1
|
Yokesahachart C, Khanoonkon N, Yoksan R. Effect of thermoplastic starch/poly(lactic acid) weight fraction on phase morphology and performance of biodegradable blends and their jute fiber composites. Int J Biol Macromol 2024; 283:137705. [PMID: 39549797 DOI: 10.1016/j.ijbiomac.2024.137705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/25/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
The present work investigates the phase morphology and properties of biodegradable thermoplastic starch (TPS)-poly(lactic acid) (PLA) blends and their jute fiber (JF) biocomposites. The TPS/PLA blends and TPS/PLA/JF composites were fabricated using a twin-screw extruder and then injection molded into the test specimens, varying the TPS/PLA weight fractions (80/20, 60/40, 40/60, and 20/80) while keeping the JF content constant (10 wt%). At 80 wt% TPS, the TPS/PLA blend showed a co-continuous structure, whereas the remaining blends (20, 40, and 60 wt% TPS) exhibited a TPS droplets-PLA matrix structure. The TPS/PLA/JF composites displayed a PLA droplets-TPS matrix structure at 80 wt% TPS, a co-continuous structure at 60 wt% TPS, and a TPS droplets-PLA matrix structure at 20 and 40 wt% TPS. Increasing the proportion of PLA increased the melt flow ability, tensile strength, Young's modulus, storage modulus, thermal stability, and water contact angle of the blends and composites. The addition of jute fibers altered the phase morphology of the blends, enhanced their strength and stiffness, increased PLA nucleation, and improved the TPS-PLA phase compatibility. The blends and composites herein exhibit great potential in developing environmentally friendly injection-molded products, such as stationery, toys, gardening supplies, etc.
Collapse
Affiliation(s)
- Chanakorn Yokesahachart
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Nattaporn Khanoonkon
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand; Center for Advanced Studies for Agriculture and Food (CASAF), Kasetsart University Institute for Advanced Studies (KUIAS), Kasetsart University, Bangkok 10900, Thailand
| | - Rangrong Yoksan
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand; Center for Advanced Studies for Agriculture and Food (CASAF), Kasetsart University Institute for Advanced Studies (KUIAS), Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
2
|
Baniasadi H, Äkräs L, Madani Z, Silvenius F, Fazeli M, Lipponen S, Vapaavuori J, Seppälä J. Development and characterization of polylactic acid/starch biocomposites - From melt blending to preliminary life cycle assessment. Int J Biol Macromol 2024; 279:135173. [PMID: 39214203 DOI: 10.1016/j.ijbiomac.2024.135173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/29/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
This study presents a comprehensive analysis encompassing melt blending, characterization, life cycle assessment (LCA), and 3D printing of a range of polylactic acid (PLA)/starch biocomposites, with starch content varying from 0 to 50 wt%. To enhance compatibility between the starch particles and the PLA matrix, we utilized a solvent-free method to graft N-octadecyl isocyanate (ODI) molecules onto the surface of the starch particles, resulting in ODI-g-starch, which yielded several improved properties. Notably, toughness and elongation at break improved by approximately 170 % and 300 %, respectively. Moreover, the crystallinity increased from 11.6 % in plain PLA to 30.1 %, suggesting that the uniform dispersion of ODI-g-starch particles acted as nucleating sites for the crystallization of PLA chains. Additionally, viscosity decreased significantly with the introduction of ODI-g-starch particles, indicating their plasticizing effect, thereby enhancing the processability and ease of fabrication of the biocomposite. Crucially, our LCA analysis revealed a significant reduction in the carbon footprint of these biocomposites, up to 18 % and 63 %, compared to plain PLA and selected fossil-based plastics, respectively, upon the incorporation of ODI-g-starch. In summary, our research introduces the newly developed PLA/starch biocomposites as a sustainable and eco-friendly alternative to commercially available plain PLA and specific fossil-based plastics.
Collapse
Affiliation(s)
- Hossein Baniasadi
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland.
| | - Laura Äkräs
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Zahra Madani
- Department of Chemistry and Materials Science, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Frans Silvenius
- Bieconomy and Environment, Natural Resources Institute Finland, Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Mahyar Fazeli
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Sami Lipponen
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Jaana Vapaavuori
- Department of Chemistry and Materials Science, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Jukka Seppälä
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| |
Collapse
|
3
|
Keith M, Koller M, Lackner M. Carbon Recycling of High Value Bioplastics: A Route to a Zero-Waste Future. Polymers (Basel) 2024; 16:1621. [PMID: 38931972 PMCID: PMC11207349 DOI: 10.3390/polym16121621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Today, 98% of all plastics are fossil-based and non-biodegradable, and globally, only 9% are recycled. Microplastic and nanoplastic pollution is just beginning to be understood. As the global demand for sustainable alternatives to conventional plastics continues to rise, biobased and biodegradable plastics have emerged as a promising solution. This review article delves into the pivotal concept of carbon recycling as a pathway towards achieving a zero-waste future through the production and utilization of high-value bioplastics. The review comprehensively explores the current state of bioplastics (biobased and/or biodegradable materials), emphasizing the importance of carbon-neutral and circular approaches in their lifecycle. Today, bioplastics are chiefly used in low-value applications, such as packaging and single-use items. This article sheds light on value-added applications, like longer-lasting components and products, and demanding properties, for which bioplastics are increasingly being deployed. Based on the waste hierarchy paradigm-reduce, reuse, recycle-different use cases and end-of-life scenarios for materials will be described, including technological options for recycling, from mechanical to chemical methods. A special emphasis on common bioplastics-TPS, PLA, PHAs-as well as a discussion of composites, is provided. While it is acknowledged that the current plastics (waste) crisis stems largely from mismanagement, it needs to be stated that a radical solution must come from the core material side, including the intrinsic properties of the polymers and their formulations. The manner in which the cascaded use of bioplastics, labeling, legislation, recycling technologies, and consumer awareness can contribute to a zero-waste future for plastics is the core topics of this article.
Collapse
Affiliation(s)
- Matthew Keith
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK;
| | - Martin Koller
- Institute of Chemistry, NAWI Graz, University of Graz, 8010 Graz, Austria;
| | - Maximilian Lackner
- Go!PHA, Oudebrugsteeg 9, 1012 JN Amsterdam, The Netherlands
- University of Applied Sciences Technikum Wien, Hoechstaedtplatz 6, 1200 Vienna, Austria
| |
Collapse
|
4
|
Han Lyn F, Ismail-Fitry MR, Noranizan MA, Tan TB, Nur Hanani ZA. Recent advances in extruded polylactic acid-based composites for food packaging: A review. Int J Biol Macromol 2024; 266:131340. [PMID: 38574927 DOI: 10.1016/j.ijbiomac.2024.131340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
This review article provides a comprehensive overview of recent progress in polylactic acid (PLA) extrusion, emphasizing its applications in food packaging. PLA has witnessed a significant rise in demand, particularly within the food packaging sector. A notable increase in research publications has been observed in recent years, exploring the extrusion of PLA and PLA-based composite films. In comparison to conventional techniques such as solvent casting, extrusion offers advantages in scalability and environmental sustainability, especially for industrial-scale production. The benefits of this method include faster drying times, enhanced flexibility, consistent film thickness, and less structural defects. Extensive research has focused on the effect of various PLA blends on film properties, including flexibility, elongation, and barrier properties against water vapour and gases. Furthermore, the incorporation of compounds such as antioxidants, antimicrobials, and natural pigments has enabled the development of active and intelligent PLA-based packaging. This article summarizes the types of additives employed to enhance the physicochemical properties of extruded PLA and film performance. Additionally, this article explores the diverse applications of extruded PLA in active and intelligent packaging for various food products.
Collapse
Affiliation(s)
- F Han Lyn
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - M R Ismail-Fitry
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - M A Noranizan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Tai Boon Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Z A Nur Hanani
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia; Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
5
|
Lipatova IM, Losev NV. The influence of the combined impact of shear stress and cavitation on the structure and properties of starch-natural rubber composite. Carbohydr Polym 2024; 330:121852. [PMID: 38368078 DOI: 10.1016/j.carbpol.2024.121852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/27/2023] [Accepted: 01/19/2024] [Indexed: 02/19/2024]
Abstract
In this article, we examined a high-performance, environmentally friendly method for producing composite films based on starch and natural rubber latex (NR). To increase the compatibility of the components, the casting dispersions were subjected to short-term (10 s) mechanical activation in a rotor-stator device. Using the rotational viscosimetry method, it was found that mechanical activation reduces the structuring degree and the effective viscosity of the casting dispersions. The composite films with the NR content of 0-30 % were characterized using optical and SEM microscopy, X-ray diffraction, tensile, and moisture resistance testing data. When the NR content increases from 0 to 30 %, the elongation at break increased by 570 % and 950 % for films obtained using mechanical activation and without it, respectively. The extremely high increase in film tensile strength (on average by 155 %) and the decrease in the NR extractability with toluene due to the use of mechanical activation indicate the possibility of mechanically induced formation of an in situ copolymer at the starch-NR interface. The developed method can be recommended for large-scale production of composite starch-based materials.
Collapse
Affiliation(s)
- I M Lipatova
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., Ivanovo 153045, Russia.
| | - N V Losev
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., Ivanovo 153045, Russia
| |
Collapse
|
6
|
Xu X, Rades T, Grohganz H. Molecular interactions of hydrated co-amorphous systems of prilocaine and lidocaine. Int J Pharm 2024; 651:123807. [PMID: 38220121 DOI: 10.1016/j.ijpharm.2024.123807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
It is generally accepted that water as a plasticizer can decrease the glass transition temperatures (Tgs) of amorphous drugs and drug excipient systems. However, previous studies suggest that water, as an anti-plasticizer, can increase the Tgs of co-amorphous systems of prilocaine (PRL) and lidocaine (LID). In order to investigate the intermolecular interactions between water and co-amorphous PRL-LID systems, Fourier transform infrared spectroscopy (FTIR) and principal component analysis (PCA) were conducted. Water was found to bind with the carbonyl groups of PRL and LID molecularly evenly in the hydrated co-amorphous PRL-LID systems. Quantum chemical simulations visually confirmed the interactions between water and co-amorphous PRL-LID systems. Furthermore, the physical stability of hydrated co-amorphous PRL-LID systems was improved due to the anti-plasticizing effect of water, compared with the anhydrous samples. The preference of water to interact with the carbonyl groups of PRL and LID as binding sites could be associated with the anti-plasticizing effect of water on the co-amorphous PRL-LID systems.
Collapse
Affiliation(s)
- Xiaoyue Xu
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Thomas Rades
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Holger Grohganz
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
7
|
Khotsaeng N, Simchuer W, Imsombut T, Srihanam P. Effect of Glycerol Concentrations on the Characteristics of Cellulose Films from Cattail ( Typha angustifolia L.) Flowers. Polymers (Basel) 2023; 15:4535. [PMID: 38231905 PMCID: PMC10708089 DOI: 10.3390/polym15234535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
Plastic waste has become a big problem for the environment globally. Biodegradable polymers are a potential replacement for plastics that can have a positive outcome both environmentally and economically. In this work, we used acid hydrolysis and alkaline treatment to extract cellulose fibers from cattails. The obtained cellulose was used as a substrate for the fabrication of cellulose film using a casting technique on plastic plates. Different concentrations of the plasticizer, glycerol, were used to prepare films for comparison, and its effects on the film's characteristics were observed. The morphology, chemical structure, and thermal stability of the cattail cellulose (CTC) films were studied using techniques such as scanning electron microscopy (SEM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and thermogravimetric analysis (TGA), respectively. Measurements of transparency, moisture content (MC), water solubility (MS), and water contact angle (WCA) were also performed. Introducing glycerol into the films increased the transparency, MC, and WS values, as well as the gap width between film textures. However, it resulted in a decrease in the WCA of the films, showing that the hydrophilicity of the films is increased by the addition of glycerol. The interaction between the functional groups of cellulose and glycerol was established from the ATR-FTIR and XRD data. The obtained results indicated that glycerol affected the thermal stability and the degree of crystallinity of the produced films. Accordingly, the hydrophilicity of the cellulose film was increased by increasing the glycerol content; therefore, cattail cellulose films can be used as a biodegradable alternative to plastic in the future.
Collapse
Affiliation(s)
- Nuanchai Khotsaeng
- Faculty of Science and Health Technology, Kalasin University, Namon District, Kalasin 46230, Thailand;
| | - Wilaiwan Simchuer
- Faculty of Science and Technology, Loei Rajabhat University, Mueang District, Loei 42000, Thailand;
| | - Thanonchat Imsombut
- Department of Rubber and Polymer Technology, Faculty of Science and Technology, Rajabhat Mahasarakham University, Mueang District, Maha Sarakham 44000, Thailand;
| | - Prasong Srihanam
- Biodegradable Polymers Research Unit, Department of Chemistry, Centre of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand
| |
Collapse
|
8
|
Shahdan D, Rosli NA, Chen RS, Ahmad S, Gan S. Strategies for strengthening toughened poly(lactic acid) blend via natural reinforcement with enhanced biodegradability: A review. Int J Biol Macromol 2023; 251:126214. [PMID: 37572810 DOI: 10.1016/j.ijbiomac.2023.126214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/06/2023] [Accepted: 08/05/2023] [Indexed: 08/14/2023]
Abstract
The growing popularity of poly(lactic acid) (PLA) can be attributed to its favorable attributes, such as excellent compostability and robust mechanical properties. Two notable limitations of PLA are its high brittleness and slow biodegradation rate. Both of blending and copolymerization strategies work well to improve PLA's toughness while sacrificing the good tensile strength and modulus properties of PLA. One of the most effective and economical approaches to address this challenge is to incorporate natural reinforcing agents into the toughened PLA system, thereby simultaneously promoting the biodegradation rate of PLA. Nevertheless, the enhancement of tensile strength and modulus is accompanied by a notable decrease in elongation. Therefore, this review provides comprehensive information on the literature works related to the tensile strength, modulus, elongation at break and impact strength of the toughened PLA and its natural fiber reinforced composites. The impact of natural reinforcing agent on the tensile fracture mechanism as well as the synergistic effect on strengthening and toughening performance will be discussed. This review also focuses on the factors boosting the biodegradability of toughened PLA blend by using natural reinforcing fiber. Review presents potential future insights into the development of biodegradable and balanced strengthened-toughened PLA based advanced materials.
Collapse
Affiliation(s)
- Dalila Shahdan
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
| | - Noor Afizah Rosli
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia..
| | - Ruey Shan Chen
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia.
| | - Sahrim Ahmad
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
| | - Sinyee Gan
- Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| |
Collapse
|
9
|
Ávila-Orta CA, Covarrubias-Gordillo CA, Fonseca-Florido HA, Melo-López L, Radillo-Ruíz R, Gutiérrez-Montiel E. PLA/modified-starch blends and their application for the fabrication of non-woven fabrics by melt-blowing. Carbohydr Polym 2023; 316:120975. [PMID: 37321705 DOI: 10.1016/j.carbpol.2023.120975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/14/2023] [Accepted: 04/30/2023] [Indexed: 06/17/2023]
Abstract
Blends of polylactic acid (PLA) and thermoplastic starch (TS) with and without chemical modification were obtained by melt extrusion and used to obtain non-woven fabrics by melt-blowing for the first time. Different TS were obtained by reactive extrusion from native cassava, oxidized, maleated, and dual modified (oxidized and maleated) starch. The chemical modification of starch decreases the difference in viscosity and favors blending, resulting in more homogeneous morphologies, unlike the blends with unmodified TS, which displayed a visible phase separation with large TS droplets. The dual modified starch showed a synergistic effect to process TS by melt-blowing. Regarding non-woven fabrics, values in diameter (2.5-82.1 μm), thickness (0.4-0.6 mm), and grammage (49.9-103.8 g/m2) were explained due to differences in viscosity of the components, and to the fact that during melt the hot air preferentially stretches and thins the areas without large droplets of TS. Moreover, plasticized starch acts as a flow modifier. The porosity of the fibers increased with the addition of TS. Further studies and optimization of blends with low contents of TS and type starch modification will be necessary to completely understand these systems with very complex behavior to obtain non-woven fabrics with improved properties and application.
Collapse
Affiliation(s)
- Carlos Alberto Ávila-Orta
- Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Saltillo, Coahuila C. P 25294, Mexico
| | | | - Heidi Andrea Fonseca-Florido
- Investigador por México, CONACYT, Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Saltillo, Coahuila C.P 25294, Mexico.
| | - Leticia Melo-López
- Investigador por México, CONACYT, Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Saltillo, Coahuila C.P 25294, Mexico
| | - Rodolfo Radillo-Ruíz
- Consultoría e Ingeniería en Servicios Especializados (CISE), Leona Vicario 1686, Ciudad de México C.P 09500, Mexico
| | - Edith Gutiérrez-Montiel
- Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Saltillo, Coahuila C. P 25294, Mexico
| |
Collapse
|
10
|
Thongsomboon W, Srihanam P, Baimark Y. Preparation of flexible poly(l-lactide)-b-poly(ethylene glycol)-b-poly(l-lactide)/talcum/thermoplastic starch ternary composites for use as heat-resistant and single-use bioplastics. Int J Biol Macromol 2023; 230:123172. [PMID: 36639081 DOI: 10.1016/j.ijbiomac.2023.123172] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
Poly(l-lactide)-b-poly(ethylene glycol)-b-poly(l-lactide) block copolymer (PLLA-PEG-PLLA) is a highly flexible bioplastic, yet its use in practical applications is limited due to its poor heat resistance and high production cost. In this study, talcum was used as a nucleating agent to improve the heat resistance, and thermoplastic starch (TPS) was used as a low-cost filler to reduce the cost of production. PLLA-PEG-PLLA/talcum/TPS and PLLA/talcum/TPS ternary composites with 4 wt% talcum and various TPS contents were prepared by melt blending before injection molding and were then evaluated. When PEG middle-blocks were present, the PLLA-PEG-PLLA-based composites showed a higher crystallinity, more flexibility, and a higher heat resistance than the PLLA-based composites. Although the addition of TPS decreased the heat resistance of all the composites, the PLLA-PEG-PLLA/talcum/TPS composites still had high Vicat softening temperatures (VST, 113-131 °C) and demonstrated a good dimensional stability to heat by maintaining their original shapes upon heat exposure. The biodegradation test in soil suggested that the synergistic effect of the PEG middle-blocks and TPS significantly increased the biodegradability of the PLLA-PEG-PLLA/talcum/TPS composites. This improved heat resistance, lower cost, and accelerated biodegradation make PLLA-PEG-PLLA/talcum/TPS composites a promising material to be used as heat-resistant and single-use bioplastic products.
Collapse
Affiliation(s)
- Wiriya Thongsomboon
- Biodegradable Polymers Research Unit, Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand
| | - Prasong Srihanam
- Biodegradable Polymers Research Unit, Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand
| | - Yodthong Baimark
- Biodegradable Polymers Research Unit, Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand.
| |
Collapse
|
11
|
Comparative performance of fused deposit modeling
3D‐printed
and injection molded polylactic acid/thermoplastic starch/nanoclay bio‐based nanocomposites. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.6019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
12
|
Murillo EA. In situ compatibilization of thermoplastic starch/polylactic acid blends using citric acid. Macromol Res 2023. [DOI: 10.1007/s13233-023-00127-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
13
|
Polylactic acid/tapioca starch/banana peel-based material for colorimetric and electrochemical biosensing applications. Carbohydr Polym 2023; 302:120368. [PMID: 36604048 DOI: 10.1016/j.carbpol.2022.120368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/27/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022]
Abstract
The rapidly growing electronic and plastic waste has become a global environmental concern. Developing advanced and environmentally safe agro-based materials is an emerging field with an enormous potential for applications in sensors and devices. Here, an agro-based material as membrane has been developed by incorporating tapioca starch and banana peel powder in polylactic acid, with uniform dispersibility and amorphous nature. The material was used for the development of electrochemical sensor for S-gene of SARS-CoV-2. Further, the membrane was used for the development of a non-invasive, colorimetric skin patch for the detection of glucose and a sensor for the assessment of fruit juice quality. Using OECD-recommended model systems, the developed membrane was found to be non-toxic towards aquatic and terrestrial non-target organisms. The developed conductive material opens new avenues in various electrochemical, analytical, and biological applications.
Collapse
|
14
|
Li X, Gao B, Zhang S. Adjusting hydrogen bond by Lever Principle to achieve high performance starch-based biodegradable films with low migration quantity. Carbohydr Polym 2022; 298:120107. [DOI: 10.1016/j.carbpol.2022.120107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/02/2022]
|
15
|
Fonseca-García A, Osorio BH, Aguirre-Loredo RY, Calambas HL, Caicedo C. Miscibility study of thermoplastic starch/polylactic acid blends: Thermal and superficial properties. Carbohydr Polym 2022; 293:119744. [DOI: 10.1016/j.carbpol.2022.119744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 11/02/2022]
|
16
|
Rasoolzadeh A, Mehrabi K, Bakhtyari A, Javanmardi J, Nasrifar K, Mohammadi AH. Clathrate hydrates stability conditions in the presence of aqueous solutions of environmentally friendly sugar-derived compounds: A precise thermodynamic approach. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Calambás Pulgarin HL, Caicedo C, López EF. Effect of surfactant content on rheological, thermal, morphological and surface properties of thermoplastic starch (TPS) and polylactic acid (PLA) blends. Heliyon 2022; 8:e10833. [PMID: 36247174 PMCID: PMC9557894 DOI: 10.1016/j.heliyon.2022.e10833] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/30/2022] [Accepted: 09/26/2022] [Indexed: 11/03/2022] Open
Abstract
Miscibility in biopolymeric blends is a critical process that requires evaluation of the effect of surfactants or coupling agents under conditions similar to processing. Different mixtures in the molten state of plasticized starch and polylactic acid in the presence of a surfactant (Tween 20) at different concentrations were studied. This allowed knowing the rheological, thermal and surface behavior of the mixtures. The results of the dynamic rheological analysis showed increases in viscosity in the presence of the surfactant, in which strong interactions were produced at high shear rates that reflect possible crosslinking between the polymer chains, in addition to intermolecular interactions that were evidenced in the infrared spectrum. Likewise, the storage and loss modulus showed transitions mainly from viscous to elastic typical for thermoplastics. The thermogravimetric analysis did not show significant changes between the mixtures. However, the calorimetric analysis showed changes in the crystallinity of the mixtures, the tensoactive promotes greater freedom of movement and rearrangements in the microstructure with decrease of interface between polymers, and less compaction of the material induced by the emulsion. Analysis derived from biopolymeric films against contact with water shows significant changes. Interaction with water in short times (in the order of minutes) according to the sessile drop technique, favors hydrophilicity by increasing the concentration of Tween 20. However, interaction with water for prolonged times (in the order of hours), shows that the absorption reaches saturation in samples a stabilization in the absorption is observed. The results demonstrate that the miscibility of PLA in AS was achieved in the presence of the tween, under conventional processing conditions. The stability of the different formulations allows the production of films for packaging and biomedical applications.
Collapse
|
18
|
Improvement in Thermal Stability of Flexible Poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) Bioplastic by Blending with Native Cassava Starch. Polymers (Basel) 2022; 14:polym14153186. [PMID: 35956700 PMCID: PMC9370861 DOI: 10.3390/polym14153186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 02/05/2023] Open
Abstract
High-molecular-weight poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) triblock copolymer (PLLA-PEG-PLLA) is a promising candidate for use as a biodegradable bioplastic because of its high flexibility. However, the applications of PLLA-PEG-PLLA have been limited due to its high cost and poor thermal stability compared to PLLA. In this work, native cassava starch was blended to reduce the production cost and to improve the thermal stability of PLLA-PEG-PLLA. The starch interacted with PEG middle blocks to increase the thermal stability of the PLLA-PEG-PLLA matrix and to enhance phase adhesion between the PLLA-PEG-PLLA matrix and dispersed starch particles. Tensile stress and strain at break of PLLA-PEG-PLLA films decreased and the hydrophilicity increased as the starch content increased. However, all the PLLA-PEG-PLLA/starch films remained more flexible than the pure PLLA film, representing a promising candidate in biomedical, packaging and agricultural applications.
Collapse
|
19
|
Murillo EA, Ararat CA. An approach for the compatibility of thermoplastic starch/poly (lactic acid) blends using an ester obtained from glycerol and tall oil fatty acids. J Appl Polym Sci 2022. [DOI: 10.1002/app.52876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Edwin A. Murillo
- Grupo de Investigación en Materiales Poliméricos (GIMAPOL), Departamento de Química Universidad Francisco de Paula Santander San José de Cúcuta Colombia
| | - Carlos A. Ararat
- Grupo de Investigación en Materiales Poliméricos (GIMAPOL), Departamento de Química Universidad Francisco de Paula Santander San José de Cúcuta Colombia
| |
Collapse
|
20
|
Wang L, Xu J, Zhang M, Zheng H, Li L. Preservation of soy protein-based meat analogues by using PLA/PBAT antimicrobial packaging film. Food Chem 2022; 380:132022. [DOI: 10.1016/j.foodchem.2021.132022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/10/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022]
|
21
|
Srisuwan Y, Baimark Y. Thermal, morphological and mechanical properties of flexible poly(l-lactide)-b-polyethylene glycol-b-poly(l-lactide)/thermoplastic starch blends. Carbohydr Polym 2022; 283:119155. [DOI: 10.1016/j.carbpol.2022.119155] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/28/2021] [Accepted: 01/16/2022] [Indexed: 12/21/2022]
|
22
|
Morphology development and mechanical properties of PLA/differently plasticized starch (TPS) binary blends in comparison with PLA/dynamically crosslinked “TPS+EVA” ternary blends. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Chen Y, Tang T, Ayranci C. Moisture‐induced anti‐plasticization of polylactic acid: Experiments and modeling. J Appl Polym Sci 2022. [DOI: 10.1002/app.52369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yu Chen
- Department of Mechanical Engineering University of Alberta Edmonton Alberta Canada
| | - Tian Tang
- Department of Mechanical Engineering University of Alberta Edmonton Alberta Canada
| | - Cagri Ayranci
- Department of Mechanical Engineering University of Alberta Edmonton Alberta Canada
| |
Collapse
|
24
|
|
25
|
Lee D, Sun Y, Youe W, Gwon J, Cheng HN, Wu Q. 3D‐printed wood‐polylactic acid‐thermoplastic
starch composites: Performance features in relation to biodegradation treatment. J Appl Polym Sci 2021. [DOI: 10.1002/app.50914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Danbee Lee
- School of Renewable Natural Resources Louisiana State University AgCenter Baton Rouge Louisiana USA
| | - Yufeng Sun
- School of Renewable Natural Resources Louisiana State University AgCenter Baton Rouge Louisiana USA
- Collaborative Innovation Center of Biomass Energy, College of Mechanical and Electrical Engineering Henan Agricultural University Zhengzhou China
| | - Won‐Jae Youe
- Forest Products Department National Institute of Forest Science Seoul South Korea
| | - Jaegyoung Gwon
- Forest Products Department National Institute of Forest Science Seoul South Korea
| | - Huai N. Cheng
- Southern Regional Research Center USDA Agriculture Research Service New Orleans Louisiana USA
| | - Qinglin Wu
- School of Renewable Natural Resources Louisiana State University AgCenter Baton Rouge Louisiana USA
| |
Collapse
|
26
|
Nagy B, Miskolczi N, Eller Z. Improving Mechanical Properties of PLA/Starch Blends Using Masterbatch Containing Vegetable Oil Based Active Ingredients. Polymers (Basel) 2021; 13:polym13172981. [PMID: 34503021 PMCID: PMC8434555 DOI: 10.3390/polym13172981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this research was to increase the compatibility between PLA and starch with vegetable oil-based additives. Based on tensile results, it can be stated, that Charpy impact strength could be improved for 70/30 and 60/40 blends in both unconditioned and conditioned cases, regardless of vegetable oil, while no advantageous change in impact strength was obtained with PLA-g-MA. Considering sample with the highest starch concentration (50%), the flexural modulus was improved by using sunflower oil-based additive, Charpy impact strength and elongation at break was increased using rapeseed oil-based additive in both conditioned and unconditioned cases. SEM images confirmed the improvement of compatibility between components.
Collapse
|
27
|
Momeni S, Rezvani Ghomi E, Shakiba M, Shafiei-Navid S, Abdouss M, Bigham A, Khosravi F, Ahmadi Z, Faraji M, Abdouss H, Ramakrishna S. The Effect of Poly (Ethylene glycol) Emulation on the Degradation of PLA/Starch Composites. Polymers (Basel) 2021; 13:1019. [PMID: 33806074 PMCID: PMC8036416 DOI: 10.3390/polym13071019] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
As a hydrophilic renewable polymer, starch has been widely used in biocompatible plastics as a filler for more than two decades. The present study aimed at investigating the effects of polyethylene glycol (PEG), as a plasticizer, on the physicochemical properties of a hybrid composite-polylactic acid (PLA) and thermoplastic starch (TPS). A solvent evaporation process was adopted to gelatinize the starch and disparate PEG contents ranging from 3 to 15 wt.% (with respect to the sample weight) were examined. It was revealed that the increase in the PEG content was accompanied by an increment in the starch gelatinization degree. Referring to the microstructural analyses, the TPS/PLA mixture yielded a ductile hybrid composite with a fine morphology and a uniform phase. Nevertheless, two different solvents, including acetone and ethanol, were used to assess if they had any effect on the hybrid's morphology, tensile strength and thermal properties. It was found that ethanol culminated in a porous hybrid composite with a finer morphology and better starch distribution in the PLA structure than acetone. As the result of PEG addition to the composite, the crystallinity and tensile strength were decreased, whereas the elongation increased. The hydrolytic degradation of samples was assessed under different pH and thermal conditions. Moreover, the microbial degradation of the PLA/TPS hybrid composite containing different PEG molar fractions was investigated in the soil for 45 days. The rate of degradation in both hydrolytic and biodegradation increased in the samples with a higher amount of PEG with ethanol solvent.
Collapse
Affiliation(s)
- Sarieh Momeni
- Department of Chemistry, Amirkabir University of Technology, Tehran 15875-4413, Iran; (S.M.); (Z.A.)
| | - Erfan Rezvani Ghomi
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore;
| | - Mohamadreza Shakiba
- Department of Chemistry, Amirkabir University of Technology, Tehran 15875-4413, Iran; (S.M.); (Z.A.)
| | - Saied Shafiei-Navid
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar 47416-95447, Iran;
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran 15875-4413, Iran; (S.M.); (Z.A.)
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials—National Research Council (IPCB-CNR), Viale J.F. Kennedy 54—Mostra d’Oltremare pad. 20, 80125 Naples, Italy;
| | - Fatemeh Khosravi
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore;
| | - Zahed Ahmadi
- Department of Chemistry, Amirkabir University of Technology, Tehran 15875-4413, Iran; (S.M.); (Z.A.)
| | - Mehdi Faraji
- School of Chemistry, College of Science, University of Tehran, Tehran 14155-6455, Iran;
| | - Hamidreza Abdouss
- Department of Polymer, Amirkabir University of Technology, Tehran 15875-4413, Iran;
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore;
| |
Collapse
|
28
|
Barra A, Santos JDC, Silva MRF, Nunes C, Ruiz-Hitzky E, Gonçalves I, Yildirim S, Ferreira P, Marques PAAP. Graphene Derivatives in Biopolymer-Based Composites for Food Packaging Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2077. [PMID: 33096705 PMCID: PMC7589102 DOI: 10.3390/nano10102077] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
This review aims to showcase the current use of graphene derivatives, graphene-based nanomaterials in particular, in biopolymer-based composites for food packaging applications. A brief introduction regarding the valuable attributes of available and emergent bioplastic materials is made so that their contributions to the packaging field can be understood. Furthermore, their drawbacks are also disclosed to highlight the benefits that graphene derivatives can bring to bio-based formulations, from physicochemical to mechanical, barrier, and functional properties as antioxidant activity or electrical conductivity. The reported improvements in biopolymer-based composites carried out by graphene derivatives in the last three years are discussed, pointing to their potential for innovative food packaging applications such as electrically conductive food packaging.
Collapse
Affiliation(s)
- Ana Barra
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (J.D.C.S.); (M.R.F.S.)
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (C.N.); (I.G.)
- Materials Science Institute of Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain;
| | - Jéssica D. C. Santos
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (J.D.C.S.); (M.R.F.S.)
- Institute of Food and Beverage Innovation, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland;
| | - Mariana R. F. Silva
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (J.D.C.S.); (M.R.F.S.)
| | - Cláudia Nunes
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (C.N.); (I.G.)
| | - Eduardo Ruiz-Hitzky
- Materials Science Institute of Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain;
| | - Idalina Gonçalves
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (C.N.); (I.G.)
| | - Selçuk Yildirim
- Institute of Food and Beverage Innovation, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland;
| | - Paula Ferreira
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (J.D.C.S.); (M.R.F.S.)
| | - Paula A. A. P. Marques
- Department of Mechanical Engineering, TEMA—Centre for Mechanical Technology and Automation, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
29
|
Dubé MA, Gabriel VA, Pakdel AS, Zhang Y. Sustainable polymer reaction engineering: Are we there yet? CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23865] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Marc A. Dubé
- Department of Chemical and Biological Engineering University of Ottawa Ottawa Ontario Canada
| | - Vida A. Gabriel
- Department of Chemical and Biological Engineering University of Ottawa Ottawa Ontario Canada
| | - Amir S. Pakdel
- Department of Chemical and Biological Engineering University of Ottawa Ottawa Ontario Canada
| | - Yujie Zhang
- Department of Chemical and Biological Engineering University of Ottawa Ottawa Ontario Canada
| |
Collapse
|
30
|
Noivoil N, Yoksan R. Oligo(lactic acid)-grafted starch: A compatibilizer for poly(lactic acid)/thermoplastic starch blend. Int J Biol Macromol 2020; 160:506-517. [DOI: 10.1016/j.ijbiomac.2020.05.178] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/04/2020] [Accepted: 05/22/2020] [Indexed: 10/24/2022]
|
31
|
Nguyen VP, Yoo J, Lee JY, Chung JJ, Hwang JH, Jung Y, Lee SM. Enhanced Mechanical Stability and Biodegradability of Ti-Infiltrated Polylactide. ACS APPLIED MATERIALS & INTERFACES 2020; 12:43501-43512. [PMID: 32893625 DOI: 10.1021/acsami.0c13246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Biodegradable polymers have been often used in place of conventional nondegradable polymers for industrial and medical applications. In particular, polylactide (PLA) has been regarded as a popular ecofriendly plastic and has many advantages like good biocompatibility and processability. Yet, it still has some drawbacks in mechanical properties. Here, we prepared Ti-infiltrated PLA by mimicking the gelatinous jaw of a seaworm whose mechanical properties are toggled up and down by the tiny amount of metal ions, expecting to prepare a new type of alternative. Ti induced significant chemical and microstructural changes in the PLA, which led to a notable improvement in the mechanical properties as compared to the neat PLA. The Ti-infiltrated PLA exhibited high resistance to rapid degradation. More importantly, the toxicity assessment demonstrated that the resulting PLA is still biocompatible and nontoxic. Consequently, we proved that the Ti-infiltrated PLA has high mechanical properties comparable to conventional nondegradable polymers and good biocompatibility as well as delayed biodegradability. We anticipate the current Ti-infiltrated PLA to be an ecofriendly replacement of some conventional plastics, which helps preserve a green environment.
Collapse
Affiliation(s)
- Viet Phuong Nguyen
- Nanomechatronics, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Department of Nanomechanics, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
| | - Jin Yoo
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Ju Young Lee
- Animal Model Research Group, Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology (KIT), Jeongeup 53212, Jeollabuk-do, Republic of Korea
- Division of Human and Environmental toxicology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Justin J Chung
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jeong Ho Hwang
- Animal Model Research Group, Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology (KIT), Jeongeup 53212, Jeollabuk-do, Republic of Korea
| | - Youngmee Jung
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seung-Mo Lee
- Nanomechatronics, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Department of Nanomechanics, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
| |
Collapse
|
32
|
Chotiprayon P, Chaisawad B, Yoksan R. Thermoplastic cassava starch/poly(lactic acid) blend reinforced with coir fibres. Int J Biol Macromol 2020; 156:960-968. [DOI: 10.1016/j.ijbiomac.2020.04.121] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/07/2020] [Accepted: 04/18/2020] [Indexed: 02/08/2023]
|
33
|
Zhao YQ, Yang JH, Ding X, Ding X, Duan S, Xu FJ. Polycaprolactone/polysaccharide functional composites for low-temperature fused deposition modelling. Bioact Mater 2020; 5:185-191. [PMID: 32110740 PMCID: PMC7033525 DOI: 10.1016/j.bioactmat.2020.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/02/2020] [Accepted: 02/05/2020] [Indexed: 01/06/2023] Open
Abstract
Fused deposition modelling (FDM) is a commonly used 3D printing technology. The development of FDM materials was essential for the product quality of FDM. In this work, a series of polycaprolactone (PCL)-based composites for low-temperature FDM were developed. By melt blending technique, different ratios of starch were added into PCL to improve the performances of FDM, and the printability, tensile strength, rheological properties, crystallization behaviors and biological performances of the composites were studied. The PCL/starch composite had the best performance in FDM process with the starch ratio of 9 ph at 80–90 °C. The melting strength and solidification rate of PCL/starch composites were improved. The starch also increased the crystallization temperature, degree of crystallinity and crystallization rate of PCL/starch composites, while had no negative effects on the tensile strength of PCL. Due to the low printing temperature, various kinds of bioactive components were added into PCL/starch composites for preparation of antibacterial and biocompatible materials for FDM. The present work provides a new method to develop novel low-temperature FDM materials with various functions. PCL/starch composites for low-temperature fused deposition modelling were developed. The tensile strength, rheological properties and crystallization behaviors of PCL/starch composites were studied. Bioactive components were added to functionalize the composites with antibacterial and biocompatible properties.
Collapse
Affiliation(s)
- Yu-Qing Zhao
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ji-Hao Yang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaokang Ding
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xuejia Ding
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shun Duan
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
34
|
Samthong C, Kunanusont N, Deetuam C, Wongkhan T, Supannasud T, Somwangthanaroj A. Effect of acrylonitrile content of acrylonitrile butadiene rubber on mechanical and thermal properties of dynamically vulcanized poly(lactic acid) blends. POLYM INT 2019. [DOI: 10.1002/pi.5912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chavakorn Samthong
- Department of Chemical Engineering, Faculty of EngineeringChulalongkorn University Bangkok Thailand
| | - Nappaphan Kunanusont
- Department of Chemical Engineering, Faculty of EngineeringChulalongkorn University Bangkok Thailand
| | - Chutimar Deetuam
- Department of Chemical Engineering, Faculty of EngineeringChulalongkorn University Bangkok Thailand
| | - Tanchanok Wongkhan
- Department of Chemical Engineering, Faculty of EngineeringChulalongkorn University Bangkok Thailand
| | - Thanapat Supannasud
- Department of Chemical Engineering, Faculty of EngineeringChulalongkorn University Bangkok Thailand
| | - Anongnat Somwangthanaroj
- Department of Chemical Engineering, Faculty of EngineeringChulalongkorn University Bangkok Thailand
- Special Task Force of Activating Research (STAR) in Novel Technology for Food Packaging and Control of Shelf LifeChulalongkorn University Bangkok Thailand
| |
Collapse
|
35
|
Yang L, Zhen W. Preparation and characterization of phosphorylated graphene oxide grafted with poly(L‐lactide) and its effect on the crystallization, rheological behavior, and performance of poly (lactic acid). POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Li Yang
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous RegionXinjiang University Urumqi China
| | - Weijun Zhen
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous RegionXinjiang University Urumqi China
| |
Collapse
|