1
|
Bhutani MS, Faraoni EY, Mork ME, McAllister F. Gastric cancer prevention and screening during pancreatic cancer screening in high-risk individuals: an opportunity not to be missed. Gastrointest Endosc 2024:S0016-5107(24)03774-X. [PMID: 39653170 DOI: 10.1016/j.gie.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 01/18/2025]
Affiliation(s)
- Manoop S Bhutani
- Department of Gastroenterology, Hepatology, and Nutrition, University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Erika Y Faraoni
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maureen E Mork
- Clinical Cancer Genetics Program, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Florencia McAllister
- Department of Genetics, Clinical Cancer Genetics Program, Department of Gastrointestinal Medical Oncology, Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
2
|
Begolli R, Patouna A, Vardakas P, Xagara A, Apostolou K, Kouretas D, Giakountis A. Deciphering the Landscape of GATA-Mediated Transcriptional Regulation in Gastric Cancer. Antioxidants (Basel) 2024; 13:1267. [PMID: 39456519 PMCID: PMC11504088 DOI: 10.3390/antiox13101267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Gastric cancer (GC) is an asymptomatic malignancy in early stages, with an invasive and cost-ineffective diagnostic toolbox that contributes to severe global mortality rates on an annual basis. Ectopic expression of the lineage survival transcription factors (LS-TFs) GATA4 and 6 promotes stomach oncogenesis. However, LS-TFs also govern important physiological roles, hindering their direct therapeutic targeting. Therefore, their downstream target genes are particularly interesting for developing cancer-specific molecular biomarkers or therapeutic agents. In this work, we couple inducible knockdown systems with chromatin immunoprecipitation and RNA-seq to thoroughly detect and characterize direct targets of GATA-mediated transcriptional regulation in gastric cancer cells. Our experimental and computational strategy provides evidence that both factors regulate the expression of several coding and non-coding RNAs that in turn mediate for their cancer-promoting phenotypes, including but not limited to cell cycle, apoptosis, ferroptosis, and oxidative stress response. Finally, the diagnostic and prognostic potential of four metagene signatures consisting of selected GATA4/6 target transcripts is evaluated in a multi-cancer panel of ~7000 biopsies from nineteen tumor types, revealing elevated specificity for gastrointestinal tumors. In conclusion, our integrated strategy uncovers the landscape of GATA-mediated coding and non-coding transcriptional regulation, providing insights regarding their molecular and clinical function in gastric cancer.
Collapse
Affiliation(s)
- Rodiola Begolli
- Laboratory of Molecular Biology and Genomics, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Mezourlo, 41500 Larissa, Greece
| | - Anastasia Patouna
- Laboratory of Animal Physiology, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Mezourlo, 41500 Larissa, Greece
| | - Periklis Vardakas
- Laboratory of Animal Physiology, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Mezourlo, 41500 Larissa, Greece
| | - Anastasia Xagara
- Laboratory of Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Mezourlo, 41110 Larissa, Greece
| | - Kleanthi Apostolou
- Laboratory of Molecular Biology and Genomics, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Mezourlo, 41500 Larissa, Greece
| | - Demetrios Kouretas
- Laboratory of Animal Physiology, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Mezourlo, 41500 Larissa, Greece
| | - Antonis Giakountis
- Laboratory of Molecular Biology and Genomics, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Mezourlo, 41500 Larissa, Greece
| |
Collapse
|
3
|
Wang YM, Luo ZW, Shu YL, Zhou X, Wang LQ, Liang CH, Wu CQ, Li CP. Effects of Helicobacter pylori and Moluodan on the Wnt/β-catenin signaling pathway in mice with precancerous gastric cancer lesions. World J Gastrointest Oncol 2024; 16:979-990. [PMID: 38577474 PMCID: PMC10989371 DOI: 10.4251/wjgo.v16.i3.979] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/16/2023] [Accepted: 01/24/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) is the primary risk factor for gastric cancer (GC), the Wnt/β-Catenin signaling pathway is closely linked to tumourigenesis. GC has a high mortality rate and treatment cost, and there are no drugs to prevent the progression of gastric precancerous lesions to GC. Therefore, it is necessary to find a novel drug that is inexpensive and preventive to against GC. AIM To explore the effects of H. pylori and Moluodan on the Wnt/β-Catenin signaling pathway and precancerous lesions of GC (PLGC). METHODS Mice were divided into the control, N-methyl-N-nitrosourea (MNU), H. pylori + MNU, and Moluodan groups. We first created an H. pylori infection model in the H. pylori + MNU and Moluodan groups. A PLGC model was created in the remaining three groups except for the control group. Moluodan was fed to mice in the Moloudan group ad libitum. The general condition of mice were observed during the whole experiment period. Gastric tissues of mice were grossly and microscopically examined. Through quantitative real-time PCR (qRT-PCR) and Western blotting analysis, the expression of relevant genes were detected. RESULTS Mice in the H. pylori + MNU group showed the worst performance in general condition, gastric tissue visual and microscopic observation, followed by the MNU group, Moluodan group and the control group. QRT-PCR and Western blotting analysis were used to detect the expression of relevant genes, the results showed that the H. pylori + MNU group had the highest expression, followed by the MNU group, Moluodan group and the control group. CONCLUSION H. pylori can activate the Wnt/β-catenin signaling pathway, thereby facilitating the development and progression of PLGC. Moluodan suppressed the activation of the Wnt/β-catenin signaling pathway, thereby decreasing the progression of PLGC.
Collapse
Affiliation(s)
- Yi-Mei Wang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Zheng-Wei Luo
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Yu-Lin Shu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Xiu Zhou
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Lin-Qing Wang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Chun-Hong Liang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Chao-Qun Wu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Chang-Ping Li
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| |
Collapse
|
4
|
Zhang YH, Tao Q, Zhang WY, Zhao S, Liu WP, Gao LM. Histone methyltransferase KMT2D inhibits ENKTL carcinogenesis by epigenetically activating SGK1 and SOCS1. Genes Genomics 2024; 46:203-212. [PMID: 37523130 DOI: 10.1007/s13258-023-01434-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Epigenetic alteration plays an essential role in the occurrence and development of extranodal natural killer/T cell lymphoma (ENKTL). Histone methyltransferase (HMT) KMT2D is an epigenetic regulator that plays different roles in different tumors, but its role and mechanism in ENKTL are still unclear. METHODS We performed immunohistochemical staining of 112 ENKTL formalin-fixed paraffin-embedded (FFPE) samples. Then, we constructed KMT2D knockdown cell lines and conducted research on cell biological behavior. Finally, to further investigate KMT2D-mediated downstream genes, ChIP-seq and ChIP -qPCR was performed. RESULTS The low expression of KMT2D was related to a decreased abundance in histone H3 lysine 4 mono- and trimethylation (H3K4me1/3). In KMT2D knockdown YT and NK-YS cells, cell proliferation was faster (P < 0.05), apoptosis was decreased (P < 0.05), the abundance of S phase cells was increased (P < 0.05), and the level of H3K4me1 was decreased. Notably, ChIP-seq revealed two crucial genes and pathways downregulated by KMT2D. CONCLUSIONS KMT2D is a tumor suppressor gene that mediates H3K4me1 and influences ENKTL proliferation and apoptosis by regulating the cell cycle. Moreover, in ENKTL, serum- and glucocorticoid-inducible kinase-1 (SGK1) and suppressor of cytokine signaling-1 (SOCS1) are downstream genes of KMT2D.
Collapse
Affiliation(s)
- Yue-Hua Zhang
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Qing Tao
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Wen-Yan Zhang
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Sha Zhao
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Wei-Ping Liu
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China.
| | - Li-Min Gao
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Jing X, Luo Z, Wu J, Ye F, Li J, Song Z, Zhang Y, Shi M, Sun H, Fang Y, Jiang Y, Ji X. The genomic and immune landscapes of gastric cancer and their correlations with HER2 amplification and PD-L1 expression. Cancer Med 2023; 12:21905-21919. [PMID: 38050871 PMCID: PMC10757096 DOI: 10.1002/cam4.6765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/22/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Anti-PD1/PD-L1 antibody plus human epidermal growth factor receptor 2 (HER2) antibody and chemotherapy have become the new first-line therapy for HER2 overexpression-positive advanced gastric cancers (GC), suggesting that HER2 and PD-L1 play a vital role in guiding systemic treatment for patients with GC. This study aimed to depict the genomic and immune landscapes of Chinese patients with GC and investigate their correlations with HER2 amplification and PD-L1 expression. PATIENTS AND METHODS Next-generation targeted sequencing and PD-L1 immunohistochemistry were performed on tumor samples from 735 patients with pathologically diagnosed GC. The genomic and immune landscapes and their correlations with HER2 amplification and PD-L1 expression were analyzed. RESULTS The most commonly mutated genes in Chinese GC were TP53 (64%), CDH1 (20%), ARID1A (18%), HMCN1 (15%), KMT2D (11%), and PIK3CA (11%). Seventy-six (10%) patients were HER2 amplification, and 291 (40%) had positive PD-L1 expression. Classifying the total population based on HER2 amplification and PD-L1 expression level, 735 patients were divided into four subgroups: HER2+/PD-L1+ (4.5%), HER2+/PD-L1- (5.9%), HER2-/PD-L1+ (35.1%), and HER2-/PD-L1- (54.5%). The HER2+/PD-L1- and HER2+/PD-L1+ subgroups exhibited dramatically higher rate of TP53 mutations, CCNE1 and VEGF amplifications. The HER2+/PD-L1- subgroup also had a markedly higher rate of MYC amplification and KRAS mutations. The HER2-/PD-L1+ subgroup had significantly higher rate of PIK3CA mutations. HER2+/PD-L1- subgroup had the highest TMB level and HER2-/PD-L1+ subgroup had the highest proportion of patients with microsatellite instability-high than other subgroups. Furthermore, we observed that different HER2 amplification levels had distinct impacts on the correlations between PD-L1 expression and therapeutic genomic alterations, but no impact on the prognosis. CONCLUSION The combination of HER2 amplification and PD-L1 expression in Chinese patients with GC could stratify the total populations into several subgroups with distinctive genomic and immune landscapes, which should be considered when making personalized treatment decisions.
Collapse
Affiliation(s)
- Xiaoqian Jing
- Department of General SurgeryRuijin Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhiping Luo
- Department of General SurgeryRuijin Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jiayan Wu
- Genecast Biotechnology Co., LtdWuxiJiangsuChina
| | - Feng Ye
- Department of General SurgeryRuijin Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jianfang Li
- Department of General SurgeryRuijin Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Surgery, Shanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive Surgery, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zijia Song
- Department of General SurgeryRuijin Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yaqi Zhang
- Department of General SurgeryRuijin Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Minmin Shi
- Department of General SurgeryRuijin Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Research Institute of Pancreatic Diseases affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Huaibo Sun
- Genecast Biotechnology Co., LtdWuxiJiangsuChina
| | - Yi Fang
- Department of EmergencyShanghai Tenth People's HospitalShanghaiChina
| | - Yimei Jiang
- Department of General SurgeryRuijin Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaopin Ji
- Department of General SurgeryRuijin Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
6
|
Zhang Q, Wang C, Yang Y, Xu R, Li Z. LncRNA and its role in gastric cancer immunotherapy. Front Cell Dev Biol 2023; 11:1052942. [PMID: 36875764 PMCID: PMC9978521 DOI: 10.3389/fcell.2023.1052942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Gastric cancer (GC) is a potential dominant disease in tumor immunotherapy checkpoint inhibitors, and adoptive cell therapy have brought great hope to GC patients. However, only some patients with GC can benefit from immunotherapy, and some patients develop drug resistance. More and more studies have shown that long non-coding RNAs (lncRNAs) may be important in GC immunotherapy's prognosis and drug resistance. Here, we summarize the differential expression of lncRNAs in GC and their impact on the curative effect of GC immunotherapy, discuss potential mechanisms of activity in GC immunotherapy resistance regulated by lncRNAs. This paper reviews the differential expression of lncRNA in GC and its effect on immunotherapy efficacy in GC. In terms of genomic stability, inhibitory immune checkpoint molecular expression, the cross-talk between lncRNA and immune-related characteristics of GC was summarized, including tumor mutation burden (TMB), microsatellite instability (MSI), and Programmed death 1 (PD-1). At the same time, this paper reviewed the mechanism of tumor-induced antigen presentation and upregulation of immunosuppressive factors, as well as the association between Fas system and lncRNA, immune microenvironment (TIME) and lncRNA, and summarized the functional role of lncRNA in tumor immune evasion and immunotherapy resistance.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Digestive endoscopy, Jiangsu Province Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chuanchi Wang
- Xin-Huangpu Joint Innovation Institute of Chinese Medicine, Guangzhou, Guangdong, China.,China Science and Technology Development Center of Chinese Medicine, Beijing, China
| | - Yan Yang
- China Science and Technology Development Center of Chinese Medicine, Beijing, China
| | - Ruihan Xu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Ziyun Li
- Acupuncture and Tuina college, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Yuan C, Yuan J, Xiao H, Li H, Jiang Y, Zhai R, Zhai J, Xing H, Huang J. Genomic analysis of matrix metalloproteinases affecting the prognosis and immunogenic profile of gastric cancer. Front Genet 2023; 14:1128088. [PMID: 37144126 PMCID: PMC10151559 DOI: 10.3389/fgene.2023.1128088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/04/2023] [Indexed: 05/06/2023] Open
Abstract
This study systematically and comprehensively analyzed the characteristics of matrix metalloproteinases (MMPs) in gastric cancer (GC) and revealed the relationship between MMPs and prognoses, clinicopathological features, tumor microenvironment, gene mutations, and drug therapy response in patients with GC. Based on the mRNA expression profiles of 45 MMP-related genes in GC, we established a model that classified GC patients into three groups based on cluster analysis of the mRNA expression profiles. The 3 groups of GC patients showed significantly different prognoses as well as tumor microenvironmental characteristics. Next, we used Boruta's algorithm and PCA method to establish an MMP scoring system and found that lower MMP scores were associated with better prognoses, lower clinical stages, better immune cell infiltration, lower degrees of immune dysfunction and rejection, and more genetic mutations. Whereas a high MMP score was the opposite. These observations were further validated with data from other datasets, showing the robustness of our MMP scoring system. Overall, MMP could be involved in the tumor microenvironment (TME), clinical features, and prognosis of GC. An in-depth study of MMP patterns can better understand the indispensable role of MMP in the development of GC and reasonably assess the survival prognosis, clinicopathological features, and drug efficacy of different patients, thus providing clinicians with a broader vision of GC progression and treatment.
Collapse
Affiliation(s)
- Chaofeng Yuan
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jialin Yuan
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Huijie Xiao
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Haitao Li
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Jiang
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Rongnan Zhai
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinjing Zhai
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hua Xing
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Hua Xing, ; Jiannan Huang,
| | - Jiannan Huang
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Hua Xing, ; Jiannan Huang,
| |
Collapse
|
8
|
Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther 2022; 7:3. [PMID: 34980884 PMCID: PMC8724284 DOI: 10.1038/s41392-021-00762-6] [Citation(s) in RCA: 980] [Impact Index Per Article: 326.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
The Wnt/β-catenin pathway comprises a family of proteins that play critical roles in embryonic development and adult tissue homeostasis. The deregulation of Wnt/β-catenin signalling often leads to various serious diseases, including cancer and non-cancer diseases. Although many articles have reviewed Wnt/β-catenin from various aspects, a systematic review encompassing the origin, composition, function, and clinical trials of the Wnt/β-catenin signalling pathway in tumour and diseases is lacking. In this article, we comprehensively review the Wnt/β-catenin pathway from the above five aspects in combination with the latest research. Finally, we propose challenges and opportunities for the development of small-molecular compounds targeting the Wnt signalling pathway in disease treatment.
Collapse
|
9
|
Abstract
Gastric cancer (GC) is a major health concern in many countries. GC is a heterogeneous disease stratified by histopathological differences. However, these variations are not used to determine GC management. Next-generation sequencing (NGS) technologies have become widely used, and cancer genomic analysis has recently revealed the relationships between various malignant tumors and genomic information. In 2014, studies using whole-exome sequencing (WES) and whole-genome sequencing (WGS) for GC revealed the entire structure of GC genomics. Genomics with NGS has been used to identify new therapeutic targets for GC. Moreover, personalized medicine to provide specific therapy for targets based on multiplex gene panel testing of tumor tissues has become of clinical use. Recently, immune checkpoint inhibitors (ICIs) have been used for GC treatment; however, their response rates are limited. To predict the anti-tumor effects of ICIs for GC and to select patients suitable for ICI treatment, genomics also provides informative data not only of tumors but also of tumor microenvironments, such as tumor-infiltrating lymphocytes. In therapeutic strategies for unresectable or recurrent malignant tumors, the target is not only the primary lesion but also metastatic lesions, and metastatic lesions are often resistant to chemotherapy. Unlike colorectal carcinoma, there is a heterogeneous status of genetic variants between the primary and metastatic lesions in GC. Liquid biopsy analysis is also helpful for predicting the genomic status of both primary and metastatic lesions. Genomics has become an indispensable tool for GC treatment and is expected to be further developed in the future.
Collapse
Affiliation(s)
- Takumi Onoyama
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Division of Gastroenterology and Nephrology, Department of Multidisciplinary Internal Medicine, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Hajime Isomoto
- Division of Gastroenterology and Nephrology, Department of Multidisciplinary Internal Medicine, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| |
Collapse
|
10
|
Katoh M, Katoh M. Grand Challenges in Molecular Medicine for Disease Prevention and Treatment Through Cyclical Innovation. FRONTIERS IN MOLECULAR MEDICINE 2021; 1:720577. [PMID: 39087081 PMCID: PMC11285628 DOI: 10.3389/fmmed.2021.720577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/28/2021] [Indexed: 08/02/2024]
Affiliation(s)
| | - Masaru Katoh
- M & M PrecMed, Tokyo, Japan
- Department of Omics Network, National Cancer Center, Tokyo, Japan
| |
Collapse
|
11
|
Lee SW, Lee T, Sul HJ, Park KC, Park J. Differences in Somatic Mutation Profiles between Korean Gastric Cancer and Gastric Adenoma Patients. J Clin Med 2021; 10:jcm10092038. [PMID: 34068652 PMCID: PMC8126162 DOI: 10.3390/jcm10092038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND We aimed to investigate molecular factors potentially related to the progression of gastric adenoma (GA) to gastric cancer (GC) and compare the mutation characteristics between GC and GA. METHODS We conducted custom gene panel sequencing for 135 GC-related genes and estimated the difference in somatic mutation profiles between 20 GC and 20 GA cases. RESULTS A total of 31 somatic mutations, including 22 missense, 3 nonsense, and 6 frameshift mutations, were detected in 17 samples. We estimated an average of 1.8 mutations per sample (range, 1 to 3 mutations), with 12 in GC and 5 in GA. GC tended to have one or more mutated genes (p = 0.0217), as well as higher allele frequencies of mutated genes (p = 0.0003), compared to GA. Likewise, known driver mutations associated with GC tumorigenesis (TP53, ERBB2, PIK3CA, and RNF43) were identified in half of the GC cases (50%, 10/20; p = 0.0002). Only the mutant burden, regardless of gene type, was retained, with an odds ratio of 1.8392 (95% confidence interval (CI), 1.0071 to 3.3588; p = 0.0474). CONCLUSION Our study demonstrates that the accumulation of mutant burden contributes to tumorigenesis progression from GA to GC in Korean patients, regardless of the kind of genes. These findings may elucidate the molecular pathogenesis of gastric carcinogenesis and malignant progression.
Collapse
Affiliation(s)
- Seung Woo Lee
- Division of Gastroenterology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Taekyu Lee
- Thermo Fisher Scientific Solutions, Seoul 06349, Korea;
| | - Hae Jung Sul
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Ki Cheol Park
- Clinical Research Institute, Daejeon St. Mary’s Hospital, The Catholic University of Korea, Daejeon 34943, Korea;
| | - Joonhong Park
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea
- Correspondence: ; Tel.: +82-63-250-1218
| |
Collapse
|