1
|
Peña-Vázquez GI, Arredondo-Arenillas A, Serrano-Sandoval SN, Antunes-Ricardo M. Functional foods lipids: unraveling their role in the immune response in obesity. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 39073763 DOI: 10.1080/10408398.2024.2382942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Functional lipids are lipids that are found in food matrices and play an important role in influencing human health as their role goes beyond energy storage and structural components. Ongoing research into functional lipids has highlighted their potential to modulate immune responses and other mechanisms associated with obesity, along with its comorbidities. These lipids represent a new field that may offer new therapeutic and preventive strategies for these diseases by understanding their contribution to health. In this review, we discussed in-depth the potential food sources of functional lipids and their reported potential benefit of the major lipid classification: based on their composition such as simple, compound, and derived lipids, and based on their function such as storage and structural, by investigating the intricate mechanisms through which these lipids interact in the human body. We summarize the key insights into the bioaccessibility and bioavailability of the most studied functional lipids. Furthermore, we review the main immunomodulatory mechanisms reported in the literature in the past years. Finally, we discuss the perspectives and challenges faced in the food industry related to functional lipids.
Collapse
Affiliation(s)
- Gloria Itzel Peña-Vázquez
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Monterrey, NL, México
| | - Ana Arredondo-Arenillas
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
| | - Sayra N Serrano-Sandoval
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Monterrey, NL, México
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Monterrey, NL, México
| |
Collapse
|
2
|
Ribeiro AM, Gonçalves A, Rocha F, Estevinho BN. Statistical simplex centroid experimental design for evaluation of pectin, modified chitosan and modified starch as encapsulating agents on the development of vitamin E-loaded microparticles by spray-drying. Int J Biol Macromol 2024; 269:131792. [PMID: 38677704 DOI: 10.1016/j.ijbiomac.2024.131792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 03/14/2024] [Accepted: 04/07/2024] [Indexed: 04/29/2024]
Abstract
Vitamin E encapsulation into biopolymer-based microparticles, obtained by spray-drying technology, was proposed to improve the encapsulation efficiency and the controlled release of fat-soluble vitamin. Binary and ternary blends of pectin, modified chitosan and modified starch, modified starch + modified chitosan, modified starch + pectin, modified chitosan + pectin and modified starch + modified chitosan + pectin ((0.33, 0.33, 0.33), (0.70, 0.15, 0.15), (0.15, 0.70, 0.15) and (0.15, 0.15, 0.70)) were proposed to produce and evaluate different carrier-based delivery systems. Vitamin E-loaded microparticles and empty microparticles were created with a product yield between 9 and 49 %. The mean diameter among all microparticles varied between 3.74 ± 0.02 and 421 ± 21 μm (differential volume distribution). Oval, spherical or irregular microparticles, with a variable morphology from a smooth to a high rough surface structure, with concavities, were produced. All vitamin E-loaded microparticles exhibited an encapsulation efficiency higher than 70 %. The slower vitamin E controlled release was observed from microparticles composed by modified chitosan (>36 h), while the faster release was achieved from microparticles individually composed by pectin (39 min). In general, the Fickian diffusion is the main release mechanism involved in the microparticles produced with modified chitosan, other formulations combine also other mechanisms such as swelling.
Collapse
Affiliation(s)
- A Marisa Ribeiro
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Antónia Gonçalves
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Fernando Rocha
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Berta N Estevinho
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
3
|
Thilakarathna WPDW, Rupasinghe HPV. Proanthocyanidins-Based Synbiotics as a Novel Strategy for Nonalcoholic Fatty Liver Disease (NAFLD) Risk Reduction. Molecules 2024; 29:709. [PMID: 38338453 PMCID: PMC10856248 DOI: 10.3390/molecules29030709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), the most common liver disease worldwide, is a spectrum of liver abnormalities ranging from steatosis to nonalcoholic steatohepatitis (NASH) characterized by excessive lipid accumulation. The prevalence of NAFLD is predicted to increase rapidly, demanding novel approaches to reduce the global NAFLD burden. Flavonoids, the most abundant dietary polyphenols, can reduce the risk of NAFLD. The majority of dietary flavonoids are proanthocyanidins (PACs), which are oligomers and polymers of the flavonoid sub-group flavan-3-ols. The efficacy of PAC in reducing the NAFLD risk can be significantly hindered by low bioavailability. The development of synbiotics by combining PAC with probiotics may increase effectiveness against NAFLD by biotransforming PAC into bioavailable metabolites. PAC and probiotic bacteria are capable of mitigating steatosis primarily through suppressing de novo lipogenesis and promoting fatty acid β-oxidation. PAC and probiotic bacteria can reduce the progression of steatosis to NASH mainly through ameliorating hepatic damage and inflammation induced by hepatic oxidative stress, endoplasmic reticulum stress, and gut microbiota dysbiosis. Synbiotics of PAC are superior in reducing the risk of NAFLD compared to independent administration of PAC and probiotics. The development of PAC-based synbiotics can be a novel strategy to mitigate the increasing incidence of NAFLD.
Collapse
Affiliation(s)
- Wasitha P. D. W. Thilakarathna
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
| | - H. P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4H7, Canada
| |
Collapse
|
4
|
An M, Heo H, Park J, Jeong HS, Kim Y, Lee J. Unsaponifiable Matter from Wheat Bran Cultivated in Korea Inhibits Hepatic Lipogenesis by Activating AMPK Pathway. Foods 2023; 12:4016. [PMID: 37959135 PMCID: PMC10650137 DOI: 10.3390/foods12214016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Unsaponifiable matter (USM) from wheat bran, a by-product obtained from wheat milling, is abundant in health-promoting compounds such as phytosterols, tocopherols, policosanols, and alkylresorcinols. This study aimed to examine the effects of USM from the wheat bran of normal and waxy type wheat, Saekeumkang (SKK) and Shinmichal (SMC), on hepatic lipid accumulation in free fatty acid (FFA)-induced hepatocytes and to investigate the cellular mechanism. The total phytochemical contents were 46.562 g/100 g USM and 38.130 g/100 g USM from SKK and SMC, respectively. FFA treatment increased intracellular lipid accumulation by approximately 260% compared to the control group; however, treatment with USM from SKK and SMC significantly attenuated lipid accumulation in the hepatocytes in a dose-dependent manner. Moreover, USM downregulated the expression of lipogenic factors such as fatty acid synthase and sterol regulatory-element-binding protein 1c by approximately 40% compared to the FFA treatment group. Treatment with USM promoted lipolysis and positively regulated the expression of the proteins involved in β-oxidation, including peroxisome proliferator-activated receptor α and its downstream protein, carnitine palmitoyltransferase 1A. Moreover, the blockade of AMPK activation significantly abolished the inhibitory effects of USM on hepatic lipid accumulation. These results indicated that the USM from both SKK and SMC can alleviate lipid accumulation in hepatocytes in an AMPK-dependent manner. Therefore, USM from wheat bran may be useful as a therapeutic intervention for treating metabolic-dysfunction-associated fatty liver disease.
Collapse
Affiliation(s)
- Minju An
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea; (M.A.); (H.H.); (H.-S.J.)
| | - Huijin Heo
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea; (M.A.); (H.H.); (H.-S.J.)
| | - Jinhee Park
- Wheat Research Team, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea;
| | - Heon-Sang Jeong
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea; (M.A.); (H.H.); (H.-S.J.)
| | - Younghwa Kim
- Department of Food Science and Biotechnology, Kyungsung University, Busan 48434, Republic of Korea
| | - Junsoo Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea; (M.A.); (H.H.); (H.-S.J.)
| |
Collapse
|
5
|
Son JE, Jo JY, Kim S, Park MJ, Lee Y, Park SS, Park SY, Jung SM, Jung SK, Kim JY, Byun S. Rice Bran Extract Suppresses High-Fat Diet-Induced Hyperlipidemia and Hepatosteatosis through Targeting AMPK and STAT3 Signaling. Nutrients 2023; 15:3630. [PMID: 37630819 PMCID: PMC10457887 DOI: 10.3390/nu15163630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Rice bran, a by-product of rice milling, is abundant in bioactive molecules and is highly recognized for its health-promoting properties, particularly in improving metabolic conditions. Building on this knowledge, we aimed to optimize the extraction conditions to maximize the functional efficacy of rice bran extract (RBE) and further validate its impact on lipid metabolism. We found that the optimized RBE (ORBE) significantly suppressed high-fat diet-induced weight gain, hyperlipidemia, and hepatosteatosis in mouse models. ORBE treatment not only suppressed lipid uptake in vivo, but also reduced lipid accumulation in HepG2 cells. Importantly, we discovered that ORBE administration resulted in activation of AMPK and inhibition of STAT3, which are both crucial players in lipid metabolism in the liver. Collectively, ORBE potentially offers promise as a dietary intervention strategy against hyperlipidemia and hepatosteatosis. This study underlines the value of optimized extraction conditions in enhancing the functional efficacy of rice bran.
Collapse
Affiliation(s)
- Joe Eun Son
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
| | - Jay-Young Jo
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (J.-Y.J.); (S.Y.P.)
| | - San Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Min Ju Park
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Yerin Lee
- Department of Biological Sciences, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Seong Shil Park
- Department of Biological Sciences, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Shin Young Park
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (J.-Y.J.); (S.Y.P.)
| | - Su Myung Jung
- Department of Biological Sciences, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Sung Keun Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Sanguine Byun
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (J.-Y.J.); (S.Y.P.)
| |
Collapse
|
6
|
Chua D, Low ZS, Cheam GX, Ng AS, Tan NS. Utility of Human Relevant Preclinical Animal Models in Navigating NAFLD to MAFLD Paradigm. Int J Mol Sci 2022; 23:14762. [PMID: 36499091 PMCID: PMC9737809 DOI: 10.3390/ijms232314762] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Fatty liver disease is an emerging contributor to disease burden worldwide. The past decades of work established the heterogeneous nature of non-alcoholic fatty liver disease (NAFLD) etiology and systemic contributions to the pathogenesis of the disease. This called for the proposal of a redefinition in 2020 to that of metabolic dysfunction-associated fatty liver disease (MAFLD) to better reflect the current understanding of the disease. To date, several clinical cohort studies comparing NAFLD and MAFLD hint at the relevancy of the new nomenclature in enriching for patients with more severe hepatic injury and extrahepatic comorbidities. However, the underlying systemic pathogenesis is still not fully understood. Preclinical animal models have been imperative in elucidating key biological mechanisms in various contexts, including intrahepatic disease progression, interorgan crosstalk and systemic dysregulation. Furthermore, they are integral in developing novel therapeutics against MAFLD. However, substantial contextual variabilities exist across different models due to the lack of standardization in several aspects. As such, it is crucial to understand the strengths and weaknesses of existing models to better align them to the human condition. In this review, we consolidate the implications arising from the change in nomenclature and summarize MAFLD pathogenesis. Subsequently, we provide an updated evaluation of existing MAFLD preclinical models in alignment with the new definitions and perspectives to improve their translational relevance.
Collapse
Affiliation(s)
- Damien Chua
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Zun Siong Low
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Guo Xiang Cheam
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Aik Seng Ng
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
7
|
Du T, Fang Q, Zhang Z, Zhu C, Xu R, Chen G, Wang Y. Lentinan Protects against Nonalcoholic Fatty Liver Disease by Reducing Oxidative Stress and Apoptosis via the PPARα Pathway. Metabolites 2022; 12:metabo12010055. [PMID: 35050176 PMCID: PMC8780611 DOI: 10.3390/metabo12010055] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/02/2022] [Accepted: 01/05/2022] [Indexed: 02/07/2023] Open
Abstract
Lentinan (LNT), a type of polysaccharide derived from Lentinus edodes, has manifested protective effects during liver injury and hepatocellular carcinoma, but little is known about its effects on nonalcoholic fatty liver disease (NAFLD). This study aimed to investigate whether LNT can affect the progression of NAFLD and the associated mechanisms. C57BL/6J mice were fed a normal chow diet or a high-fat diet (HFD) with or without LNT (6 mg/kg/d). AML12 cells were exposed to 200 μM palmitate acid (PA) with or without LNT (5 μg/mL). After 21 wk of the high-fat diet, LNT significantly decreased plasma triglyceride levels and liver lipid accumulation, reduced excessive reactive oxygen species production, and subsequently attenuated hepatic apoptosis in NAFLD mice. These effects were associated with increased PPARα levels, a decreased Bax/Bcl-2 ratio, and enhancement of the antioxidant defense system in vivo. Similar effects were also observed in cultured cells. More importantly, these protective effects of LNT on palmitate acid-treated AML12 cells were almost abolished by PPARα knockdown. In conclusion, this study demonstrates that LNT may ameliorate hepatic steatosis and decrease oxidative stress and apoptosis by activating the PPARα pathway and is a potential drug target for NAFLD.
Collapse
Affiliation(s)
- Tingyi Du
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (T.D.); (Q.F.); (Z.Z.); (C.Z.)
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Qin Fang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (T.D.); (Q.F.); (Z.Z.); (C.Z.)
| | - Zhihao Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (T.D.); (Q.F.); (Z.Z.); (C.Z.)
| | - Chuanmeng Zhu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (T.D.); (Q.F.); (Z.Z.); (C.Z.)
| | - Renfan Xu
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Guangzhi Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (T.D.); (Q.F.); (Z.Z.); (C.Z.)
- Correspondence: (G.C.); (Y.W.); Tel./Fax: +86-27-6937-8422 (G.C. & Y.W.)
| | - Yan Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (T.D.); (Q.F.); (Z.Z.); (C.Z.)
- Correspondence: (G.C.); (Y.W.); Tel./Fax: +86-27-6937-8422 (G.C. & Y.W.)
| |
Collapse
|
8
|
D'Espessailles A, Campos V, Juretić N, Tapia GS, Pettinelli P. Hepatic retinaldehyde dehydrogenases are modulated by tocopherol supplementation in mice with hepatic steatosis. Nutrition 2021; 94:111539. [PMID: 34974285 DOI: 10.1016/j.nut.2021.111539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/19/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVES An altered retinol metabolism might play a role in the development of nonalcoholic fatty liver disease (NAFLD). Tocopherols (TF) modulate metabolic pathways and have been proposed as a complementary treatment of obesity-induced metabolic alterations. Moreover, there is evidence suggesting that TF may modulate retinol metabolism. The aim of this study was to evaluate whether the dietary supplementation of α- and γ-TF modulates the expression of hepatic retinaldehyde dehydrogenases, RALDH1, RALDH2, and RALDH3 (involved in retinol metabolism) and, lipogenic factors sterol regulatory element binding protein-1c (SREBP-1c) and cluster differentiation 36 (CD36) in an animal model of diet-induced NAFLD. METHODS Male C57BL/6J mice were divided into four groups: a control diet (CD) group (10% fat, 20% protein, 70% carbohydrates); a CD + TF group (α-tocopherol: 0.7 mg·kg·d-1, γ-tocopherol: 3.5 mg·kg·d-1); a high-fat diet (HFD) group (60% fat, 20% protein, 20% carbohydrates); and a HFD + TF group (0.01 mL·g body weight·d-1), for 12 wk. General parameters (body-adipose tissue weight, glucose-triacylglyceride serum levels), liver steatosis (histology, liver triacylglycerides content), and hepatic RALDH1, RALDH2, RALDH3, SREBP-1c and CD36 (qPCR, quantitative polymerase chain reaction; IHQ, immunohistochemistry) were measured. RESULTS TF supplementation in HFD-fed mice decreased the presence of lipid vesicles (90%) and total lipid content (75%) and downregulated the expression of RALDH1, RALDH3, SREBP-1c, and CD36. CONCLUSIONS The present study demonstrated that α- and γ-TF (1:5 ratio) might play a role in modulating retinol metabolism in the prevention of NAFLD induced by a HFD.
Collapse
Affiliation(s)
| | - Valeria Campos
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Nevenka Juretić
- Cellular and Molecular Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Gladys S Tapia
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Paulina Pettinelli
- Department of Health Sciences, Nutrition and Dietetics Career, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|