1
|
Cheng X, Li T, Yan L, Jiao Y, Zhang Y, Wang K, Cheng Z, Ma J, Shao L. Biodegradable electrospinning superhydrophilic nanofiber membranes for ultrafast oil-water separation. SCIENCE ADVANCES 2023; 9:eadh8195. [PMID: 37611103 PMCID: PMC10446487 DOI: 10.1126/sciadv.adh8195] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023]
Abstract
Although membrane technology has attracted considerable attention for oily wastewater treatment, the plastic waste generated from discarded membranes presents an immediate challenge for achieving eco-friendly separation. We designed on-demand biodegradable superhydrophilic membranes composed of polylactic acid nanofibers in conjunction with polyethylene oxide hydrogels using electrospinning technology for ultrafast purification of oily water. Our results showed that the use of the polyethylene oxide hydrogels increased the number of hydrogen bonds formed between the membrane surface and water molecules by 357.6%. This converted hydrophobic membranes into superhydrophilic ones, which prevented membrane fouling and accelerated emulsion penetration through the membranes. The oil-in-water emulsion permeance of our newly designed nanofiber membranes increased by 61.9 times (2.1 × 104 liters per square meter per hour per bar) with separation efficiency >99.6%, which was superior to state-of-the-art membranes. Moreover, the formation of hydrogen bonds was found to accelerate polylactic acid biodegradation into lactic acid by over 30%, offering a promising approach for waste membrane treatment.
Collapse
Affiliation(s)
- Xiquan Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, P.R. China
- Shandong Sino-European Membrane Technology Research Institute Co. Ltd., Weihai Key Laboratory of Water Treatment and Membrane Technology, Weihai 264209, P.R. China
| | - Tongyu Li
- State Key Laboratory of Urban Water Resource and Environment, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, P.R. China
| | - Linlin Yan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemical Engineering and Technology, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Yang Jiao
- State Key Laboratory of Urban Water Resource and Environment, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, P.R. China
| | - Yingjie Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, P.R. China
- Shandong Sino-European Membrane Technology Research Institute Co. Ltd., Weihai Key Laboratory of Water Treatment and Membrane Technology, Weihai 264209, P.R. China
| | - Kai Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, P.R. China
| | - Zhongjun Cheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemical Engineering and Technology, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lu Shao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemical Engineering and Technology, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150001, P.R. China
| |
Collapse
|
2
|
Lage-Rivera S, Ares-Pernas A, Becerra Permuy JC, Gosset A, Abad MJ. Enhancement of 3D Printability by FDM and Electrical Conductivity of PLA/MWCNT Filaments Using Lignin as Bio-Dispersant. Polymers (Basel) 2023; 15:999. [PMID: 36850283 PMCID: PMC9960198 DOI: 10.3390/polym15040999] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
To increase the applications of FDM (fusion deposition modeling) 3D printing in electronics, it is necessary to develop new filaments with good electrical properties and suitable processability. In this work, polymer composites filament-shaped with superior electrical performance based on polylactic acid (PLA) carbon nanotubes and lignin blends have been studied by combining solution mixing and melt blending. The results showed that composites achieve electrical percolation from 5 wt.% of nanotubes, with high electrical conductivity. Moreover, the introduction of a plasticizing additive, lignin, improved the printability of the material while increasing its electrical conductivity (from (1.5 ± 0.9)·10-7 S·cm-1 to (1.4 ± 0.9)·10-1 S cm-1 with 5 wt.% carbon nanotubes and 1 wt.% lignin) maintaining the mechanical properties of composite without additive. To validate lignin performance, its effect on PLA/MWCNT was compare with polyethylene glycol. PEG is a well-known commercial additive, and its use as dispersant and plasticizer in PLA/MWCNT composites has been proven in bibliography. PLA/MWCNT composites display easier processability by 3D printing and more adhesion between the printed layers with lignin than with PEG. In addition, the polyethylene glycol produces a plasticizing effect in the PLA matrix reducing the composite stiffness. Finally, an interactive electronic prototype was 3D printed to assess the printability of the new conducting filaments with 5 wt.% of MWCNT.
Collapse
Affiliation(s)
- Silvia Lage-Rivera
- Universidade da Coruña, Campus Industrial de Ferrol, CITENI-Grupo de Polímeros, Campus de Esteiro, 15403 Ferrol, A Coruña, Spain
| | - Ana Ares-Pernas
- Universidade da Coruña, Campus Industrial de Ferrol, CITENI-Grupo de Polímeros, Campus de Esteiro, 15403 Ferrol, A Coruña, Spain
| | | | - Anne Gosset
- Universidade da Coruña, Campus Industrial de Ferrol, CITENI, Campus de Esteiro, 15403 Ferrol, Spain
| | - María-José Abad
- Universidade da Coruña, Campus Industrial de Ferrol, CITENI-Grupo de Polímeros, Campus de Esteiro, 15403 Ferrol, A Coruña, Spain
| |
Collapse
|
3
|
Jia S, Zhang X, Zhu Y, Yan Z, Zhang G, Zhao Z, Ding L. A low seepage threshold and super‐toughness of polybutylene succinate‐based composites with double percolation structure: Synergy of multi‐wall carbon nanotubes and polyvinyl butyral. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shikui Jia
- School of Materials Science and Engineering, National & Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology Shaanxi University of Technology Hanzhong China
| | - Xiangyang Zhang
- School of Materials Science and Engineering, National & Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology Shaanxi University of Technology Hanzhong China
| | - Yan Zhu
- School of Materials Science and Engineering, National & Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology Shaanxi University of Technology Hanzhong China
| | - Zongying Yan
- School of Materials Science and Engineering, National & Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology Shaanxi University of Technology Hanzhong China
| | - Guizhen Zhang
- School of Mechanical & Automotive Engineering, Key Laboratory of Polymer Processing Engineering of Ministry of Education South China University of Technology Guangzhou China
| | - Zhongguo Zhao
- School of Materials Science and Engineering, National & Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology Shaanxi University of Technology Hanzhong China
| | - Liu Ding
- School of Materials Science and Engineering, National & Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology Shaanxi University of Technology Hanzhong China
| |
Collapse
|
4
|
Vasseghian Y, Dragoi EN, Almomani F, Le VT. Graphene derivatives in bioplastic: A comprehensive review of properties and future perspectives. CHEMOSPHERE 2022; 286:131892. [PMID: 34418663 DOI: 10.1016/j.chemosphere.2021.131892] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/01/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
The research and technological advancements observed in the latest years in the nanotechnology field translated into significant application developments in various areas. This is particularly true for the renewable polymers area, where the nano-reinforcement of biobased materials leads to an increase in their technique and economic competitiveness. The efforts were predominantly focused on materials development and energy consumption minimization. However, attention must also be given to the widespread commercialization and the full characterization of any particular potential toxicological and environmental impact. Some of the most important nanomaterials used in recent years as fillers in the bioplastic industry are graphene-based materials (GBMs). GBMs have high surface area and biocompatibility and have interesting characterizations such as strangeness and flexibility. In this paper, the current state of the art for these GBMs in the bioplastics area, their challenges, and the strategies to overcome them are analyzed.
Collapse
Affiliation(s)
- Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Elena-Niculina Dragoi
- Faculty of Chemical Engineering and Environmental Protection "Cristofor Simionescu", "Gheorghe Asachi" Technical University, Bld Mangeron No 73, Iasi, 700050, Romania.
| | - Fares Almomani
- Department of Chemical Engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha, Qatar.
| | - Van Thuan Le
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, 550000, Vietnam; The Faculty of Environment and Natural Sciences, Duy Tan University, 03 Quang Trung, Da Nang, 550000, Vietnam.
| |
Collapse
|
5
|
Cell-Laden Bioactive Poly(ethylene glycol) Hydrogels for Studying Mesenchymal Stem Cell Behavior in Myocardial Infarct-Stiffness Microenvironments. Cardiovasc Eng Technol 2021; 12:183-199. [PMID: 33432513 DOI: 10.1007/s13239-020-00515-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE Cellular therapy with mesenchymal stem cells (MSCs) shows promise for restoring function after myocardial infarction (MI). However, cellular therapy has yet to be clinically translated, in part because of difficulty in studying how MSCs interact with the post-MI scar microenvironment. This study aimed to design an in vitro model to study MSC behavior in the post-MI scar stiffness microenvironment. METHODS Using poly(ethylene glycol)-acrylate (PEG) conjugated to bioactive peptides, rat MSCs were encapsulated in hydrogels of varying stiffnesses and crosslinking densities. Cell viability was assessed through 14 days using calcein and ethidium homodimer staining. To simulate post-MI pro-fibrotic signaling, transforming growth factor-beta (TGFβ) was added to selected cultures. Immunofluorescence and qRT-PCR were used to assess changes in cardiac transdifferentiation or paracrine secretion, two proposed methods of MSCs in cellular therapy. RESULTS Bioactivated PEG hydrogels with stiffnesses between 1.6 and 151.0 kPa were prepared. Rat MSCs demonstrated up to 71.6% viability after 3 days of encapsulated culture, and survived within the hydrogels up to 14 days. Encapsulation decreased MSC expression of cardiac troponin T and most growth factors, except interleukin-6. Meanwhile, TGFβ caused increased cardiac troponin T expression but decreased secreted factor expression. Varying hydrogel stiffness did not have an effect on cardiac troponin T or secreted factor expression. CONCLUSIONS These findings suggest that a 3D microenvironment hinders two key mechanisms by which MSCs could improve cardiac function after post-MI scar formation, namely cardiac transdifferentiation and secreted factor production. Future studies incorporating MSCs other cell types should broaden understanding of the post-MI scar microenvironment.
Collapse
|
6
|
Barra A, Santos JDC, Silva MRF, Nunes C, Ruiz-Hitzky E, Gonçalves I, Yildirim S, Ferreira P, Marques PAAP. Graphene Derivatives in Biopolymer-Based Composites for Food Packaging Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2077. [PMID: 33096705 PMCID: PMC7589102 DOI: 10.3390/nano10102077] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
This review aims to showcase the current use of graphene derivatives, graphene-based nanomaterials in particular, in biopolymer-based composites for food packaging applications. A brief introduction regarding the valuable attributes of available and emergent bioplastic materials is made so that their contributions to the packaging field can be understood. Furthermore, their drawbacks are also disclosed to highlight the benefits that graphene derivatives can bring to bio-based formulations, from physicochemical to mechanical, barrier, and functional properties as antioxidant activity or electrical conductivity. The reported improvements in biopolymer-based composites carried out by graphene derivatives in the last three years are discussed, pointing to their potential for innovative food packaging applications such as electrically conductive food packaging.
Collapse
Affiliation(s)
- Ana Barra
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (J.D.C.S.); (M.R.F.S.)
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (C.N.); (I.G.)
- Materials Science Institute of Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain;
| | - Jéssica D. C. Santos
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (J.D.C.S.); (M.R.F.S.)
- Institute of Food and Beverage Innovation, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland;
| | - Mariana R. F. Silva
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (J.D.C.S.); (M.R.F.S.)
| | - Cláudia Nunes
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (C.N.); (I.G.)
| | - Eduardo Ruiz-Hitzky
- Materials Science Institute of Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain;
| | - Idalina Gonçalves
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (C.N.); (I.G.)
| | - Selçuk Yildirim
- Institute of Food and Beverage Innovation, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland;
| | - Paula Ferreira
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (J.D.C.S.); (M.R.F.S.)
| | - Paula A. A. P. Marques
- Department of Mechanical Engineering, TEMA—Centre for Mechanical Technology and Automation, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|