1
|
Fattahi R, Soleimani M, Khani MM, Rasouli M, Hosseinzadeh S. A three-dimensional structure with osteoconductive function made of O-carboxymethyl chitosan using aspirin as a cross-linker. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2022.2155156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Roya Fattahi
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Mehdi Khani
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Rasouli
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simzar Hosseinzadeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Júnior AF, Ribeiro CA, Leyva ME, Marques PS, Soares CRJ, Alencar de Queiroz AA. Biophysical properties of electrospun chitosan-grafted poly(lactic acid) nanofibrous scaffolds loaded with chondroitin sulfate and silver nanoparticles. J Biomater Appl 2021; 36:1098-1110. [PMID: 34601887 DOI: 10.1177/08853282211046418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this work was to study the biophysical properties of the chitosan-grafted poly(lactic acid) (CH-g-PLA) nanofibers loaded with silver nanoparticles (AgNPs) and chondroitin-4-sulfate (C4S). The electrospun CH-g-PLA:AgNP:C4S nanofibers were manufactured using the electrospinning technique. The microstructure of the CH-g-PLA:AgNP:C4S nanofibers was investigated by proton nuclear magnetic resonance (1H-NMR), scanning electron microscopy (SEM), UV-Visible spectroscopy (UV-Vis), X-ray diffraction (XRD), and Fourier transform infrared (ATR-FTIR) spectroscopy. ATR-FTIR and 1H-NMR confirm the CH grafting successfully by PLA with a substitution degree of 33.4%. The SEM measurement results indicated apparently smooth nanofibers having a diameter range of 340 ± 18 nm with porosity of 89 ± 3.08% and an average pore area of 0.27 μm2. UV-Vis and XRD suggest that silver nanoparticles with the size distribution of 30 nm were successfully incorporated into the electrospun nanofibers. The water contact angle of 12.8 ± 2.7° reveals the hydrophilic nature of the CH-g-PLA:AgNP:C4S nanofibers has been improved by C4S. The electrospun CH-g-PLA:AgNP:C4S nanofibers are found to release ions Ag+ at a concentration level capable of rendering an antimicrobial efficacy. Gram-positive bacteria (S.aureus) were more sensitive to CH-g-PLA:AgNP:C4S than Gram-negative bacteria (E. coli). The electrospun CH-g-PLA:AgNP:C4S nanofibers exhibited no cytotoxicity to the L-929 fibroblast cells, suggesting cytocompatibility. Fluorescence microscopy demonstrated that C4S promotes the adhesion and proliferation of fibroblast cells onto electrospun CH-g-PLA:AgNP:C4S nanofibers.
Collapse
Affiliation(s)
- Alexandre F Júnior
- Doctorate Post-graduate scholarship in Materials for Engineering/Biomaterials (CAPES), 28094Federal University of Itajubá (UNIFEI), Itajubá, Brazil
| | - Charlene A Ribeiro
- Doctorate Post-graduate scholarship in Materials for Engineering/Biomaterials (CAPES), 28094Federal University of Itajubá (UNIFEI), Itajubá, Brazil
| | - Maria E Leyva
- 28094Institute of Physics and Chemistry/Federal University of Itajubá (UNIFEI), Itajubá, Brazil
| | - Paulo S Marques
- 28094Institute of Natural Resources (IRN)/Federal University of Itajubá (UNIFEI), Itajubá, Brazil
| | - Carlos R J Soares
- Biotechnology Center (CEBIO), 119500Nuclear and Energy Research Institute, Sao Paulo, Brazil
| | | |
Collapse
|
3
|
Yu R, Petit E, Barboiu M, Li S, Sun W, Chen C. Biobased dynamic hydrogels by reversible imine bonding for controlled release of thymopentin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112210. [PMID: 34225862 DOI: 10.1016/j.msec.2021.112210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 01/08/2023]
Abstract
Thymopentin (TP5) is widely used in the treatment of autoimmune diseases, but the short in vivo half-life of TP5 strongly restricts its clinical applications. A series of blank and TP5 loaded hydrogels were synthesized via reversible dual imine bonding by mixing water soluble O-carboxymethyl chitosan (CMCS) with a dynamer (Dy) prepared from Jeffamine and benzene-1,3,5-tricarbaldehyde. TP5 release from hydrogels was studied at 37 °C under in vitro conditions. The molar mass of CMCS, drug loading conditions and drug content were varied to elucidate their effects on hydrogel properties and drug release behaviors. Density functional theory was applied to theoretically confirm the chemical connections between TP5 or CMCS with Dy. All hydrogels exhibited interpenetrating porous architecture with average pore size from 59 to 83 μm, and pH-sensitive swelling up to 10,000% at pH 8. TP5 encapsulation affected the rheological properties of hydrogels as TP5 was partially attached to the network via imine bonding. Higher TP5 loading led to higher release rates. Faster release was observed at pH 5.5 than at pH 7.4 due to lower stability of imine bonds in acidic media. Fitting of release data using Higuchi model showed that initial TP5 release was essentially diffusion controlled. All these findings proved that the dynamic hydrogels are promising carriers for controlled delivery of hydrophilic drugs, and shed new light on the design of drug release systems by both physical mixing and reversible covalent bonding.
Collapse
Affiliation(s)
- Rui Yu
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Eddy Petit
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Mihail Barboiu
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Suming Li
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Wenjing Sun
- China-America Cancer Research Institute, Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical University, Dongguan, Guangdong 523808, China.
| | - Congmei Chen
- National Supercomputing Center in Shenzhen (Shenzhen Cloud Computing Center), Guangdong, Shenzhen 518055, China
| |
Collapse
|
4
|
Nunes YL, de Menezes FL, de Sousa IG, Cavalcante ALG, Cavalcante FTT, da Silva Moreira K, de Oliveira ALB, Mota GF, da Silva Souza JE, de Aguiar Falcão IR, Rocha TG, Valério RBR, Fechine PBA, de Souza MCM, Dos Santos JCS. Chemical and physical Chitosan modification for designing enzymatic industrial biocatalysts: How to choose the best strategy? Int J Biol Macromol 2021; 181:1124-1170. [PMID: 33864867 DOI: 10.1016/j.ijbiomac.2021.04.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/16/2022]
Abstract
Chitosan is one of the most abundant natural polymer worldwide, and due to its inherent characteristics, its use in industrial processes has been extensively explored. Because it is biodegradable, biocompatible, non-toxic, hydrophilic, cheap, and has good physical-chemical stability, it is seen as an excellent alternative for the replacement of synthetic materials in the search for more sustainable production methodologies. Thus being, a possible biotechnological application of Chitosan is as a direct support for enzyme immobilization. However, its applicability is quite specific, and to overcome this issue, alternative pretreatments are required, such as chemical and physical modifications to its structure, enabling its use in a wider array of applications. This review aims to present the topic in detail, by exploring and discussing methods of employment of Chitosan in enzymatic immobilization processes with various enzymes, presenting its advantages and disadvantages, as well as listing possible chemical modifications and combinations with other compounds for formulating an ideal support for this purpose. First, we will present Chitosan emphasizing its characteristics that allow its use as enzyme support. Furthermore, we will discuss possible physicochemical modifications that can be made to Chitosan, mentioning the improvements obtained in each process. These discussions will enable a comprehensive comparison between, and an informed choice of, the best technologies concerning enzyme immobilization and the application conditions of the biocatalyst.
Collapse
Affiliation(s)
- Yale Luck Nunes
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Fernando Lima de Menezes
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Isamayra Germano de Sousa
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Antônio Luthierre Gama Cavalcante
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | | | - Katerine da Silva Moreira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil
| | - André Luiz Barros de Oliveira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil
| | - Gabrielly Ferreira Mota
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - José Erick da Silva Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Italo Rafael de Aguiar Falcão
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Thales Guimaraes Rocha
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Roberta Bussons Rodrigues Valério
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Pierre Basílio Almeida Fechine
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Maria Cristiane Martins de Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - José C S Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil; Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil.
| |
Collapse
|
5
|
Omer AM, Ahmed MS, El-Subruiti GM, Khalifa RE, Eltaweil AS. pH-Sensitive Alginate/Carboxymethyl Chitosan/Aminated Chitosan Microcapsules for Efficient Encapsulation and Delivery of Diclofenac Sodium. Pharmaceutics 2021; 13:338. [PMID: 33807967 PMCID: PMC7998679 DOI: 10.3390/pharmaceutics13030338] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/22/2022] Open
Abstract
To develop an effective pH-sensitive drug carrier, alginate (Alg), carboxymethyl chitosan (CMCs), and aminated chitosan (AmCs) derivatives were employed in this study. A simple ionic gelation technique was employed to formulate Alg-CMCs@AmCs dual polyelectrolyte complexes (PECs) microcapsules as a pH-sensitive carrier for efficient encapsulation and release of diclofenac sodium (DS) drug. The developed microcapsules were characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analyzer (TGA), and scanning electron microscope (SEM). The results clarified that formation of dual PECs significantly protected Alg microcapsules from rapid disintegration at colon conditions (pH 7.4), and greatly reduced their porosity. In addition, the dual PECs microcapsules can effectively encapsulate 95.4% of DS-drug compared to 86.3 and 68.6% for Alg and Alg-CMCs microcapsules, respectively. Higher DS-release values were achieved in simulated colonic fluid [SCF; pH 7.4] compared to those obtained in simulated gastric fluid [SGF; pH 1.2]. Moreover, the drug burst release was prevented and a sustained DS-release was achieved as the AmCs concentration increased. The results confirmed also that the developed microcapsules were biodegradable in the presence of the lysozyme enzyme. These findings emphasize that the formulated pH-sensitive microcapsules could be applied for the delivery of diclofenac sodium.
Collapse
Affiliation(s)
- Ahmed M. Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt;
| | - Maha S. Ahmed
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426 Ibrahimia, Alexandria 21321, Egypt; (M.S.A.); (G.M.E.-S.)
| | - Gehan M. El-Subruiti
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426 Ibrahimia, Alexandria 21321, Egypt; (M.S.A.); (G.M.E.-S.)
| | - Randa E. Khalifa
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt;
| | - Abdelazeem S. Eltaweil
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426 Ibrahimia, Alexandria 21321, Egypt; (M.S.A.); (G.M.E.-S.)
| |
Collapse
|
6
|
Preparation, characterization and antioxidant activity of protocatechuic acid grafted carboxymethyl chitosan and its hydrogel. Carbohydr Polym 2021; 252:117210. [DOI: 10.1016/j.carbpol.2020.117210] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/24/2020] [Accepted: 10/06/2020] [Indexed: 12/21/2022]
|
7
|
Anti-bacterial dynamic hydrogels prepared from O-carboxymethyl chitosan by dual imine bond crosslinking for biomedical applications. Int J Biol Macromol 2020; 167:1146-1155. [PMID: 33189749 DOI: 10.1016/j.ijbiomac.2020.11.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/27/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022]
Abstract
Imine dynamic hydrogels are synthesized via dual-imine bond crosslinking from O-carboxymethyl chitosan (CMCS) and a water soluble dynamer using a 'green' approach. Three dynamers are prepared through reaction of benzene-1,3,5-tricarbaldehyde and di-amino Jeffamine with molar mass of 500, 800 and 1900, respectively. Hydrogels, namely H500, H800 and H1900 are then obtained by mixing CMCS and dynamer aqueous solutions. FT-IR confirms the formation of hydrogels via imine bonding. H1900 presents larger pore size and higher storage modulus as compared to H500 and H800 due to the higher molar mass of Jeffamine linker. The hydrogels exhibit pH sensitive swelling behavior due to electrostatic attraction or repulsion in the pH range from 3 to 10. The highest swelling ratio is obtained at pH 8, reaching 7500% for H800. Self-healing of hydrogels is evidenced by rheological measurements with alternatively applied low and high strains, and by using a macroscopic approach with re-integration of injected filaments. Furthermore, the H1900 membrane exhibits outstanding antibacterial activity against an E. coli suspension at 108 CFU mL-1. Therefore, dynamic hydrogels synthesized from CMCS and Jeffamine present outstanding rheological, swelling, self-healing and antibacterial properties, and are most promising as healthcare material in wound dressing, drug delivery and tissue engineering.
Collapse
|
8
|
Biobased pH-responsive and self-healing hydrogels prepared from O-carboxymethyl chitosan and a 3-dimensional dynamer as cartilage engineering scaffold. Carbohydr Polym 2020; 244:116471. [DOI: 10.1016/j.carbpol.2020.116471] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 05/08/2020] [Accepted: 05/17/2020] [Indexed: 12/21/2022]
|
9
|
Kaliva M, Georgopoulou A, Dragatogiannis DA, Charitidis CA, Chatzinikolaidou M, Vamvakaki M. Biodegradable Chitosan- graft-Poly(l-lactide) Copolymers For Bone Tissue Engineering. Polymers (Basel) 2020; 12:E316. [PMID: 32033024 PMCID: PMC7077469 DOI: 10.3390/polym12020316] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 01/25/2020] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
The design and synthesis of new biomaterials with adjustable physicochemical and biological properties for tissue engineering applications have attracted great interest. In this work, chitosan-graft-poly(l-lactide) (CS-g-PLLA) copolymers were prepared by chemically binding poly(l-lactide) (PLLA) chains along chitosan (CS) via the "grafting to" approach to obtain hybrid biomaterials that present enhanced mechanical stability, due to the presence of PLLA, and high bioactivity, conferred by CS. Two graft copolymers were prepared, CS-g-PLLA(80/20) and CS-g-PLLA(50/50), containing 82 wt % and 55 wt % CS, respectively. Degradation studies of compressed discs of the copolymers showed that the degradation rate increased with the CS content of the copolymer. Nanomechanical studies in the dry state indicated that the copolymer with the higher CS content had larger Young modulus, reduced modulus and hardness values, whereas the moduli and hardness decreased rapidly following immersion of the copolymer discs in alpha-MEM cell culture medium for 24 h. Finally, the bioactivity of the hybrid copolymers was evaluated in the adhesion and growth of MC3T3-E1 pre-osteoblastic cells. In vitro studies showed that MC3T3-E1 cells exhibited strong adhesion on both CS-g-PLLA graft copolymer films from the first day in cell culture, whereas the copolymer with the higher PLLA content, CS-g-PLLA(50/50), supported higher cell growth.
Collapse
Affiliation(s)
- Maria Kaliva
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH-IESL), 70013 Heraklion, Greece; (M.C.); (M.V.)
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Greece;
| | - Anthie Georgopoulou
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Greece;
| | - Dimitrios A. Dragatogiannis
- Research Unit of Advanced, Composite, Nano Materials & Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St., Zographou, 15780 Athens, Greece; (D.A.D.); (C.A.C.)
| | - Costas A. Charitidis
- Research Unit of Advanced, Composite, Nano Materials & Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St., Zographou, 15780 Athens, Greece; (D.A.D.); (C.A.C.)
| | - Maria Chatzinikolaidou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH-IESL), 70013 Heraklion, Greece; (M.C.); (M.V.)
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Greece;
| | - Maria Vamvakaki
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH-IESL), 70013 Heraklion, Greece; (M.C.); (M.V.)
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Greece;
| |
Collapse
|
10
|
Jeong HJ, Nam SJ, Song JY, Park SN. Synthesis and physicochemical properties of pH-sensitive hydrogel based on carboxymethyl chitosan/2-hydroxyethyl acrylate for transdermal delivery of nobiletin. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.02.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Polylactic acid nanocomposites toughened with nanofibrillated cellulose: microstructure, thermal, and mechanical properties. IRANIAN POLYMER JOURNAL 2018. [DOI: 10.1007/s13726-018-0651-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
Construction and evaluation of the hydroxypropyl methyl cellulose-sodium alginate composite hydrogel system for sustained drug release. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1546-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Maleki SE, Shokrollahi P, Barzin J. Impact of supramolecular interactions on swelling and release behavior of UPy functionalized HEMA-based hydrogels. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Sara E. Maleki
- Department of Biomaterials, Faculty of Science; Iran Polymer and Petrochemical Institute; Tehran 14977-13115 Iran
| | - Parvin Shokrollahi
- Department of Biomaterials, Faculty of Science; Iran Polymer and Petrochemical Institute; Tehran 14977-13115 Iran
| | - Jalal Barzin
- Department of Biomaterials, Faculty of Science; Iran Polymer and Petrochemical Institute; Tehran 14977-13115 Iran
| |
Collapse
|
14
|
Mohammed AH, Ahmad MB, Ibrahim NA, Zainuddin N. Effect of crosslinking concentration on properties of 3-(trimethoxysilyl) propyl methacrylate/N-vinyl pyrrolidone gels. Chem Cent J 2018; 12:15. [PMID: 29442180 PMCID: PMC5811424 DOI: 10.1186/s13065-018-0379-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/23/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The incorporation of two different monomers, having different properties, in the same polymer molecule leads to the formation of new materials with great scientific and commercial importance. The basic requirements for polymeric materials in some areas of biomedical applications are that they are hydrophilic, having good mechanical and thermal properties, soft, and oxygen-permeable. RESULTS A series of 3-(trimethoxysilyl) propyl methacrylate/N-vinyl pyrrolidone (TMSPM/NVP) xerogels containing different concentration of ethylene glycol dimethacrylate (EGDMA) as crosslinking agent were prepared by bulk polymerization to high conversion using BPO as initiator. The copolymers were characterized by FTIR. The corresponding hydrogels were obtained by swelling the xerogels in deionized water to equilibrium. Addition of EGDMA increases the transparency of xerogels and hydrogels. The minimum amount of EGDMA required to produce a transparent xerogel is 1%. All the Swelling parameters, including water content (EWC), volume fraction of polymer (ϕ2) and weight loss during swelling decrease with increasing EGDMA. Young's and shear modulus (E and G) increase as EGDMA increases. The hydrogels were characterized in terms of modulus cross-linking density (v e and v t ) and polymer-solvent interaction parameters (χ). Thermal properties include TGA and glass transition temperature (Tg) enhance by adding EGDMA whereas the oxygen permeability (P) of hydrogels decreases as water content decrease. CONCLUSIONS This study prepared and studied the properties for new copolymer (TMSPM-co-NVP) contains different amounts of (EGDMA). These copolymers possess new properties with potential use in different biomedical applications. The properties of the prepared hydrogels are fit with the standard properties of materials which should be used for contact lenses.
Collapse
Affiliation(s)
- Ameen Hadi Mohammed
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia. .,Department of Chemistry, College of Science for Women, University of Baghdad, Al Jadria, Baghdad, 10071, Iraq.
| | - Mansor B Ahmad
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nor Azowa Ibrahim
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Norhazlin Zainuddin
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
15
|
Xu Y, Li G, Zhuang W, Yu H, Hu Y, Wang Y. Micelles prepared from poly(N-isopropylacrylamide-co-tetraphenylethene acrylate)-b-poly[oligo(ethylene glycol) methacrylate] double hydrophilic block copolymer as hydrophilic drug carrier. J Mater Chem B 2018; 6:7495-7502. [DOI: 10.1039/c8tb02247j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thermal-induced micelles prepared with P(NIPAAm-co-TPE)-b-POEGMA double hydrophilic block copolymers for hydrophilic drug release. Hydrogen bonds are formed between PNIPAAm and thymopentin.
Collapse
Affiliation(s)
- YangYang Xu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- P. R. China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- P. R. China
| | - Weihua Zhuang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- P. R. China
| | - HongChi Yu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- P. R. China
| | - Yanfei Hu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- P. R. China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- P. R. China
| |
Collapse
|
16
|
The preparation and applications of novel phosphazene crosslinked thermo and pH responsive hydrogels. J IND ENG CHEM 2016. [DOI: 10.1016/j.jiec.2016.07.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|