1
|
Bucciarelli A, Vighi N, Bossi AM, Grigolo B, Maniglio D. Porous Thermoplastic Molded Regenerated Silk Crosslinked by the Addition of Citric Acid. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1535. [PMID: 36837163 PMCID: PMC9963811 DOI: 10.3390/ma16041535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Thermoplastic molded regenerated silk fibroin was proposed as a structural material in tissue engineering applications, mainly for application in bone. The protocol allows us to obtain a compact non-porous material with a compression modulus in the order of a Giga Pascal in dry conditions (and in the order of tens of MPa in wet conditions). This material is produced by compressing a lyophilized silk fibroin powder or sponge into a mold temperature higher than the glass transition temperature. The main purpose of the produced resin was the osteofixation and other structural applications in which the lack of porosity was not an issue. In this work, we introduced the use of citric acid in the thermoplastic molding protocol of silk fibroin to obtain porosity inside the structural material. The citric acid powder during the compression acted as a template for the pore formation. The mean pore diameter achieved by the addition of the higher amount of citric acid was around 5 μm. In addition, citric acid could effectively crosslink the silk fibroin chain, improving its mechanical strength. This effect was proved both by evaluating the compression modulus (the highest value recorded was 77 MPa in wet conditions) and by studying the spectra obtained by Fourier transform infrared spectroscopy. This protocol may be applied in the near future to the production of structural bone scaffolds.
Collapse
Affiliation(s)
- Alessio Bucciarelli
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Nicola Vighi
- Vetrodomus S.P.A., Via G. Bormioli 48, 25135 Brescia, Italy
| | - Alessandra Maria Bossi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Brunella Grigolo
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Devid Maniglio
- Department of Industrial Engineering, BIOtech Research Center, University of Trento, Via delle Regole 101, 38123 Trento, Italy
| |
Collapse
|
2
|
Zhang C, Xia L, Deng B, Li C, Wang Y, Li R, Dai F, Liu X, Xu W. Fabrication of a High-Toughness Polyurethane/Fibroin Composite without Interfacial Treatment and Its Toughening Mechanism. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25409-25418. [PMID: 32378401 DOI: 10.1021/acsami.0c03936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Controlling the assembly modes of polymer chains and the interfacial interactions between the filler and polymer matrix is vital for improving the mechanical properties of the composites. Herein, we report an approach for significantly enhancing the toughness of unmodified silk fibroin (SF) powder from silk waste-incorporated polyurethane (PU) composite films via nonsolvent-induced phase separation (NIPS) using binary solvents. The incorporation of 50 wt % SF into the PU3 film (NIPS, binary solvents) resulted in a toughness value of 54.9 ± 0.4 MJ·m-3, exhibiting 1670.9 and 6000.0% increments compared to those of PU1-50% SF (NIPS, one solvent) and PU2-50% SF (solvent evaporation, one solvent), respectively. The toughness enhancement in the PU3-50% SF composite film benefits from the good interfacial interaction between SF and PU and the unique structure of the compacted "fishing net" with reinforced connections, which can transfer stress under loading effectively. Furthermore, the PU-SF composites with good mechanical properties may have potential applications in silklike fibers and biomimetic materials.
Collapse
Affiliation(s)
- Chunhua Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
- State Key Laboratory of Silkworm Genome Biology, Ministry of Agriculture, Southwest University, Chongqing 400715, China
- Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, China
| | - Liangjun Xia
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Bo Deng
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
- College of Material Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Chen Li
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Yun Wang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Renhao Li
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Ministry of Agriculture, Southwest University, Chongqing 400715, China
| | - Xin Liu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
- College of Material Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Weilin Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
3
|
Tao Y, Hasan A, Deeb G, Hu C, Han H. Rheological and Mechanical Behavior of Silk Fibroin Reinforced Waterborne Polyurethane. Polymers (Basel) 2016; 8:E94. [PMID: 30979186 PMCID: PMC6432601 DOI: 10.3390/polym8030094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 11/16/2022] Open
Abstract
Waterborne polyurethane (WPU) is a versatile and environment-friendly material with growing applications in both industry and academia. Silk fibroin (SF) is an attractive material known for its structural, biological and hemocompatible properties. The SF reinforced waterborne polyurethane (WPU) is a promising scaffold material for tissue engineering applications. In this work, we report synthesis and characterization of a novel nanocomposite using SF reinforced WPU. The rheological behaviors of WPU and WPU-SF dispersions with different solid contents were investigated with steady shear and dynamic oscillatory tests to evaluate the formation of the cross-linked gel structure. The average particle size and the zeta potential of WPU-SF dispersions with different SF content were examined at 25 °C to investigate the interaction between SF and WPU. FTIR, SEM, TEM and tensile testing were performed to study the effects of SF content on the structural morphology and mechanical properties of the resultant composite films. Experimental results revealed formation of gel network in the WPU dispersions at solid contents more than 17 wt %. The conjugate reaction between the WPU and SF as well as the hydrogen bond between them helped in dispersing the SF powder into the WPU matrix as small aggregates. Addition of SF to the WPU also improved the Young's modulus from 0.30 to 3.91 MPa, tensile strength from 0.56 to 8.94 MPa, and elongation at break from 1067% to 2480%, as SF was increased up to 5 wt %. Thus, significant strengthening and toughening can be achieved by introducing SF powder into the WPU formulations.
Collapse
Affiliation(s)
- Yongzhen Tao
- Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University, Wuhan 430073, China.
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar.
- Biomedical Engineering, and Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon.
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - George Deeb
- Biomedical Engineering, and Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon.
| | - Changkai Hu
- Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University, Wuhan 430073, China.
| | - Huipeng Han
- Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University, Wuhan 430073, China.
| |
Collapse
|
4
|
Luo Z, Zhang Y, Zhou H, Liao J, Zhang X, Wu Q. A one-pot preparation of silk fibroin modified with polyurethane micro-particles. NEW J CHEM 2013. [DOI: 10.1039/c3nj00501a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|