1
|
Pasanaphong K, Pukasamsombut D, Boonyagul S, Pengpanich S, Tawonsawatruk T, Wilairatanarporn D, Jantanasakulwong K, Rachtanapun P, Hemstapat R, Wangtueai S, Tanadchangsaeng N. Fabrication of Fish Scale-Based Gelatin Methacryloyl for 3D Bioprinting Application. Polymers (Basel) 2024; 16:418. [PMID: 38337307 DOI: 10.3390/polym16030418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Gelatin methacryloyl (GelMA) is an ideal bioink that is commonly used in bioprinting. GelMA is primarily acquired from mammalian sources; however, the required amount makes the market price extremely high. Since garbage overflow is currently a global issue, we hypothesized that fish scales left over from the seafood industry could be used to synthesize GelMA. Clinically, the utilization of fish products is more advantageous than those derived from mammals as they lower the possibility of disease transmission from mammals to humans and are permissible for practitioners of all major religions. In this study, we used gelatin extracted from fish scales and conventional GelMA synthesis methods to synthesize GelMA, then tested it at different concentrations in order to evaluated and compared the mechanical properties and cell responses. The fish scale GelMA had a printing accuracy of 97%, a swelling ratio of 482%, and a compressive strength of about 85 kPa at a 10% w/v GelMA concentration. Keratinocyte cells (HaCaT cells) were bioprinted with the GelMA bioink to assess cell viability and proliferation. After 72 h of culture, the number of cells increased by almost three-fold compared to 24 h, as indicated by many fluorescent cell nuclei. Based on this finding, it is possible to use fish scale GelMA bioink as a scaffold to support and enhance cell viability and proliferation. Therefore, we conclude that fish scale-based GelMA has the potential to be used as an alternative biomaterial for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Kitipong Pasanaphong
- College of Biomedical Engineering, Rangsit University, Lak-Hok 12000, Pathumthani, Thailand
| | - Danai Pukasamsombut
- College of Biomedical Engineering, Rangsit University, Lak-Hok 12000, Pathumthani, Thailand
| | - Sani Boonyagul
- College of Biomedical Engineering, Rangsit University, Lak-Hok 12000, Pathumthani, Thailand
| | - Sukanya Pengpanich
- College of Biomedical Engineering, Rangsit University, Lak-Hok 12000, Pathumthani, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Khlong Nueng 12120, Pathumthani, Thailand
| | - Tulyapruek Tawonsawatruk
- Department of Orthopaedics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| | | | - Kittisak Jantanasakulwong
- Division of Packaging Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang-Mai 50100, Thailand
| | - Pornchai Rachtanapun
- Division of Packaging Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Muang, Chiang-Mai 50100, Thailand
| | - Ruedee Hemstapat
- Department of Pharmacology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| | - Sutee Wangtueai
- College of Maritime Studies and Management, Chiang Mai University, Tha Chin, Muang, Samut Sakhon 74000, Thailand
| | | |
Collapse
|
2
|
Liu H, Bai Y, Huang C, Wang Y, Ji Y, Du Y, Xu L, Yu DG, Bligh SWA. Recent Progress of Electrospun Herbal Medicine Nanofibers. Biomolecules 2023; 13:184. [PMID: 36671570 PMCID: PMC9855805 DOI: 10.3390/biom13010184] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Herbal medicine has a long history of medical efficacy with low toxicity, side effects and good biocompatibility. However, the bioavailability of the extract of raw herbs and bioactive compounds is poor because of their low water solubility. In order to overcome the solubility issues, electrospinning technology can offer a delivery alternative to resolve them. The electrospun fibers have the advantages of high specific surface area, high porosity, excellent mechanical strength and flexible structures. At the same time, various natural and synthetic polymer-bound fibers can mimic extracellular matrix applications in different medical fields. In this paper, the development of electrospinning technology and polymers used for incorporating herbal medicine into electrospun nanofibers are reviewed. Finally, the recent progress of the applications of these herbal medicine nanofibers in biomedical (drug delivery, wound dressing, tissue engineering) and food fields along with their future prospects is discussed.
Collapse
Affiliation(s)
- Hang Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yubin Bai
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chang Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ying Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuexin Ji
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yutong Du
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lin Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Sim Wan Annie Bligh
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong 999077, China
| |
Collapse
|
3
|
Zhao X, Niu Y, Mi C, Gong H, Yang X, Cheng J, Zhou Z, Liu J, Peng X, Wei D. Electrospinning nanofibers of microbial polyhydroxyalkanoates for applications in medical tissue engineering. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210418] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xiao‐Hong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine Northwest University Xi'an China
| | - Yi‐Nuo Niu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine Northwest University Xi'an China
| | - Chen‐Hui Mi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine Northwest University Xi'an China
| | - Hai‐Lun Gong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine Northwest University Xi'an China
| | - Xin‐Yu Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine Northwest University Xi'an China
| | - Ji‐Si‐Yu Cheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine Northwest University Xi'an China
| | - Zi‐Qi Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine Northwest University Xi'an China
| | - Jia‐Xuan Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine Northwest University Xi'an China
| | - Xue‐Liang Peng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine Northwest University Xi'an China
| | - Dai‐Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine Northwest University Xi'an China
| |
Collapse
|
4
|
Boonyagul S, Pukasamsombut D, Pengpanich S, Toobunterng T, Pasanaphong K, Sathirapongsasuti N, Tawonsawatruk T, Wangtueai S, Tanadchangsaeng N. Bioink hydrogel from fish scale gelatin blended with alginate for 3D‐bioprinting application. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sani Boonyagul
- College of Biomedical Engineering Rangsit University Pathumthani Thailand
| | | | - Sukanya Pengpanich
- College of Biomedical Engineering Rangsit University Pathumthani Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC) Pathumthani Thailand
| | - Thaman Toobunterng
- College of Biomedical Engineering Rangsit University Pathumthani Thailand
| | | | | | | | - Sutee Wangtueai
- College of Maritime Studies and Management Chiang Mai University Samut‐Sakhon Thailand
| | | |
Collapse
|