1
|
Yu D, Abdalkarim SYH, Jin M, Zhang Y, Yu HY. Tailoring graphitized cellulose nanocrystal morphologies for robust barrier and mechanical enhancement of PPC composites for green active packaging. Int J Biol Macromol 2024; 286:138295. [PMID: 39631586 DOI: 10.1016/j.ijbiomac.2024.138295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/24/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Both nanocellulose and graphene nanosheets serve as exceptional fillers for biopolymers. However, there are limited materials that effectively combine the properties of these two fillers in Poly (propylene carbonate) (PPC) to enhance their overall properties. This study presents a meticulous approach to producing graphitized nanocellulose (GCNC) with tailored rod-like (R-GCNC) and spheres-like (S-GCNC) under low-temperature and ambient-pressure conditions. The formation and integration of the reinforcement network within the PPC matrix were compared by modulating these morphologies. The R-GC3%, with its stronger hydrogen bonding interactions, achieved a more optimal combination of properties than S-GC3%. Significantly, R-GCNC and PPC formed a robust reinforcement network, resulting in remarkable reductions of approximately 153 % in water absorption and 1669 % in water vapor permeability. Significantly, the mechanical properties of PPC were improved by 95 % in tensile strength and 1038 % in Young's modulus due to improved dispersion of R-GCNC with higher aspect ratio. In addition, R-GC3% had the highest glass transition temperature of 35.1 °C, and a maximum degradation temperature increased by 16.5 °C. The PPC/GCNC composites exhibited outstanding UV shielding, antioxidant properties, and rapid degradation rates. This study introduces a practical method for choosing suitable GCNCs as reinforcing agents to produce innovative green materials for the active packaging.
Collapse
Affiliation(s)
- Duo Yu
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Somia Yassin Hussain Abdalkarim
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | | | | | - Hou-Yong Yu
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China; Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
2
|
Chen J, Yang Y, Fan W, Zhu Y, Yang R, Xu Y. How surface modification of cellulose nanocrystals affects the crystallization process of poly (β-hydroxybutyrate). Int J Biol Macromol 2024; 276:134119. [PMID: 39098456 DOI: 10.1016/j.ijbiomac.2024.134119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/09/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Hydroxyl groups on the surface of cellulose nanocrystals (CNC) are modified by chemical methods, CNC and the modified CNC are used as fillers to prepare PHB/cellulose nanocomposites. The absorption peak of carbonyl group of the modified CNC (CNC-CL and CNC-LA) appears in the FT-IR spectra, which proves that the modifications are successful. Thermal stability of CNC-CL and CNC-LA is better than that of pure CNC. Pure CNC is beneficial to the nucleation of PHB, while CNC-CL and CNC-LA inhibit the nucleation of PHB. The spherulite size of PHB and its nanocomposites increases linearly over time, and the maximum growth rate of PHB spherulite exists at 90 °C. Rheological analysis shows that viscous deformation plays the dominant role in PHB, PHBC and PHBC-CL samples, while the elastic deformation is dominant in PHBC-LA. According to the rheological data, the dispersion of CNC-CL and CNC-LA in PHB is better than that of CNC. This work demonstrates the impact of modified CNC on the crystallization and viscoelastic properties of PHB. Moreover, the interface enhancement effect of modified CNC on PHB/CNC nanomaterials is revealed from the crystallization and rheology perspectives.
Collapse
Affiliation(s)
- Jianxiang Chen
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, China.
| | - Yang Yang
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Wangxi Fan
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Yunfeng Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Runmiao Yang
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Yuling Xu
- Department of Materials Science and Engineering, Nanjing Tech University, Jiangsu 211816, China
| |
Collapse
|
3
|
Song L, Chi W, Zhang Q, Ren J, Yang B, Cong F, Li Y, Wang W, Li X, Wang Y. Improvement of properties of polylactic acid/polypropylene carbonate blends using epoxy soybean oil as an efficient compatibilizer. Int J Biol Macromol 2023; 253:127407. [PMID: 37832613 DOI: 10.1016/j.ijbiomac.2023.127407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Epoxidized soybean oil (ESO) was used as a compatibilizer and blended with polylactic acid (PLA) and polypropylene carbonate (PPC) resin to prepare a series of PLA/PPC/ESO blends with varying compositions. The influence of the variation in the amount of ESO added to the blend system on the thermal properties, optical properties, rheological properties, mechanical properties, and microscopic morphology of the blends was studied. The research indicates that ESO can react with PLA and PPC to form a chemical bond interface, which improves the compatibility of PLA and PPC to a certain extent. With the increase in the amount of ESO added to the blend (1- 5 phr), the complete decomposition temperature, storage modulus, loss modulus, complex viscosity, notched impact strength, and elongation at break of the blend all show a trend of continuous increase. At the same time, the melt flow rate, light transmittance, and tensile strength of the blend do not show significant fluctuations. When the amount of ESO in the system is 5 phr, compared with the PLA/PPC blend, the notched impact strength and elongation at break of the PLA/PPC/ESO blend increase from 4270.3 J/m2, 43.89 % to 8560.4 J/m2, 211.28 %, respectively, and its tensile strength and transmittance still remain around 63 MPa, 92 %. This improves the toughness of the blend while maintaining its rigidity, demonstrating excellent mechanical and optical properties. At this time, the microscopic morphology of the fracture surface of the impact sample also shows obvious characteristics of tough fracture. However, when the amount of ESO added to the blend is excessive (6 phr), the compatibility of the blending system decreases, which will degrade the performance of the blending material and ultimately destroy the phase morphology of the blend and reduce its mechanical properties.
Collapse
Affiliation(s)
- Lixin Song
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Weihan Chi
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Qian Zhang
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Jiannan Ren
- AVIC Shenyang Aircraft Corporation, Shenyang 110850, China
| | - Bing Yang
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Fei Cong
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yongchao Li
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Wei Wang
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Xianliang Li
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yuanxia Wang
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| |
Collapse
|
4
|
Yang X, Ye Y, Liu J, Liu W, Xiong X, He Z. Graphene oxide as a multi-functional additive for compatilizer, enhancer, and barrier in ethylene vinyl alcohol copolymer/aramid pulp composites. RSC Adv 2023; 13:4746-4753. [PMID: 36760315 PMCID: PMC9900475 DOI: 10.1039/d2ra07182g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
To improve the thermal, mechanical, and barrier properties of ethylene vinyl alcohol copolymer (EVOH)/aramid pulp (AP), graphene oxide (GO) was used as a compatilizer, enhancer, and barrier to fabricate EVOH-based composites. The results showed that graphene oxide serves as an ideal compatilizer to reinforce the interfacial action between the EVOH matrix and aramid pulp. The EVOH/AP/GO composite presented the best combination of thermal stability, tensile strength, oxygen barrier, and heat deformation temperature by adding only 1 wt% graphene oxide, compared to those of pure EVOH. Moreover, both scanning electron microscopy (SEM) and polarized optical microscopy (POM) photographs demonstrated that the aramid pulp dispersed homogeneously into the EVOH resin with the addition of 1 wt% graphene oxide. Our work provides a novel and facile way for producing a prominent EVOH-based composite, which can be potentially used in packaging fields in the future.
Collapse
Affiliation(s)
- Xuyu Yang
- College of Pharmaceutical and Chemical Engineer, Taizhou University Taizhou Zhejiang 318000 P. R. China
| | - Yingying Ye
- College of Pharmaceutical and Chemical Engineer, Taizhou University Taizhou Zhejiang 318000 P. R. China
| | - Jiayan Liu
- College of Pharmaceutical and Chemical Engineer, Taizhou University Taizhou Zhejiang 318000 P. R. China
| | - Weijun Liu
- College of Pharmaceutical and Chemical Engineer, Taizhou University Taizhou Zhejiang 318000 P. R. China
| | - Xianqiang Xiong
- College of Pharmaceutical and Chemical Engineer, Taizhou University Taizhou Zhejiang 318000 P. R. China
| | - Zhicai He
- College of Pharmaceutical and Chemical Engineer, Taizhou University Taizhou Zhejiang 318000 P. R. China
| |
Collapse
|
5
|
Wang J, Han X, Zhang C, Liu K, Duan G. Source of Nanocellulose and Its Application in Nanocomposite Packaging Material: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183158. [PMID: 36144946 PMCID: PMC9502214 DOI: 10.3390/nano12183158] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/04/2022] [Accepted: 09/04/2022] [Indexed: 05/12/2023]
Abstract
Food packaging nowadays is not only essential to preserve food from being contaminated and damaged, but also to comply with science develop and technology advances. New functional packaging materials with degradable features will become a hot spot in the future. By far, plastic is the most common packaging material, but plastic waste has caused immeasurable damage to the environment. Cellulose known as a kind of material with large output, wide range sources, and biodegradable features has gotten more and more attention. Cellulose-based materials possess better degradability compared with traditional packaging materials. With such advantages above, cellulose was gradually introduced into packaging field. It is vital to make packaging materials achieve protection, storage, transportation, market, and other functions in the circulation process. In addition, it satisfied the practical value such as convenient sale and environmental protection, reduced cost and maximized sales profit. This review introduces the cellulose resource and its application in composite packaging materials, antibacterial active packaging materials, and intelligent packaging materials. Subsequently, sustainable packaging and its improvement for packaging applications were introduced. Finally, the future challenges and possible solution were provided for future development of cellulose-based composite packaging materials.
Collapse
Affiliation(s)
- Jingwen Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoshuai Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (X.H.); (C.Z.); (G.D.)
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- Correspondence: (X.H.); (C.Z.); (G.D.)
| | - Kunming Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (X.H.); (C.Z.); (G.D.)
| |
Collapse
|
6
|
Atomization of Microfibrillated Cellulose and Its Incorporation into Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Reactive Extrusion. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The present study focuses on the preparation and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) films that were reinforced with cellulose microstructures to obtain new green composite materials for sustainable food packaging applications. The atomization of suspensions of microfibrillated cellulose (MFC) successfully allowed the formation of ultrathin cellulose structures of nearly 3 µm that were, thereafter, melt-mixed at 2.5, 5, and 10 wt % with PHBV and subsequently processed into films by thermo-compression. The most optimal results were attained for the intermediate MFC content of 5 wt %, however, the cellulose microstructures showed a low interfacial adhesion with the biopolyester matrix. Thus, two reactive compatibilizers were explored in order to improve the properties of the green composites, namely the multi-functional epoxy-based styrene-acrylic oligomer (ESAO) and the combination of triglycidyl isocyanurate (TGIC) with dicumyl peroxide (DCP). The chemical, optical, morphological, thermal, mechanical, and barrier properties against water and aroma vapors and oxygen were analyzed in order to determine the potential application of these green composite films in food packaging. The results showed that the incorporation of MFC yielded contact transparent films, whereas the reactive extrusion with TGIC and DCP led to green composites with enhanced thermal stability, mechanical strength and ductility, and barrier performance to aroma vapor and oxygen. In particular, this compatibilized green composite film was thermally stable up to ~280 °C, whereas it showed an elastic modulus (E) of above 3 GPa and a deformation at break (ɛb) of 1.4%. Moreover, compared with neat PHBV, its barrier performance to limonene vapor and oxygen was nearly improved by nine and two times, respectively.
Collapse
|
7
|
Ambaye TG, Vaccari M, Prasad S, van Hullebusch ED, Rtimi S. Preparation and applications of chitosan and cellulose composite materials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113850. [PMID: 34619590 DOI: 10.1016/j.jenvman.2021.113850] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 05/28/2023]
Abstract
Chitosan is a natural fiber, chemically cellulose-like biopolymer, which is processed from chitin. Its use as a natural polymer is getting more attention because it is non-toxic, renewable, and biocompatible. However, its poor mechanical and thermal strength, particle size, and surface area restrict its industrial use. Consequently, to improve these properties, cellulose and/or inorganic nanoparticles have been used. This review discusses the recent progress of chitosan and cellulose composite materials, their preparation, and their applications in different industrial sectors. It also discusses the modification of chitosan and cellulose composite materials to allow their use on a large scale. Finally, the recent development of chitosan composite materials for drug delivery, food packaging, protective coatings, and wastewater treatment are discussed. The challenges and perspectives for future research are also considered. This review suggests that chitosan and cellulose nano-composite are promising, low-cost products for environmental remediation involving a simple production process.
Collapse
Affiliation(s)
- Teklit Gebregiorgis Ambaye
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy.
| | - Mentore Vaccari
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy
| | - Shiv Prasad
- Division of Environment Science, ICAR-Indian Agricultural Research Institute New Delhi, 110012, India
| | - Eric D van Hullebusch
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, UMR 7154, F-75238, Paris, France
| | - Sami Rtimi
- Ecole Polytechnique Fédérale de Lausanne, CH, 1015, Lausanne, Switzerland.
| |
Collapse
|
8
|
Meereboer K, Pal AK, Misra M, Mohanty AK. Green Composites from a Bioplastic Blend of Poly(3-hyroxybutyrate- co-3-hydroxyvalerate) and Carbon Dioxide-Derived Poly(propylene carbonate) and Filled with a Corn Ethanol-Industry Co-product. ACS OMEGA 2021; 6:20103-20111. [PMID: 34395963 PMCID: PMC8358941 DOI: 10.1021/acsomega.1c00763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/20/2021] [Indexed: 06/13/2023]
Abstract
Sustainable green composites were engineered from distillers' dried grains with solubles (DDGS), a co-product from the corn ethanol industry as a sustainable filler in bioplastic matrices made from a carbon dioxide-derived poly(propylene carbonate) (PPC) and poly(3-hyroxybutyrate-co-3-hydroxyvalerate) (PHBV) blend. The effect of water-washed DDGS (15 and 25 wt %) on the properties of injection-molded green composites from PHBV/PPC blends (60/40) and (40/60) and DDGS without and with peroxide (0.5 phr) has been investigated. From the results, it was noticed that the glass transition temperature (T g) of the PHBV/PPC (60/40) bioplastic matrix increased by ∼9.6 °C by adding a peroxide cross-linking agent, indicating significant interaction (linkage) between PHBV and PPC polymers in this particular composition ratio, which was supported by SEM analysis as no phase separation was observed between PHBV and PPC. The tensile modulus of PHBV/PPC (60/40) and PHBV/PPC (40/60) blends with peroxide was improved by ∼40.7 and 1.5% after the addition of 25 wt % DDGS, respectively, due to its fibrous flaky structure. The % elongation values at break of the PHBV/PPC (60/40) blend matrices with and without peroxide were drastically improved by 18.5 and 90.7 folds, respectively, as compared to that of brittle pristine PHBV.
Collapse
Affiliation(s)
- Kjeld
W. Meereboer
- Bioproducts
Discovery and Development Centre, Department of Plant Agriculture,
Crop Science Building, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
- School
of Engineering, Thornbrough Building, University
of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Akhilesh Kumar Pal
- Bioproducts
Discovery and Development Centre, Department of Plant Agriculture,
Crop Science Building, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Manjusri Misra
- Bioproducts
Discovery and Development Centre, Department of Plant Agriculture,
Crop Science Building, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
- School
of Engineering, Thornbrough Building, University
of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Amar K. Mohanty
- Bioproducts
Discovery and Development Centre, Department of Plant Agriculture,
Crop Science Building, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
- School
of Engineering, Thornbrough Building, University
of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|