1
|
Wang Z, Li C, Yin Y, Zhao Y, Bai D, Zhao H. A Water Channel-like Structure Self-Assembled by Nucleosides. Chemistry 2024:e202404045. [PMID: 39632784 DOI: 10.1002/chem.202404045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/07/2024]
Abstract
As artificial water channels have received widespread attention, various types of artificial water channels have been reported. However, apart from I-quartet channels, the development of 1D water channels with water wires constructed from small molecules has rarely been reported, because of the difficulty in precisely tuning the dipolar water molecules. Inspired by G-quartet functionalization strategies, this study explored C8 modifications of our previously reported molecule, 2-amino-2'-fluoro-2'-deoxyadenosine (2FA), known for its strong hydration properties and self-assembly capabilities, and investigated its potential for constructing nucleoside-based water channel-like structures. Among all derivatives, 2-amino-8-(4-aminophenyl)-2'-deoxy-2'-fluoro-D-adenosine can form an S-shaped channel as a tetramer, incorporating water wire arrays in the solid state. Such water channel-like structures in nucleoside self-assemblies provide new insights into the development of novel nucleoside-based supramolecular water channel materials.
Collapse
Affiliation(s)
- Zheng Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Changfu Li
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yijia Yin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuxi Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
2
|
Llamosí A, Szymański MP, Szumna A. Molecular vessels from preorganised natural building blocks. Chem Soc Rev 2024; 53:4434-4462. [PMID: 38497833 DOI: 10.1039/d3cs00801k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Supramolecular vessels emerged as tools to mimic and better understand compartmentalisation, a central aspect of living matter. However, many more applications that go beyond those initial goals have been documented in recent years, including new sensory systems, artificial transmembrane transporters, catalysis, and targeted drug or gene delivery. Peptides, carbohydrates, nucleobases, and steroids bear great potential as building blocks for the construction of supramolecular vessels, possessing complexity that is still difficult to attain with synthetic methods - they are rich in functional groups and well-defined stereogenic centers, ready for noncovalent interactions and further functions. One of the options to tame the functional and dynamic complexity of natural building blocks is to place them at spatially designed positions using synthetic scaffolds. In this review, we summarise the historical and recent advances in the construction of molecular-sized vessels by the strategy that couples synthetic predictability and durability of various scaffolds (cyclodextrins, porphyrins, crown ethers, calix[n]arenes, resorcin[n]arenes, pillar[n]arenes, cyclotriveratrylenes, coordination frameworks and multivalent high-symmetry molecules) with functionality originating from natural building blocks to obtain nanocontainers, cages, capsules, cavitands, carcerands or coordination cages by covalent chemistry, self-assembly, or dynamic covalent chemistry with the ultimate goal to apply them in sensing, transport, or catalysis.
Collapse
Affiliation(s)
- Arturo Llamosí
- Institute of Organic Chemistry, Polish academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Marek P Szymański
- Institute of Organic Chemistry, Polish academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Agnieszka Szumna
- Institute of Organic Chemistry, Polish academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| |
Collapse
|
3
|
Hilton EM, Jinks MA, Burnett AD, Warren NJ, Wilson AJ. Visible-Light Driven Control Over Triply and Quadruply Hydrogen-Bonded Supramolecular Assemblies. Chemistry 2024; 30:e202304033. [PMID: 38190370 PMCID: PMC11497329 DOI: 10.1002/chem.202304033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
Supramolecular polymers offer tremendous potential to produce new "smart" materials, however, there remains a need to develop systems that are responsive to external stimuli. In this work, visible-light responsive hydrogen-bonded supramolecular polymers comprising photoresponsive supramolecular synthons (I-III) consisting of two hydrogen bonding motifs (HBMs) connected by a central ortho-tetrafluorinated azobenzene have been characterized by DOSY NMR and viscometry. Comparison of different hydrogen-bonding motifs reveals that assembly in the low and high concentration regimes is strongly influenced by the strength of association between the HBMs. I, Incorporating a triply hydrogen-bonded heterodimer, was found to exhibit concentration dependent switching between a monomeric pseudo-cycle and supramolecular oligomer through intermolecular hydrogen bonding interactions between the HBMs. II, Based on the same photoresponsive scaffold, and incorporating a quadruply hydrogen-bonded homodimer was found to form a supramolecular polymer which was dependent upon the ring-chain equilibrium and thus dependent upon both concentration and photochemical stimulus. Finally, III, incorporating a quadruply hydrogen-bonded heterodimer represents the first photoswitchable AB type hydrogen-bonded supramolecular polymer. Depending on the concentration and photostationary state, four different assemblies dominate for both monomers II and III, demonstrating the ability to control supramolecular assembly and physical properties triggered by light.
Collapse
Affiliation(s)
- Eleanor M. Hilton
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- School of Chemical and Process EngineeringUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Michael A. Jinks
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- School of ChemistryUniversity of Birmingham, EdgbastonBirminghamB15 2TTUK
| | | | - Nicholas J. Warren
- School of Chemical and Process EngineeringUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Andrew J. Wilson
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- School of ChemistryUniversity of Birmingham, EdgbastonBirminghamB15 2TTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| |
Collapse
|
4
|
Thomas M, Varlas S, Wilks TR, Fielden SDP, O'Reilly RK. Controlled node growth on the surface of polymersomes. Chem Sci 2024; 15:4396-4402. [PMID: 38516085 PMCID: PMC10952076 DOI: 10.1039/d3sc05915d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/16/2024] [Indexed: 03/23/2024] Open
Abstract
Incorporating nucleobases into synthetic polymers has proven to be a versatile method for controlling self-assembly. The formation of strong directional hydrogen bonds between complementary nucleobases provides a driving force that permits access to complex particle morphologies. Here, nucleobase pairing was used to direct the formation and lengthening of nodes on the outer surface of vesicles formed from polymers (polymersomes) functionalised with adenine in their membrane-forming domains. Insertion of a self-assembling short diblock copolymer containing thymine into the polymersome membranes caused an increase in steric crowding at the hydrophilic/hydrophobic interface, which was relieved by initial node formation and subsequent growth. Nano-objects were imaged by (cryo-)TEM, which permitted quantification of node coverage and length. The ability to control node growth on the surface of polymersomes provides a new platform to develop higher-order nanomaterials with tailorable properties.
Collapse
Affiliation(s)
- Marjolaine Thomas
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Spyridon Varlas
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Thomas R Wilks
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Stephen D P Fielden
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Rachel K O'Reilly
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| |
Collapse
|
5
|
Fernandes AM, Martos-Maldonado MC, Araujo-Morera J, Solek C, González-Rodríguez D. Highly efficient grafting of hetero-complementary amidinium and carboxylate hydrogen-bonding/ionic pairs onto polymer surfaces. Chem Commun (Camb) 2024; 60:1571-1574. [PMID: 38230525 PMCID: PMC10846587 DOI: 10.1039/d3cc05452g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/11/2024] [Indexed: 01/18/2024]
Abstract
We describe a grafting methodology, based on thiol-fluoroarene chemistry, to efficiently incorporate complementary hydrogen-bonding carboxylate and amidinium groups into polymer backbones. The process was optimized both in solution and on the surface of processed films, with the aim to produce materials showing hetero-complementary adhesion.
Collapse
Affiliation(s)
- Ana M Fernandes
- Nanostructured Molecular Systems and Materials Group, Departamento de Química Orgánica, Universidad Autónoma de Madrid, Madrid 28049, Spain.
| | - Manuel C Martos-Maldonado
- Nanostructured Molecular Systems and Materials Group, Departamento de Química Orgánica, Universidad Autónoma de Madrid, Madrid 28049, Spain.
| | - Javier Araujo-Morera
- Nanostructured Molecular Systems and Materials Group, Departamento de Química Orgánica, Universidad Autónoma de Madrid, Madrid 28049, Spain.
| | - Claudia Solek
- Nanostructured Molecular Systems and Materials Group, Departamento de Química Orgánica, Universidad Autónoma de Madrid, Madrid 28049, Spain.
| | - David González-Rodríguez
- Nanostructured Molecular Systems and Materials Group, Departamento de Química Orgánica, Universidad Autónoma de Madrid, Madrid 28049, Spain.
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
6
|
Almacellas D, Fonseca Guerra C, Poater J. Strengthened cooperativity of DNA-based cyclic hydrogen-bonded rosettes by subtle functionalization. Org Biomol Chem 2023; 21:8403-8412. [PMID: 37830458 DOI: 10.1039/d3ob01391j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Cooperative effects cause extra stabilization of hydrogen-bonded supramolecular systems. In this work we have designed hydrogen-bonded rosettes derived from a guanine-cytosine Janus-type motif with the aim of finding a monomer that enhances the synergy of supramolecular systems. For this, relativistic dispersion-corrected density functional theory computations have been performed. Our proposal involves a monomer with three hydrogen-bonds pointing in the same direction, which translates into shorter bonds, stronger donor-acceptor interactions, and more attractive electrostatic interactions, thus giving rise to rosettes with strengthened cooperativity. This newly designed rosette has triple the cooperativity found for the naturally occurring guanine quadruplex.
Collapse
Affiliation(s)
- David Almacellas
- Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Célia Fonseca Guerra
- Department of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Jordi Poater
- Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
7
|
Wagh MA, Shinde DR, Gamidi RK, Sanjayan GJ. 2-Amino-5-methylene-pyrimidine-4,6-dione-based Janus G-C nucleobase as a versatile building block for self-assembly. Org Biomol Chem 2023; 21:6914-6918. [PMID: 37593940 DOI: 10.1039/d3ob01174g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
This communication reports a nature-inspired Janus G-C nucleobase featuring two recognition sites: DDA (G mimic) and DAA (C mimic), which is capable of forming a linear tape-like supramolecular polymer structure. As demonstrated herein, the amino group of this self-assembling system can be further modified to yield a highly stable quadruple H-bonding system as well as a masked self-assembling system cleavable upon exposure to light.
Collapse
Affiliation(s)
- Mahendra A Wagh
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune-411008, India.
- Academy of Scientific and Innovative research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh-201002, India
| | - Dinesh R Shinde
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune-411008, India.
- Academy of Scientific and Innovative research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh-201002, India
| | - Rama Krishna Gamidi
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune-411008, India.
| | - Gangadhar J Sanjayan
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune-411008, India.
- Academy of Scientific and Innovative research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh-201002, India
| |
Collapse
|
8
|
Li Z, Song W, Zhu Y, Yan L, Zhong X, Zhang M, Li H. The Full Cytosine-Cytosine Base Paring: Self-Assembly and Crystal Structure. Chemistry 2023; 29:e202203979. [PMID: 36757279 DOI: 10.1002/chem.202203979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/10/2023]
Abstract
The synthesis of self-assembly systems that can mimic partial biological behaviours require ingenious and delicate design. For decades, scientists are committed to exploring new base pairing patterns using hydrogen bonds directed self-assembly of nucleotides. A fundamental question is the adaptive circumstance of the recognition between base pairs, namely, how solvent conditions affect the domain of base pairs. Towards this question, three nucleotide complexes based on 2'-deoxycytidine-5'-monophosphate (dCMP) and cytidine-5'-monophosphate (CMP) were synthesized in different solvents and pH values, and an unusual cytosine-cytosine base paring pattern (named full C : C base pairing) has been successfully obtained. Systematic single crystal analysis and 1 H NMR titration spectra have been performed to explore factors influencing the formation of base paring patterns. Moreover, supramolecular chirality of three complexes were studied using circular dichroism (CD) spectroscopy in solution and solid-state combined with crystal structure analysis.
Collapse
Affiliation(s)
- Zhongkui Li
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Wenjing Song
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yanhong Zhu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Li Yan
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xue Zhong
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Menglei Zhang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Hui Li
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
9
|
Haque A, Alenezi KM, Khan MS, Wong WY, Raithby PR. Non-covalent interactions (NCIs) in π-conjugated functional materials: advances and perspectives. Chem Soc Rev 2023; 52:454-472. [PMID: 36594823 DOI: 10.1039/d2cs00262k] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The design and development of functional materials with real-life applications are highly demanding. Understanding and controlling inter- and intra-molecular interactions provide opportunities to design new materials. A judicious manipulation of the molecular structure significantly alters such interactions and can boost selected properties and functions of the material. There is burgeoning evidence of the beneficial effects of non-covalent interactions (NCIs), showing that manipulating NCIs may generate functional materials with a wide variety of physical properties leading to applications in catalysis, drug delivery, crystal engineering, etc. This prompted us to review the implications of NCIs on the molecular packing, optical properties, and applications of functional π-conjugated materials. To this end, this tutorial review will cover different types of interactions (electrostatic, π-interactions, metallophilic, etc.) and their impact on π-conjugated materials. Attempts have also been made to delineate the effects of weak interactions on opto-electronic (O-E) applications.
Collapse
Affiliation(s)
- Ashanul Haque
- Department of Chemistry, College of Science, University of Hail, Kingdom of Saudi Arabia.
| | - Khalaf M Alenezi
- Department of Chemistry, College of Science, University of Hail, Kingdom of Saudi Arabia.
| | - Muhammad S Khan
- Department of Chemistry, Sultan Qaboos University, Al-Khod, Muscat, Oman.
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China.
| | - Paul R Raithby
- Department of Chemistry, University of Bath, Claverton Down, Bath, Avon BA2 7AY, UK.
| |
Collapse
|
10
|
Jinks M, Howard M, Rizzi F, Goldup SM, Burnett AD, Wilson AJ. Direct Detection of Hydrogen Bonds in Supramolecular Systems Using 1H- 15N Heteronuclear Multiple Quantum Coherence Spectroscopy. J Am Chem Soc 2022; 144:23127-23133. [PMID: 36508201 PMCID: PMC9782782 DOI: 10.1021/jacs.2c10742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hydrogen-bonded supramolecular systems are usually characterized in solution through analysis of NMR data such as complexation-induced shifts and nuclear Overhauser effects (nOe). Routine direct detection of hydrogen bonding particularly in multicomponent mixtures, even with the aid of 2D NMR experiments for full assignment, is more challenging. We describe an elementary rapid 1H-15N HMQC NMR experiment which addresses these challenges without the need for complex pulse sequences. Under readily accessible conditions (243/263 K, 50 mM solutions) and natural 15N abundance, unambiguous assignment of 15N resonances facilitates direct detection of intra- and intermolecular hydrogen bonds in mechanically interlocked structures and quadruply hydrogen-bonded dimers─of dialkylaminoureidopyrimidinones, ureidopyrimidinones, and diamidonaphthyridines─in single or multicomponent mixtures to establish tautomeric configuration, conformation, and, to resolve self-sorted speciation.
Collapse
Affiliation(s)
- Michael
A. Jinks
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Mark Howard
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Federica Rizzi
- Department
of Chemistry, University of Southampton, Highfield Campus, Southampton SO17 2BJ, U.K.
| | - Stephen M. Goldup
- Department
of Chemistry, University of Southampton, Highfield Campus, Southampton SO17 2BJ, U.K.
| | - Andrew D. Burnett
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Andrew J. Wilson
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.,Astbury
Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.,
| |
Collapse
|
11
|
Cohen D. General Designs Reveal Distinct Codes in Protein-Coding and Non-Coding Human DNA. Genes (Basel) 2022; 13:1970. [PMID: 36360206 PMCID: PMC9690640 DOI: 10.3390/genes13111970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 08/27/2023] Open
Abstract
This study seeks to investigate distinct signatures and codes within different genomic sequence locations of the human genome. The promoter and other non-coding regions contain sites for the binding of biological particles, for processes such as transcription regulation. The specific rules and sequence codes that govern this remain poorly understood. To derive these (codes), the general designs of sequence are investigated. Genomic signatures are a powerful tool for assessing the general designs of sequence, and cross-comparing different genomic regions for their distinct sequence properties. Through these genomic signatures, the relative non-random properties of sequences are also assessed. Furthermore, a binary components analysis is carried out making use of information theory ideas, to study the RY (purine/pyrimidine), WS (weak/strong) and KM (keto/amino) signatures in the sequences. From this comparison, it is possible to identify the relative importance of these properties within the various protein-coding and non-coding genomic locations. The results show that coding DNA has a strongly non-random WS signature, which reflects the genetic code, and the hydrogen-bond base pairing of codon-anti-codon interactions. In contrast, non-coding locations, such as the promoter, contain a distinct genomic signature. A prominent feature throughout non-coding DNA is a highly non-random RY signature, which is very different in nature to coding DNA, and suggests a structural-based RY code. This marks progress towards deciphering the unknown code(s) in non-protein-coding DNA, and a further understanding of the coding DNA. Additionally, it unravels how DNA carries information. These findings have implications for the most fundamental principles of biology, including knowledge of gene regulation, development and disease.
Collapse
Affiliation(s)
- Dana Cohen
- Ronin Institute, 127 Haddon Pl, Montclair, NJ 07043-2314, USA
| |
Collapse
|
12
|
Immel JR, Bloom S. carba-Nucleopeptides (cNPs): A Biopharmaceutical Modality Formed through Aqueous Rhodamine B Photoredox Catalysis. Angew Chem Int Ed Engl 2022; 61:e202205606. [PMID: 35507689 PMCID: PMC9256812 DOI: 10.1002/anie.202205606] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Indexed: 12/14/2022]
Abstract
Exchanging the ribose backbone of an oligonucleotide for a peptide can enhance its physiologic stability and nucleic acid binding affinity. Ordinarily, the eneamino nitrogen atom of a nucleobase is fused to the side chain of a polypeptide through a new C-N bond. The discovery of C-C linked nucleobases in the human transcriptome reveals new opportunities for engineering nucleopeptides that replace the traditional C-N bond with a non-classical C-C bond, liberating a captive nitrogen atom and promoting new hydrogen bonding and π-stacking interactions. We report the first late-stage synthesis of C-C linked carba-nucleopeptides (cNPs) using aqueous Rhodamine B photoredox catalysis. We prepare brand-new cNPs in batch, in parallel, and in flow using three long-wavelength photochemical setups. We detail the mechanism of our reaction by experimental and computational studies and highlight the essential role of diisopropylethylamine as a bifurcated two-electron reductant.
Collapse
Affiliation(s)
- Jacob R Immel
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Steven Bloom
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
13
|
Stochastic dynamic quantitative and 3D structural matrix assisted laser desorption/ionization mass spectrometric analyses of mixture of nucleosides. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Sikder A, Esen C, O'Reilly RK. Nucleobase-Interaction-Directed Biomimetic Supramolecular Self-Assembly. Acc Chem Res 2022; 55:1609-1619. [PMID: 35671460 PMCID: PMC9219111 DOI: 10.1021/acs.accounts.2c00135] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ConspectusThe design and fabrication of synthetic self-assembled systems that can mimic some biological features require exquisitely sophisticated components that make use of supramolecular interactions to attain enhanced structural and functional complexity. In nature, nucleobase interactions play a key role in biological functions in living organisms, including transcription and translation processes. Inspired by nature, scientists are progressively exploring nucleobase synthons to create a diverse range of functional systems with a plethora of nanostructures by virtue of molecular-recognition-directed assembly and flexible programmability of the base-pairing interactions. To that end, nucleobase-functionalized molecules and macromolecules are attracting great attention because of their versatile structures with smart and adaptive material properties such as stimuli responsiveness, interaction with external agents, and ability to repair structural defects. In this regard, a range of nucleobase-interaction-mediated hierarchical self-assembled systems have been developed to obtain biomimetic materials with unique properties. For example, a new "grafting to" strategy utilizing complementary nucleobase interactions has been demonstrated to temporarily control the functional group display on micellar surfaces. In a different approach, complementary nucleobase interactions have been explored to enable morphological transitions in functionalized diblock copolymer assembly. It has been demonstrated that complementary nucleobase interactions can drive the morphological transformation to produce highly anisotropic nanoparticles by controlling the assembly processes at multiple length scales. Furthermore, nucleobase-functionalized bottle brush polymers have been employed to generate stimuli-responsive hierarchical assembly. Finally, such interactions have been exploited to induce biomimetic segregation in polymer self-assembly, which has been employed as a template to synthesize polymers with narrow polydispersity. It is evident from these examples that the optimal design of molecular building blocks and precise positioning of the nucleobase functionality are essential for fabrication of complex supramolecular assemblies. While a considerable amount of research remains to be explored, our studies have demonstrated the potential of nucleobase-interaction-mediated supramolecular assembly to be a promising field of research enabling the development of biomimetic materials.This Account summarizes recent examples that employ nucleobase interactions to generate functional biomaterials by judicious design of the building blocks. We begin by discussing the molecular recognition properties of different nucleobases, followed by different strategies to employ nucleobase interactions in polymeric systems in order to achieve self-assembled nanomaterials with versatile properties. Moreover, some of their prospective biological/material applications such as enhanced drug encapsulation, superior adhesion, and fast self-healing properties facilitated by complementary nucleobase interactions are emphasized. Finally, we identify issues and challenges that are faced by this class of materials and propose future directions for the exploration of functional materials with the aim of promoting the development of nucleobase-functionalized systems to design the next generation of biomaterials.
Collapse
Affiliation(s)
- Amrita Sikder
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Cem Esen
- Department of Chemistry, Faculty of Arts and Sciences, Aydın Adnan Menderes University, 09010 Aydın, Turkey
| | - Rachel K O'Reilly
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| |
Collapse
|
15
|
Immel JR, Bloom S. carba
‐Nucleopeptides (
c
NPs): A Biopharmaceutical Modality Formed through Aqueous Rhodamine B Photoredox Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jacob R. Immel
- Department of Medicinal Chemistry University of Kansas Lawrence KS 66045 USA
| | - Steven Bloom
- Department of Medicinal Chemistry University of Kansas Lawrence KS 66045 USA
| |
Collapse
|
16
|
Giraud T, Hoschtettler P, Pickaert G, Averlant-Petit MC, Stefan L. Emerging low-molecular weight nucleopeptide-based hydrogels: state of the art, applications, challenges and perspectives. NANOSCALE 2022; 14:4908-4921. [PMID: 35319034 DOI: 10.1039/d1nr06131c] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the last twenty years, low-molecular weight gelators and, in particular, peptide-based hydrogels, have drawn great attention from scientists thanks to both their inherent advantages in terms of properties and their high modularity (e.g., number and nature of the amino acids). These supramolecular hydrogels originate from specific peptide self-assembly processes that can be driven, modulated and optimized via specific chemical modifications brought to the peptide sequence. Among them, the incorporation of nucleobases, another class of biomolecules well-known for their abilities to self-assemble, has recently appeared as a new promising and burgeoning approach to finely design supramolecular hydrogels. In this minireview, we would like to highlight the interest, high potential, applications and perspectives of these innovative and emerging low-molecular weight nucleopeptide-based hydrogels.
Collapse
Affiliation(s)
- Tristan Giraud
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
| | | | | | | | - Loic Stefan
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
| |
Collapse
|
17
|
Zhang J, Yin Y, Zhang J, Zhang J, Su W, Ma H, Jia F, Zhao G, Wang H. Suppression of Energy Metabolism in Cancer Cells with Nutrient-Sensing Nanodrugs. NANO LETTERS 2022; 22:2514-2520. [PMID: 35285648 DOI: 10.1021/acs.nanolett.2c00356] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Uncontrolled growth of tumor cells is highly dependent on the energy metabolism. Fasting-mimicking diet (FMD) is a low-calorie, low-protein, low-sugar diet representing a promising strategy for cancer treatment. However, triglyceride stored in adipose tissue is hydrolyzed into free fatty acids and glycerol for energy supply during FMD treatment. Herein, we design a nutrient-sensing nanodrug, VFETX, which is self-assembled with vitamin B1 (VB1), ferrous ions, and etomoxir (ETX). FMD treatment upregulate the expression of VB1 transporters on tumor cells, thereby increasing cellular uptake and tumor accumulation of VFETX. Importantly, treatments of VFETX and FMD synergistically inhibit the energy metabolism in tumor cells and subsequently markedly enhance cytotoxicity of ETX. As a result, VFETX nanodrugs efficiently inhibit the growth of two tumor models in vivo without obvious side effects. This study demonstrates the potential of FMD-assisted nutrient-sensing nanodrugs for cancer therapy.
Collapse
Affiliation(s)
- Jiayi Zhang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yue Yin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jie Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jingran Zhang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Wen Su
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Haixia Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Fuhao Jia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Guangjiu Zhao
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Ma X, Bian Q, Hu J, Gao J. Stem from nature: Bioinspired adhesive formulations for wound healing. J Control Release 2022; 345:292-305. [DOI: 10.1016/j.jconrel.2022.03.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 12/27/2022]
|
19
|
Milovanović B, Petković M, Etinski M. Alkaline earth cations binding mode tailors excited-state charge transfer properties of guanine quadruplex: A TDDFT study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120584. [PMID: 34794899 DOI: 10.1016/j.saa.2021.120584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Quadruplexes formed by nucleic acids and their derivates tend to chelate different monovalent and bivalent cations, which simultaneously affect their excited electronic states properties. Cation binding to every and every other cavity of the central ion channel could be exploited for tuning exited-state charge transfer properties. In this work we utilize set of descriptors constructed on the basis of the one-electron transition density matrix obtained using linear-response TDDFT to study excited states properties of four crystallized tetramolecular quadruplexes that chelate alkaline earth cations (Ca2+, Sr2+ and Ba2+). Here, we show that alkaline earth cations situated at adjacent vacancies promote existence of the nucleobase-metal charge separation (CS) states, contrary to the structures with cations that occupy every second available vacancy. We argued that stabilization of these CS states is due to the strong electric field that stabilizes d orbitals of the cations which accept an excited-electron. Moreover, CS content is increased and redshifted below the first bright transition when number of the chelated cations is increased. Hydration effects stabilized CS states and increased their relative content. We also identified electron detachment states in the broad energy range for the Ca2+ containing system. These findings are valuable for understanding and development of the novel nanostructures based on the quadruplex scaffold with adjustable optical properties.
Collapse
Affiliation(s)
- Branislav Milovanović
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, Belgrade, Serbia
| | - Milena Petković
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, Belgrade, Serbia
| | - Mihajlo Etinski
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, Belgrade, Serbia.
| |
Collapse
|
20
|
Arsenie LV, Ladmiral V, Lacroix-Desmazes P, Catrouillet S. Nucleobase-containing polymer architectures controlled by supramolecular interactions: the key to achieve biomimetic platforms with various morphologies. Polym Chem 2022. [DOI: 10.1039/d2py00920j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Challenges and opportunities in supramolecular self-assembly of synthetic nucleobase-containing copolymers.
Collapse
|
21
|
Belen’kii LI, Gazieva GA, Evdokimenkova YB, Soboleva NO. The literature of heterocyclic chemistry, Part XX, 2020. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
22
|
Milovanović B, Etinski M, Popov I. Self-assembly of rylene-decorated guanine ribbons on graphene surface for optoelectronic applications: a theoretical study. NANOTECHNOLOGY 2021; 32:435405. [PMID: 34284367 DOI: 10.1088/1361-6528/ac162c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
We are witnessing a change of paradigm from the conventional top-down to the bottom-up fabrication of nanodevices and particularly optoelectronic devices. A promising example of the bottom-up approach is self-assembling of molecules into layers with predictable and reproducible structural, electronic and optical properties. Nucleobases possess extraordinary ability to self-assembly into one-, two-, and three-dimensional structures. Optical properties of nucleotides are not suitable for wider application to optoelectronics and photovoltaics due to their large optical band gap, which is in contrast to rylene-based dyes that have been intensively investigated in organic optoelectronics. However, these lack the self-assembly capability of nucleobases. Combinations of covalently decorated guanine molecules with rylene type chromophores present 'the best of the both worlds'. Due to the large size of such compounds and its flexible nature their self-assemblies have not been fully understood yet. Here, we use a theoretical approach to study the structural, energetic and optical properties of rylene-based dye decorated guanine (GPDI), as self-assembled on a graphene sheet. Particularly we utilize the density-functional based tight-binding method to study atomic structure of these systems including the potential energy surface of GPDI and stability and organization of single- and multilayered GPDIs on graphene sheet. Using density-functional theory (DFT) we employ the energy decomposition analysis to gain a deeper insight into the contributions of different moieties to stability of GPDI films. Using time dependent DFT we analyze optical properties of these systems. We find that atomically thin films consisting of only a few molecular layers with large surface areas are more favorable than isolated thick islands. Our study of excited states indicates existence of charge separated states similar to ones found in the well-studied hydrogen bonded organic frameworks. The self-assembly characterized with a large homogeneous coverage and long-living charge-separated states provide the great potential for optoelectronic applications.
Collapse
Affiliation(s)
- Branislav Milovanović
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, Belgrade, Serbia
| | - Mihajlo Etinski
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, Belgrade, Serbia
| | - Igor Popov
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, Belgrade, Serbia
- Institut of Physics, University of Belgrade, Pregrevica 118, Belgrade, Serbia
| |
Collapse
|
23
|
Aschi M, Toto Brocchi G, Portalone G. A Combined Experimental and Computational Study of Halogen and Hydrogen Bonding in Molecular Salts of 5-Bromocytosine. Molecules 2021; 26:molecules26113111. [PMID: 34070959 PMCID: PMC8196974 DOI: 10.3390/molecules26113111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
Although natural or artificial modified pyrimidine nucleobases represent important molecules with valuable properties as constituents of DNA and RNA, no systematic analyses of the structural aspects of bromo derivatives of cytosine have appeared so far in the literature. In view of the biochemical and pharmaceutical relevance of these compounds, six different crystals containing proton-transfer derivatives of 5-bromocytosine are prepared and analyzed in the solid-state by single crystal X-ray diffraction. All six compounds are organic salts, with proton transfer occurring to the Nimino atom of the pyridine ring. Experimental results are then complemented with Hirshfeld surface analysis to quantitively evaluate the contribution of different intermolecular interactions in the crystal packing. Furthermore, theoretical calculations, based on different arrangements of molecules extracted from the crystal structure determinations, are carried out to analyze the formation mechanism of halogen bonds (XBs) in these compounds and provide insights into the nature and strength of the observed interactions. The results show that the supramolecular architectures of the six molecular salts involve extensive classical intermolecular hydrogen bonds. However, in all but one proton-transfer adducts, weak to moderate XBs are revealed by C-Br…O short contacts between the bromine atom in the fifth position, which acts as XB donor (electron acceptor). Moreover, the lone pair electrons of the oxygen atom of adjacent pyrimidine nucleobases and/or counterions or water molecules, which acts as XB acceptor (electron donor).
Collapse
Affiliation(s)
- Massimiliano Aschi
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi di L’Aquila, Via Vetoio 10, 67100 Coppito, Italy;
| | - Giorgia Toto Brocchi
- Dipartimento di Chimica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Roma, Italy;
| | - Gustavo Portalone
- Dipartimento di Chimica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Roma, Italy;
- Correspondence:
| |
Collapse
|
24
|
Breazu C, Socol M, Preda N, Rasoga O, Costas A, Socol G, Petre G, Stanculescu A. Nucleobases thin films deposited on nanostructured transparent conductive electrodes for optoelectronic applications. Sci Rep 2021; 11:7551. [PMID: 33824369 PMCID: PMC8024358 DOI: 10.1038/s41598-021-87181-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/15/2021] [Indexed: 02/01/2023] Open
Abstract
Environmentally-friendly bio-organic materials have become the centre of recent developments in organic electronics, while a suitable interfacial modification is a prerequisite for future applications. In the context of researches on low cost and biodegradable resource for optoelectronics applications, the influence of a 2D nanostructured transparent conductive electrode on the morphological, structural, optical and electrical properties of nucleobases (adenine, guanine, cytosine, thymine and uracil) thin films obtained by thermal evaporation was analysed. The 2D array of nanostructures has been developed in a polymeric layer on glass substrate using a high throughput and low cost technique, UV-Nanoimprint Lithography. The indium tin oxide electrode was grown on both nanostructured and flat substrate and the properties of the heterostructures built on these two types of electrodes were analysed by comparison. We report that the organic-electrode interface modification by nano-patterning affects both the optical (transmission and emission) properties by multiple reflections on the walls of nanostructures and the electrical properties by the effect on the organic/electrode contact area and charge carrier pathway through electrodes. These results encourage the potential application of the nucleobases thin films deposited on nanostructured conductive electrode in green optoelectronic devices.
Collapse
Affiliation(s)
- C Breazu
- National Institute of Materials Physics, 405A Atomistilor Street, P.O. Box MG-7, 077125, Magurele, Romania.
| | - M Socol
- National Institute of Materials Physics, 405A Atomistilor Street, P.O. Box MG-7, 077125, Magurele, Romania
| | - N Preda
- National Institute of Materials Physics, 405A Atomistilor Street, P.O. Box MG-7, 077125, Magurele, Romania
| | - O Rasoga
- National Institute of Materials Physics, 405A Atomistilor Street, P.O. Box MG-7, 077125, Magurele, Romania
| | - A Costas
- National Institute of Materials Physics, 405A Atomistilor Street, P.O. Box MG-7, 077125, Magurele, Romania
| | - G Socol
- Plasma and Radiation Physics, National Institute for Lasers, 409 Atomistilor Street, 077125, Magurele, Romania
| | - G Petre
- National Institute of Materials Physics, 405A Atomistilor Street, P.O. Box MG-7, 077125, Magurele, Romania
- Faculty of Physics, University of Bucharest, 405 Atomistilor Street, PO Box MG-11, 077125, Magurele, Romania
| | - A Stanculescu
- National Institute of Materials Physics, 405A Atomistilor Street, P.O. Box MG-7, 077125, Magurele, Romania.
| |
Collapse
|
25
|
|
26
|
Martín-Arroyo M, Castells-Gil J, Bilbao N, Almora-Barrios N, Martí-Gastaldo C, González-Rodríguez D. Crystalline supramolecular organic frameworks via hydrogen-bonding between nucleobases. Chem Commun (Camb) 2021; 57:1659-1662. [DOI: 10.1039/d0cc07707k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We describe here the first crystalline hydrogen-bonded organic framework made from complementary guanine and cytosine nucleobases.
Collapse
Affiliation(s)
- Miguel Martín-Arroyo
- Departamento de Química Orgánica
- Facultad de Ciencias
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | | | - Nerea Bilbao
- Departamento de Química Orgánica
- Facultad de Ciencias
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | | | | | - David González-Rodríguez
- Departamento de Química Orgánica
- Facultad de Ciencias
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| |
Collapse
|
27
|
Serrano‐Molina D, Juan A, González‐Rodríguez D. Dinucleoside‐Based Macrocycles Displaying Unusually Large Chelate Cooperativities. CHEM REC 2020; 21:480-497. [DOI: 10.1002/tcr.202000141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Affiliation(s)
- David Serrano‐Molina
- Departamento de Química Orgánica Facultad de Ciencias Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Alberto Juan
- Departamento de Química Orgánica Facultad de Ciencias Universidad Autónoma de Madrid 28049 Madrid Spain
| | - David González‐Rodríguez
- Departamento de Química Orgánica Facultad de Ciencias Universidad Autónoma de Madrid 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid 28049 Madrid Spain
| |
Collapse
|