1
|
Beeren IAO, Dos Santos G, Dijkstra PJ, Mota C, Bauer J, Ferreira H, Reis RL, Neves N, Camarero-Espinosa S, Baker MB, Moroni L. A facile strategy for tuning the density of surface-grafted biomolecules for melt extrusion-based additive manufacturing applications. Biodes Manuf 2024; 7:277-291. [PMID: 38818303 PMCID: PMC11133161 DOI: 10.1007/s42242-024-00286-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 04/23/2024] [Indexed: 06/01/2024]
Abstract
Melt extrusion-based additive manufacturing (ME-AM) is a promising technique to fabricate porous scaffolds for tissue engineering applications. However, most synthetic semicrystalline polymers do not possess the intrinsic biological activity required to control cell fate. Grafting of biomolecules on polymeric surfaces of AM scaffolds enhances the bioactivity of a construct; however, there are limited strategies available to control the surface density. Here, we report a strategy to tune the surface density of bioactive groups by blending a low molecular weight poly(ε-caprolactone)5k (PCL5k) containing orthogonally reactive azide groups with an unfunctionalized high molecular weight PCL75k at different ratios. Stable porous three-dimensional (3D) scaffolds were then fabricated using a high weight percentage (75 wt.%) of the low molecular weight PCL5k. As a proof-of-concept test, we prepared films of three different mass ratios of low and high molecular weight polymers with a thermopress and reacted with an alkynated fluorescent model compound on the surface, yielding a density of 201-561 pmol/cm2. Subsequently, a bone morphogenetic protein 2 (BMP-2)-derived peptide was grafted onto the films comprising different blend compositions, and the effect of peptide surface density on the osteogenic differentiation of human mesenchymal stromal cells (hMSCs) was assessed. After two weeks of culturing in a basic medium, cells expressed higher levels of BMP receptor II (BMPRII) on films with the conjugated peptide. In addition, we found that alkaline phosphatase activity was only significantly enhanced on films containing the highest peptide density (i.e., 561 pmol/cm2), indicating the importance of the surface density. Taken together, these results emphasize that the density of surface peptides on cell differentiation must be considered at the cell-material interface. Moreover, we have presented a viable strategy for ME-AM community that desires to tune the bulk and surface functionality via blending of (modified) polymers. Furthermore, the use of alkyne-azide "click" chemistry enables spatial control over bioconjugation of many tissue-specific moieties, making this approach a versatile strategy for tissue engineering applications. Graphic abstract Supplementary Information The online version contains supplementary material available at 10.1007/s42242-024-00286-2.
Collapse
Affiliation(s)
- I. A. O. Beeren
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - G. Dos Santos
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - P. J. Dijkstra
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - C. Mota
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - J. Bauer
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - H. Ferreira
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - N. Neves
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - S. Camarero-Espinosa
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
- POLYMAT, University of the Basque Country UPV/EHU, 20018 Donostia/San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - M. B. Baker
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - L. Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
2
|
Li D, Zhou P, Hu Y, Li G, Xia L. POSS-based fluorescence sensor for rapid analysis of β-carotene in health products. LUMINESCENCE 2022; 37:1290-1299. [PMID: 35614877 DOI: 10.1002/bio.4295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 11/10/2022]
Abstract
Recent years, fluorescent organic-inorganic hybrid nanomaterials have received a lot of interest as potential fluorescent sensor materials. In this study, fluorescent organic-inorganic hybrid nanomaterials (POSS@ANT) were created utilizing polyhedral oligomeric silsesquioxane as the precursor and 9,10-bromoanthracene as the monomer. The morphology and composition of POSS@ANT, as well as its pore characteristics and fluorescence properties were studied. And POSS@ANT displayed steady fluorescence emission at an excitation wavelength of 374 nm. Then a β-carotene fluorescence sensor was developed using the capacity of β-carotene to quench the fluorescence of POSS@ANT. The quenching process is linked to acceptor electron transfer and energy transfer, and the sensor has a high selectivity for β-carotene. This β-carotene fluorescence analysis method we established has a linear range of 0.2-4.3 mg/L and a detection limit of 0.081 mg/L. Finally, it was used to quantify β-carotene in health products, the recovery rate was 91.1% - 109.9%, the RSD was 2.2% - 4.3%, and the results were compatible with the results of high-performance liquid chromatography. The approach is reliable and can be used to determine β-carotene in health products.
Collapse
Affiliation(s)
- Dan Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Peipei Zhou
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Yufei Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Liu Y, Koizumi K, Takeda N, Unno M, Ouali A. Synthesis of Octachloro- and Octaazido-Functionalized T 8-Cages and Application to Recyclable Palladium Catalyst. Inorg Chem 2022; 61:1495-1503. [PMID: 34995060 DOI: 10.1021/acs.inorgchem.1c03209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Unprecedented T8-cages bearing eight chloromethyldimethylsilylethyl substituents were obtained in excellent yield from the readily and commercially available octavinylsilsesquioxane. The chloro groups can be quantitatively substituted by azido ones to yield the corresponding octaazido T8 without rearrangement of the cage. The syntheses of both functionalizable POSSs are scalable (gram-scale). The azido-functionalized T8 compound constitutes a versatile building block able to undergo copper-catalyzed azide-alkyne [3 + 2] cycloaddition. As a proof of concept, it was allowed to react with 2-ethynylpyridine to give rise to a multidentate ligand bearing eight 2-pyridyl-triazole moieties (N,N-pincers). The coordination of the eight N,N-bidentate ligands to palladium(II) led to the corresponding octa-palladium complex shown to successfully promote the coupling reaction between anisole and phenylboronic acid. The low solubility of this catalytic complex in the reaction medium enabled (or facilitated or made possible) its straightforward recovery and recycling with four cycles with no loss of activity.
Collapse
Affiliation(s)
- Yujia Liu
- Gunma University Initiative for Advanced Research (GIAR)-International Open Laboratory with ICGM France, Kiryu 376-8515, Japan.,Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Kyoka Koizumi
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Nobuhiro Takeda
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Masafumi Unno
- Gunma University Initiative for Advanced Research (GIAR)-International Open Laboratory with ICGM France, Kiryu 376-8515, Japan.,Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Armelle Ouali
- Gunma University Initiative for Advanced Research (GIAR)-International Open Laboratory with ICGM France, Kiryu 376-8515, Japan.,ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier 34296, France
| |
Collapse
|
4
|
Block Copolymer Networks Composed of Poly(ε-caprolactone) and Polyethylene with Triple Shape Memory Properties. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2652-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
5
|
Okamoto K, Igarashi A, Imoto H, Naka K. Reversible addition‐fragmentation chain transfer cyclopolymerization of dimethacryloyl open‐cage silsesquioxane. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Keigo Okamoto
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology Kyoto Institute of Technology Kyoto Japan
| | - Amato Igarashi
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology Kyoto Institute of Technology Kyoto Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology Kyoto Institute of Technology Kyoto Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology Kyoto Institute of Technology Kyoto Japan
- Materials Innovation Lab Kyoto Institute of Technology Kyoto Japan
| |
Collapse
|
6
|
Rzonsowska M, Kozakiewicz K, Mituła K, Duszczak J, Kubicki M, Dudziec B. Synthesis of Silsesquioxanes with Substituted Triazole Ring Functionalities and Their Coordination Ability. Molecules 2021; 26:439. [PMID: 33467746 PMCID: PMC7830482 DOI: 10.3390/molecules26020439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 11/16/2022] Open
Abstract
A synthesis of a series of mono-T8 and difunctionalized double-decker silsesquioxanes bearing substituted triazole ring(s) has been reported within this work. The catalytic protocol for their formation is based on the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) process. Diverse alkynes were in the scope of our interest-i.e., aryl, hetaryl, alkyl, silyl, or germyl-and the latter was shown to be the first example of terminal germane alkyne which is reactive in the applied process' conditions. From the pallet of 15 compounds, three of them with pyridine-triazole and thiophenyl-triazole moiety attached to T8 or DDSQ core were verified in terms of their coordinating properties towards selected transition metals, i.e., Pd(II), Pt(II), and Rh(I). The studies resulted in the formation of four SQs based coordination compounds that were obtained in high yields up to 93% and their thorough spectroscopic characterization is presented. To our knowledge, this is the first example of the DDSQ-based molecular complex possessing bidentate pyridine-triazole ligand binding two Pd(II) ions.
Collapse
Affiliation(s)
- Monika Rzonsowska
- Department of Organometallic Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (K.K.); (K.M.); (J.D.)
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Katarzyna Kozakiewicz
- Department of Organometallic Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (K.K.); (K.M.); (J.D.)
| | - Katarzyna Mituła
- Department of Organometallic Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (K.K.); (K.M.); (J.D.)
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Julia Duszczak
- Department of Organometallic Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (K.K.); (K.M.); (J.D.)
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Maciej Kubicki
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - Beata Dudziec
- Department of Organometallic Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (K.K.); (K.M.); (J.D.)
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| |
Collapse
|
7
|
Liu Y, Kigure M, Koizumi K, Takeda N, Unno M, Ouali A. Synthesis of Tetrachloro, Tetraiodo, and Tetraazido Double-Decker Siloxanes. Inorg Chem 2020; 59:15478-15486. [PMID: 33026805 DOI: 10.1021/acs.inorgchem.0c02515] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A convenient and scalable (gram-scale) route to unprecedented T8D2-double-decker siloxanes (DDSQs) bearing four chloro (3b) or four azido (5b) groups is reported. Both compounds were characterized and proved to undergo successful nucleophilic substitution for 3b (with iodide or azide) and copper-catalyzed azide-alkyne [3 + 2] cycloaddition for 5b. All of these transformations occurred under mild conditions, and the corresponding DDSQs were prepared in very high yields. Beyond the enhanced multivalency as compared to the previously described disubstituted D2T8 structures, the reported tetrafunctional DDSQs are formed as a single isomer and readily isolated in very high yields. Moreover, the tetra-azido DDSQ 5b constitutes a multipurpose nanobuilding block for the further preparation of new inorganic-organic hybrid materials where the covalent incorporation of a DDSQ moiety brings valuable properties.
Collapse
Affiliation(s)
- Yujia Liu
- Gunma University Initiative for Advanced Research (GIAR)-International Open Laboratory with Institute Charles Gerhardt, Gunma University, Kiryu 376-8515, Japan.,Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Mana Kigure
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Kyoka Koizumi
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Nobuhiro Takeda
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Masafumi Unno
- Gunma University Initiative for Advanced Research (GIAR)-International Open Laboratory with Institute Charles Gerhardt, Gunma University, Kiryu 376-8515, Japan.,Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Armelle Ouali
- Gunma University Initiative for Advanced Research (GIAR)-International Open Laboratory with Institute Charles Gerhardt, Gunma University, Kiryu 376-8515, Japan.,Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-UM-ENSCM, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 05, France
| |
Collapse
|
8
|
Bram AI, Gouzman I, Bolker A, Eliaz N, Verker R. The Effect of POSS Type on the Shape Memory Properties of Epoxy-Based Nanocomposites. Molecules 2020; 25:molecules25184203. [PMID: 32937814 PMCID: PMC7571080 DOI: 10.3390/molecules25184203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 11/16/2022] Open
Abstract
Thermally activated shape memory polymers (SMPs) can memorize a temporary shape at low temperature and return to their permanent shape at higher temperature. These materials can be used for light and compact space deployment mechanisms. The control of transition temperature and thermomechanical properties of epoxy-based SMPs can be done using functionalized polyhedral oligomeric silsesquioxane (POSS) additives, which are also known to improve the durability to atomic oxygen in the space environment. In this study, the influence of varying amounts of two types of POSS added to epoxy-based SMPs on the shape memory effect (SME) were studied. The first type contained amine groups, whereas the second type contained epoxide groups. The curing conditions were defined using differential scanning calorimetry and glass transition temperature (Tg) measurements. Thermomechanical and SME properties were characterized using dynamic mechanical analysis. It was found that SMPs containing amine-based POSS show higher Tg, better shape fixity and faster recovery speed, while SMPs containing epoxide-based POSS have higher crosslinking density and show superior thermomechanical properties above Tg. This work demonstrates how the Tg and SME of SMPs can be controlled by the type and amount of POSS in an epoxy-based SMP nanocomposite for future space applications.
Collapse
Affiliation(s)
- Avraham I. Bram
- Department of Materials Science and Engineering, Tel-Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel;
- Space Environment Department, Soreq Nuclear Research Center, Yavne 81800, Israel; (I.G.); (A.B.); (R.V.)
- Licensing & Safety Office, Israel Atomic Energy Commission, Tel Aviv P.O. Box 7061, Israel
- Correspondence: ; Tel.: +972-50-6239121
| | - Irina Gouzman
- Space Environment Department, Soreq Nuclear Research Center, Yavne 81800, Israel; (I.G.); (A.B.); (R.V.)
| | - Asaf Bolker
- Space Environment Department, Soreq Nuclear Research Center, Yavne 81800, Israel; (I.G.); (A.B.); (R.V.)
| | - Noam Eliaz
- Department of Materials Science and Engineering, Tel-Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel;
| | - Ronen Verker
- Space Environment Department, Soreq Nuclear Research Center, Yavne 81800, Israel; (I.G.); (A.B.); (R.V.)
| |
Collapse
|
9
|
Zhao B, Mei H, Zheng S. Polyethylene telechelics with POSS termini: synthesis, morphologies and shape memory properties. Polym Chem 2020. [DOI: 10.1039/d0py01120g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organic–inorganic polyethylene (PE) telechelics with polyhedral oligomeric silsesquioxane termini were synthesized via the combination of acyclic diene metathesis, ring-opening metathesis polymerization and hydrogenation reactions.
Collapse
Affiliation(s)
- Bingjie Zhao
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Honggang Mei
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Sixun Zheng
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|