005; 24:508-48. [PMID: 15389847 DOI: 10.1002/mas.20024] [Citation(s) in RCA: 816] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The fragmentation pathways of protonated peptides are reviewed in the present paper paying special attention to classification of the known fragmentation channels into a simple hierarchy defined according to the chemistry involved. It is shown that the 'mobile proton' model of peptide fragmentation can be used to understand the MS/MS spectra of protonated peptides only in a qualitative manner rationalizing differences observed for low-energy collision induced dissociation of peptide ions having or lacking a mobile proton. To overcome this limitation, a deeper understanding of the dissociation chemistry of protonated peptides is needed. To this end use of the 'pathways in competition' (PIC) model that involves a detailed energetic and kinetic characterization of the major peptide fragmentation pathways (PFPs) is proposed. The known PFPs are described in detail including all the pre-dissociation, dissociation, and post-dissociation events. It is our hope that studies to further extend PIC will lead to semi-quantative understanding of the MS/MS spectra of protonated peptides which could be used to develop refined bioinformatics algorithms for MS/MS based proteomics. Experimental and computational data on the fragmentation of protonated peptides are reevaluated from the point of view of the PIC model considering the mechanism, energetics, and kinetics of the major PFPs. Evidence proving semi-quantitative predictability of some of the ion intensity relationships (IIRs) of the MS/MS spectra of protonated peptides is presented.
Collapse
Affiliation(s)
- Béla Paizs
- Department of Molecular Biophysics, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
13
|
Lioe H, O'Hair RAJ. Neighbouring group processes in the deamination of protonated phenylalanine derivatives. Org Biomol Chem 2005; 3:3618-28. [PMID: 16211098 DOI: 10.1039/b503355a] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The gas-phase fragmentation of protonated phenylalanine and a series of its derivatives (tyrosine, 4-methylphenylalanine, 4-aminophenylalanine, 4-methoxyphenylalanine, 4-tert-butylphenylalanine, 4-fluorophenylalanine, 4-chlorophenylalanine, 4-bromophenylalanine, 4-iodophenylalanine, 4-cyanophenylalanine, 4-nitrophenylalanine, 3-fluorophenylalanine, and 3,4-dichlorophenylalanine) were examined using a combination of low energy CID in a quadrupole ion trap mass spectrometer as well as DFT calculations and RRKM modelling. In particular, the relationship between the electron-donating ability of the substituent and the competitive losses of H2O + CO and NH3 were explored through the application of the Hammett equation. It was found that electron-donating substituents promote the loss of NH3, while electron-withdrawing substituents suppress the loss of NH3 and favour the H2O + CO loss fragmentation channel instead. These observations are consistent with a neighbouring group pathway operating for the loss of NH3. Molecular orbital calculation (at the B3LYP/6-31+G(d,p) level of theory) were also performed for a range of derivatives to compare the relative transition state energy barriers for three competing mechanisms: (i) the combined loss of H2O + CO, which is triggered by an initial intramolecular proton transfer from the ammonium group to hydroxyl OH, followed by the combined loss of H2O and CO to form an immonium ion; (ii) loss of NH3 via an aryl assisted neighbouring group pathway to yield a phenonium ion; (iii) loss of NH3 via a 1,2-hydride migration process, which results in the formation of a benzyl cation. The relative energy barriers for H2O + CO loss remain nearly constant, while that for both NH3 pathways increase as the substituent moves from electron-donating to electron-withdrawing. The relative transition state energy for loss of NH3 via the aryl assisted neighbouring group pathway is always lower than that of the 1,2-hydride migration process. RRKM modelling of the DFT predicted barrier heights suggest that the rate constants for H2O + CO loss are insensitive to the substituent on the ring, while the NH3 loss channels are greatly affected by the substituent. These theoretical results are consistent with the experimental observation of the relative yields of the competing fragmentation channels. Finally, comparisons with published gas phase and condensed phase studies on related systems are made.
Collapse
Affiliation(s)
- Hadi Lioe
- School of Chemistry, University of Melbourne, Victoria 3010, Australia
| | | |
Collapse
|
14
|
Rakov VS, Borisov OV, Whitehouse CM. Establishing low-energy sequential decomposition pathways of leucine enkephalin and its N- and C-terminus fragments using multiple-resonance CID in quadrupolar ion guide. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2004; 15:1794-1809. [PMID: 15589756 DOI: 10.1016/j.jasms.2004.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Revised: 06/24/2004] [Accepted: 06/24/2004] [Indexed: 05/24/2023]
Abstract
The simultaneous resonant low-energy excitation of leucine enkephalin and its fragment ions was demonstrated in a collision cell of the multipole-quadrupole time-of-flight instrument. Using low-amplitude multiple-resonance excitation CID, we were able to show the exclusive sequential fragmentation of N- and C-terminus fragments all the way to the final fragments--immonium ions of phenylalanine or tyrosine. In this CID mode the single-channel dissociation of each new generation of fragments followed the lowest energy decomposition pathways observable on the time scale of our experiment. Up to six generations of sequential dissociation were carried out in multiple-resonance CID experiments. The direct qualitative comparison of fragmentation of axial-acceleration versus resonant (radial) CID was performed in the same instrument. In both activation methods, fragmentation patterns suggested complex decomposition mechanisms attributable to dynamic competition between sequential and parallel dissociation channels.
Collapse
Affiliation(s)
- V Sergey Rakov
- Analytica of Branford, Branford, 29 Business Park Drive, Branford, CT 06405, USA.
| | | | | |
Collapse
|
15
|
Grewal RN, El Aribi H, Harrison AG, Siu KWM, Hopkinson AC. Fragmentation of Protonated Tripeptides: The Proline Effect Revisited. J Phys Chem B 2004. [DOI: 10.1021/jp031093k] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- R. Natasha Grewal
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3, and Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
| | - Houssain El Aribi
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3, and Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
| | - Alex G. Harrison
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3, and Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
| | - K. W. Michael Siu
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3, and Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
| | - Alan C. Hopkinson
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3, and Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
| |
Collapse
|
16
|
Physical Organic Chemistry of the Gas Phase. Reactivity Trends for Organic Cations. Top Curr Chem (Cham) 2003. [DOI: 10.1007/3-540-36113-8_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
17
|
Harrison AG. Fragmentation reactions of protonated peptides containing glutamine or glutamic acid. JOURNAL OF MASS SPECTROMETRY : JMS 2003; 38:174-187. [PMID: 12577284 DOI: 10.1002/jms.427] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A variety of protonated dipeptides and tripeptides containing glutamic acid or glutamine were prepared by electrospray ionization or by fast atom bombardment ionization and their fragmentation pathways elucidated using metastable ion studies, energy-resolved mass spectrometry and triple-stage mass spectrometry (MS(3)) experiments. Additional mechanistic information was obtained by exchanging the labile hydrogens for deuterium. Protonated H-Gln-Gly-OH fragments by loss of NH(3) and loss of H(2)O in metastable ion fragmentation; under collision-induced dissociation (CID) conditions loss of H-Gly-OH + CO from the [MH - NH(3)](+) ion forms the base peak C(4)H(6)NO(+) (m/z 84). Protonated dipeptides with an alpha-linkage, H-Glu-Xxx-OH, are characterized by elimination of H(2)O and by elimination of H-Xxx-OH plus CO to form the glutamic acid immonium ion of m/z 102. By contrast, protonated dipeptides with a gamma-linkage, H-Glu(Xxx-OH)-OH, do not show elimination of H(2)O or formation of m/z 102 but rather show elimination of NH(3), particularly in metastable ion fragmentation, and elimination of H-Xxx-OH to form m/z 130. Both the alpha- and gamma-dipeptides show formation of [H-Xxx-OH]H(+), with this reaction channel increasing in importance as the proton affinity (PA) of H-Xxx-OH increases. The characteristic loss of H(2)O and formation of m/z 102 are observed for the protonated alpha-tripeptide H-Glu-Gly-Phe-OH whereas the protonated gamma-tripeptide H-Glu(Gly-Gly-OH)-OH shows loss of NH(3) and formation of m/z 130 as observed for dipeptides with the gamma-linkage. Both tripeptides show abundant formation of the y(2)'' ion under CID conditions, presumably because a stable anhydride neutral structure can be formed. Under metastable ion conditions protonated dipeptides of structure H-Xxx-Glu-OH show abundant elimination of H(2)O whereas those of structure H-Xxx-Gln-OH show abundant elimination of NH(3). The importance of these reaction channels is much reduced under CID conditions, the major fragmentation mode being cleavage of the amide bond to form either the a(1) ion or the y(1)'' ion. Particularly when Xxx = Gly, under CID conditions the initial loss of NH(3) from the glutamine containing dipeptide is followed by elimination of a second NH(3) while the initial loss of H(2)O from the glutamic acid dipeptide is followed by elimination of NH(3). Isotopic labelling shows that predominantly labile hydrogens are lost in both steps. Although both [H-Gly-Glu-Gly-OH]H(+) and [H-Gly-Gln-Gly-OH]H(+) fragment mainly to form b(2) and a(2) ions, the latter also shows elimination of NH(3) plus a glycine residue and formation of protonated glycinamide. Isotopic labelling shows extensive mixing of labile and carbon-bonded hydrogens in the formation of protonated glycinamide.
Collapse
Affiliation(s)
- Alex G Harrison
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.
| |
Collapse
|
18
|
Paizs B, Suhai S. Towards understanding some ion intensity relationships for the tandem mass spectra of protonated peptides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2002; 16:1699-1702. [PMID: 12203239 DOI: 10.1002/rcm.747] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
19
|
Paizs B, Suhai S. Combined quantum chemical and RRKM modeling of the main fragmentation pathways of protonated GGG. II. Formation of b(2), y(1), and y(2) ions. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2002; 16:375-389. [PMID: 11857721 DOI: 10.1002/rcm.586] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Quantum chemical and RRKM calculations were performed on protonated GGG in order to determine the atomic details of the main fragmentation pathways leading to formation of b(2),y(1), and y(2) ions. Formation of y(1) ions on the "diketopiperazine" pathway is initiated from relatively high-energy C-terminal amide nitrogen protonated species for which the N-terminal amide bond is in the cis isomerization state. The reaction goes through a transition structure which is only slightly less favored than the reactive configuration itself. RRKM calculations indicate that this reaction is extremely fast as soon as the fragmenting species have more internal energy than the reaction threshold. The calculated energetics suggests that y(1) ions are formed on the "diketopiperazine" pathway with a non-negligible (6-10 kcal/mol) reverse activation barrier. Investigation of species occurring during the formation of b(2) ions having an oxazolone structure indicates that y(1) ions can be formed also from intermediates previously thought to result in only b(2) ions. As the first step of the "b(x)-y(z)" pathway proposed here the extra proton must reach the nitrogen of the C-terminal amide bond. Attack of the N-terminal amide oxygen on the carbon center of the C-terminal amide bond results in formation of the oxazolone ring while the detaching G leaves the precursor ion. Under low-energy collision conditions the complex of protonated 2-aminomethyl-5-oxazolone and G can rearrange to form a proton-bonded dimer of these species. In such circumstances the extra proton is shared by the two monomers and dissociation of the dimer will be determined by the thermochemistry involved. Based on the "b(x)-y(z)" pathway one can easily explain the linear relationship between the logarithm of the y(1)/b(2) ion abundance ratio and the proton affinity of the C-terminal amino acid substituent for the series of H-Gly-Gly-Xxx-OH tripeptides where Xxx was varied (Morgan DG, Bursey MM. Org. Mass. Spectrom. 1994; 29: 354). The calculated energetics indicates that both y(1) and b(2) ions are formed with no reverse activation barrier on the "b(x)-y(z)" pathway.
Collapse
Affiliation(s)
- Béla Paizs
- Department of Molecular Biophysics, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
20
|
Rodriquez CF, Cunje A, Shoeib T, Chu IK, Hopkinson AC, Siu KW. Proton migration and tautomerism in protonated triglycine. J Am Chem Soc 2001; 123:3006-12. [PMID: 11457011 DOI: 10.1021/ja0015904] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proton migration in protonated glycylglycylglycine (GGG) has been investigated by using density functional theory at the B3LYP/6-31++G(d,p) level of theory. On the protonated GGG energy hypersurface 19 critical points have been characterized, 11 as minima and 8 as first-order saddle points. Transition state structures for interconversion between eight of these minima are reported, starting from a structure in which there is protonation at the amino nitrogen of the N-terminal glycyl residue following the migration of the proton until there is fragmentation into protonated 2-aminomethyl-5-oxazolone (the b(2) ion) and glycine. Individual free energy barriers are small, ranging from 4.3 to 18.1 kcal mol(-)(1). The most favorable site of protonation on GGG is the carbonyl oxygen of the N-terminal residue. This isomer is stabilized by a hydrogen bond of the type O-H.N with the N-terminal nitrogen atom, resulting in a compact five-membered ring. Another oxygen-protonated isomer with hydrogen bonding of the type O-H.O, resulting in a seven-membered ring, is only 0.1 kcal mol(-)(1) higher in free energy. Protonation on the N-terminal nitrogen atom produces an isomer that is about 1 kcal mol(-)(1) higher in free energy than isomers resulting from protonation on the carbonyl oxygen of the N-terminal residue. The calculated energy barrier to generate the b(2) ion from protonated GGG is 32.5 kcal mol(-)(1) via TS(6-->7). The calculated basicity and proton affinity of GGG from our results are 216.3 and 223.8 kcal mol(-)(1), respectively. These values are 3-4 kcal mol(-)(1) lower than those from previous calculations and are in excellent agreement with recently revised experimental values.
Collapse
Affiliation(s)
- C F Rodriquez
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
| | | | | | | | | | | |
Collapse
|
21
|
Reid GE, Tichy SE, Pérez J, O'Hair RA, Simpson RJ, Kenttämaa HI. N-terminal derivatization and fragmentation of neutral peptides via ion--molecule reactions with acylium ions: toward gas-phase Edman degradation? J Am Chem Soc 2001; 123:1184-92. [PMID: 11456672 DOI: 10.1021/ja003070e] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The gas-phase ion-molecule reactions of neutral alanylglycine have been examined with various mass-selected acylium ions RCO(+) (R= CH(3), CD(3), C(6)H(5), C(6)F(5) and (CH(3))( 2)N), as well as the transacylation reagent O-benzoylbenzophenone in a Fourier transform ion cyclotron resonance mass spectrometer. Reactions of the gaseous dipeptide with acylium ions trapped in the ICR cell result in the formation of energized [M + RCO](+) adduct ions that fragment to yield N-terminal b-type and C-terminal y-type product ions, including a modified b(1) ion which is typically not observed in the fragmentation of protonated peptides. Judicious choice of the acylium ion employed allows some control over the product ion types that are observed (i.e., b versus y ions). The product ion distributions from these ion--molecule reactions are similar to those obtained by collision-activated dissociation in a triple quadrupole mass spectrometer of the authentic N-acylated alanylglycine derivatives. These data indicate that derivatization of the peptide in the gas-phase occurs at the N-terminal amine. Ab initio molecular orbital calculations, performed to estimate the thermochemistry of the steps associated with adduct formation as well as product ion formation, indicate that (i) the initially formed adduct is energized and hence likely to rapidly undergo fragmentation, and (ii) the likelihood for the formation of modified b(1) ions in preference to y(1) ions is dependent on the R substituent of the acylium ion. The reaction of the tetrapeptide valine--alanine--alanine--phenylalanine with the benzoyl cation was also found to yield a number of product ions, including a modified b(1) ion. This result suggests that the new experimental approach described here may provide a tool to address one of the major limitations associated with traditional mass spectrometric peptide sequencing approaches, that is, determination of the identity and order of the two N-terminal amino acids. Analogies are made between the reactions observed here and the derivatization and N-terminal cleavage reactions employed in the condensed-phase Edman degradation method.
Collapse
Affiliation(s)
- G E Reid
- School of Chemistry, University of Melbourne, Parkville, Victoria, Australia, 3010
| | | | | | | | | | | |
Collapse
|
22
|
Paizs B, Suhai S. Theoretical study of the main fragmentation pathways for protonated glycylglycine. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2001; 15:651-663. [PMID: 11312516 DOI: 10.1002/rcm.273] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Quantum chemical and RRKM calculations were carried out on protonated glycylglycine in order to determine the atomic details of the main fragmentation pathways leading to formation of a1 and y1 ions. Two possible mechanisms were considered. The first path results in elimination of aziridinone as a neutral counterpart of the y1 ion formed. Our calculations show that this pathway has a relatively high threshold energy (48.6 kcal/mol) and the corresponding unimolecular rate constants are quite small even at large internal energy. An alternative pathway (a1-y1) proposed in the present paper seems, however, to be favored against the above 'aziridinone' one from the points of view of both energetics and kinetics. The 'a1-y1' pathway leads to simultaneous formation of a1 and y1 ions, the ratio of which depends on the energy distribution of the fragmenting species for a particular dipeptide. However, even if y1 ions are formed via the 'a1-y1' pathway, the corresponding neutrals eliminated do not have a strained cyclic aziridinone structure. Instead, in a two-step process, CO and NHCH2 are formed leading to neutral products energetically more favored than aziridinone. The available experimental data reevaluated in the present paper lend support to the 'a1-y1' pathway.
Collapse
Affiliation(s)
- B Paizs
- Department of Molecular Biophysics, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
23
|
Polce MJ, Ren D, Wesdemiotis C. Dissociation of the peptide bond in protonated peptides. JOURNAL OF MASS SPECTROMETRY : JMS 2000; 35:1391-1398. [PMID: 11180629 DOI: 10.1002/1096-9888(200012)35:12<1391::aid-jms85>3.0.co;2-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The dissociation of the amide (peptide) bond in protonated peptides, [M + H](+), is discussed in terms of the structures and energetics of the resulting N-terminal b(n) and C-terminal y(n) sequence ions. The combined data provide strong evidence that dissociation proceeds with no reverse barriers through interconverting proton-bound complexes between the segments emerging upon cleavage of the protonated peptide bond. These complexes contain the C-terminal part as a smaller linear peptide (amino acid if one residue) and the N-terminal part either as an oxazolone or a cyclic peptide (cyclic amide if one residue). Owing to the higher thermodynamic stability but substantially lower gas-phase basicity of cyclic peptides vs isomeric oxazolones, the N-terminus is cleaved as a protonated oxazolone when ionic (b(n) series) but as a cyclic peptide when neutral (accompanying the C-terminal y(n) series). It is demonstrated that free energy correlations can be used to derive thermochemical data about sequence ions. In this context, the dependence of the logarithm of the abundance ratio log[y(1)/b(2)], from protonated GGX (G, glycine; X, varying amino acid) on the gas-phase basicity of X is used to obtain a first experimental estimate of the gas-phase basicity of the simplest b-type oxazolone, viz. 2-aminomethyl-5-oxazolone (b(2) ion with two glycyl residues).
Collapse
Affiliation(s)
- M J Polce
- Department of Chemistry, The University of Akron, Akron, Ohio 44325-3601, USA
| | | | | |
Collapse
|
24
|
Harrison AG, Csizmadia IG, Tang TH, Tu YP. Reaction competition in the fragmentation of protonated dipeptides. JOURNAL OF MASS SPECTROMETRY : JMS 2000; 35:683-688. [PMID: 10862119 DOI: 10.1002/1096-9888(200006)35:6<683::aid-jms994>3.0.co;2-d] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A major low-energy fragmentation reaction of many protonated dipeptides involves cleavage of the amide bond resulting in formation of either the y(1)" ion or the a(1) ion. For a series of protonated dipeptides H-Val-Xxx-OH it is observed that log(y(1)"/a(1)) is a linear function of the proton affinity of the variable C-terminal amino acid. For the series of protonated dipeptides H-Xxx-Phe-OH log(a(1)/y(1)") gives a poor correlation with the proton affinity or gas-phase basicity of H-Xxx-OH. However, a good limited correlation of log(a(1)/y(1)") with the Taft-Topsom sigma(alpha) for the alkyl group is observed when Xxx is an aliphatic amino acid. It is proposed that fragmentation occurs by initial formation of a proton-bound complex of an aziridinone and an amino acid which may fragment to form either a protonated amino acid (y(1)") or an N-protonated aziridinone with the corresponding neutrals being an aziridinone and an amino acid. Ab initio calculations show that the N-protonated aziridinone is unstable and fragments by loss of CO to form the a(1) immonium ion. However, the proton-bound complex of an aziridinone and an amine base is a stable species which exists in a potential well. Copyright 2000 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- AG Harrison
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | | | | | | |
Collapse
|
25
|
Nold MJ, Cerda BA, Wesdemiotis C. Proton affinities of the N- and C-terminal segments arising upon the dissociation of the amide bond in protonated peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 1999; 10:1-8. [PMID: 9888180 DOI: 10.1016/s1044-0305(98)00120-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Dissociation of the amide bonds in a protonated peptide leads to N-terminal sequence fragments with cyclic structures and C-terminal sequence fragments with linear structures. The ionic fragments containing the N-terminus (bn) have been shown to be protonated oxazolones, whereas those containing the C-terminus (Yn) are protonated linear peptides. The coproduced neutral fragments are cyclic peptides from the N-terminus and linear peptides from the C-terminus. A likely determinant of these structural choices is the proton affinity (PA) of the described peptide segments. This study determines the PA values of such segments (Pep), i.e., cyclic and linear dipeptides and a relevant oxazolone, based on the dissociations of proton-bound dimers [Pep + Bi]H+ in which Bi is a reference base of known PA value (Cooks kinetic method). The dissociations are assessed at different internal energies to thereby obtain both proton affinities as well as entropies of protonation. For species with comparable amino acid composition, the proton affinity (and gas phase basicity) follows the order cyclic peptide << oxazolone approximately linear peptide. This ranking is consistent with dissociation of the protonated peptide via interconverting proton-bound complexes involving N-terminal oxazolone (O) or cyclopeptide (C) segments and C-terminal linear peptide segments (L), viz. O...H+...L reversible C...H+...L. N-terminal sequence ions (bn) are formed with oxazolone structures which can efficiently compete for the proton with the linear segments. On the other hand, N-terminal neutral fragments detach as cyclic peptides, with H+ now being retained by the more basic linear segment from the C-terminus to yield Yn.
Collapse
Affiliation(s)
- M J Nold
- Department of Chemistry, The University of Akron, Ohio, USA
| | | | | |
Collapse
|
26
|
Nold MJ, Wesdemiotis C, Yalcin T, Harrison AG. Amide bond dissociation in protonated peptides. Structures of the N-terminal ionic and neutral fragments. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0168-1176(97)00044-x] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Carr SR, Cassady CJ. Gas-phase basicities of histidine and lysine and their selected di- and tripeptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 1996; 7:1203-1210. [PMID: 24203152 DOI: 10.1016/s1044-0305(96)00113-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/1996] [Revised: 07/29/1996] [Accepted: 07/29/1996] [Indexed: 06/02/2023]
Abstract
The gas-phase basicities (GB) of histidine, lysine, and di- and triglycyl peptides containing either one histidine or one lysine residue have been determined. In all, 12 compounds were examined in a Fourier transform ion cyclotron resonance mass spectrometer. The GBs of the biomolecules were evaluated by proton transfer reactions employing a range of reference compounds with varying gas-phase basicities. In addition, the GBs were determined by using the kinetic method of collision-induced dissociation on a proton-bound dimer containing the peptide and a reference compound. The GBs of histidine and lysine were both found to be 220.8 kcal/mol via proton transfer reactions. The kinetic method experiments, including dissociation of a proton-bound dimer containing both histidine and lysine, also suggest equivalent GBs for these amino acids. However, the small peptides containing lysine are generally more basic than the corresponding histidine-containing peptides. For the peptides, the data suggest that the protonation site is on the basic side chain functional group of the histidine or lysine residues. The GBs of the di- and tripeptides are dependent upon the location of the basic residue. For example, the GBs of the tripeptides glycylglycyl-L-lysine (GlyGlyLys) and L-lysylglycylglycine (LysGlyGly) were both determined to be 230.7 kcal/mol while a GB of kcal/mol was obtained for glycyl-L-lysylglycine (GlyLysGly). A similar GB trend is seen with the histidine-containing tripeptides. Generally, the GBs obtained by using the kinetic method are slightly higher than those obtained by deprotonation reactions; however, the trends in relative GB values are essentially the same with the two techniques.
Collapse
Affiliation(s)
- S R Carr
- Department of Chemistry, Miami University, Oxford, Ohio, USA
| | | |
Collapse
|