1
|
Alshubramy MA, Alam MM, Alamry KA, Asiri AM, Hussein MA, Rahman MM. Ionic Organic Network-based C3-symmetric@Triazine core as a selective Hg +2 sensor. Des Monomers Polym 2024; 27:35-50. [PMID: 38903406 PMCID: PMC11188959 DOI: 10.1080/15685551.2024.2360746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024] Open
Abstract
The C3-symmetry ionic polymer PPyTri has been designed with multi-walled carbon nanotubes (MWCNTs) or graphene nanoplatelets (GNPs) and studied as an ultrasensitive electrochemical sensor for trace Hg(II) detection. The synthesis approach incorporated attaching three pyridinium cationic components with chloride anions to the triazine core. The precursors, BPy, were synthesized using a condensation process involving 4-pyridine carboxaldehyde and focused nicotinic hydrazide. The polymer PPyTri was further modified with either MWCNTs or GNPs. The resulting ionic polymer PPyTri and its fabricated nanocomposites were characterized using infrared (IR), nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and powder X-ray diffraction (XRD). The analysis revealed that both the polymer and its nanocomposites have semi-crystalline structures. The electroactivity of the designed nanocomposites toward Hg + 2 ions revealed that among the nanocomposites and bare copolymer, the glassy carbon electrode (GCE) adapted with the PPyTri GNPs-5% exhibited the greatest current response over a wide range of Hg + 2 concentrations. The nanocomposite-modified electrode presented an excellent sensitivity of 83.33 µAµM - 1 cm - 2, a low detection limit of 0.033 nM, and a linear dynamic range of 0.1 nM to 0.01 mM (R2 = 0.9945).
Collapse
Affiliation(s)
- Maha A. Alshubramy
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - M. M. Alam
- Department of Chemical Engineering, Z. H. Sikder University of Science and Technology (ZHSUST), Shariatpur, Bangladesh
| | - Khalid A. Alamry
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdullah M. Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud A. Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Mohammed M. Rahman
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Trabelsi ABG, Mostafa AM, Alkallas FH, Elsharkawy WB, Al-Ahmadi AN, Ahmed HA, Nafee SS, Pashameah RA, Mwafy EA. Effect of CuO Nanoparticles on the Optical, Structural, and Electrical Properties in the PMMA/PVDF Nanocomposite. MICROMACHINES 2023; 14:1195. [PMID: 37374780 PMCID: PMC10304735 DOI: 10.3390/mi14061195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
A polymeric nanocomposite film, composed of PMMA/PVDF and different amounts of CuO NPs, was successfully prepared using the casting method to enhance its electrical conductivity. Various techniques were employed to investigate their physicochemical properties. The addition of CuO NPs causes a noticeable difference in the intensities and locations of vibrational peaks in all bands, confirming the incorporation of CuO NPs inside the PVDF/PMMA. In addition, the broadening of the peak at 2θ = 20.6° becomes more intense with increasing amounts of CuO NPs, confirming the increase in the amorphous characteristic of PMMA/PVDF incorporated with CuO NPs in comparison with PMMA/PVDF. Furthermore, the image of the polymeric structure exhibits a smoother shape and interconnection of pore structure associated with spherical particles that agglomerate and give rise to a web-like organization that becomes a matrix. Increasing surface roughness is responsible for an increasing surface area. Moreover, the addition of CuO NPs in the PMMA/PVDF leads to a decrease in the energy band gap, and further increasing the additional amounts of CuO NPs causes the generation of localized states between the valence and conduction bands. Furthermore, the dielectric investigation shows an increase in the dielectric constant, dielectric loss, and electric conductivity, which may be an indication of an increase in the degree of disorder that confines the movement of charge carriers and demonstrates the creation of an interconnected percolating chain, enhancing its conductivity values compared with that without the incorporation of a matrix.
Collapse
Affiliation(s)
- Amira Ben Gouider Trabelsi
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (A.B.G.T.); (F.H.A.)
| | - Ayman M. Mostafa
- Spectroscopy Department, Physics Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt
- Department of Physics, College of Science, Qassim University, P.O. Box 6644, Buraydah Almolaydah 51452, Saudi Arabia
| | - Fatemah H. Alkallas
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (A.B.G.T.); (F.H.A.)
| | - W. B. Elsharkawy
- Physics Department, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia;
| | - Ameenah N. Al-Ahmadi
- Department of Physics, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia;
| | - Hoda A. Ahmed
- Department of Chemistry, Faculty of Science, Cairo University, Cairo 12613, Egypt;
| | - Sherif S. Nafee
- Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Rami Adel Pashameah
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah al-Mukarramah 24382, Saudi Arabia;
| | - Eman A. Mwafy
- Physical Chemistry Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt;
| |
Collapse
|
3
|
Alsulami QA, Hussein MA. A Sequence Study on the Enhanced Charge Transfer of SWCNTs and CuO-Reinforced Poly(o-anisidine-co-o-toluidine) Nanocomposites. J Inorg Organomet Polym Mater 2023. [DOI: 10.1007/s10904-023-02539-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
4
|
Nanoarchitectonics of Silver/Poly (Methyl Methacrylate) Films: Structure, Optical Characteristics, Antibacterial Activity, and Wettability. J Inorg Organomet Polym Mater 2023. [DOI: 10.1007/s10904-022-02525-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
5
|
Shakeel A, Rizwan K, Farooq U, Iqbal S, Iqbal T, Awwad NS, Ibrahium HA. Polymer based nanocomposites: A strategic tool for detection of toxic pollutants in environmental matrices. CHEMOSPHERE 2022; 303:134923. [PMID: 35568211 DOI: 10.1016/j.chemosphere.2022.134923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/11/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
A large fraction of population is suffering from waterborne diseases due to the contaminated drinking water. Both anthropogenic and natural sources are responsible for water contamination. Revolution in industrial and agriculture sectors along with a huge increase in human population has brought more amount of wastes like heavy metals, pesticides and antibiotics. These toxins are very harmful for human health, therefore, it is necessary to sense their presence in environment. Conventional strategies face various problems in detection and quantification of these pollutants such as expensive equipment and requirement of high maintenance with limited portability. Recently, nanostructured devices have been developed to detect environmental pollutants. Polymeric nanocomposites have been found robust, cost effective, highly efficient and accurate for sensing various environmental pollutants and this is due to their porous framework, multi-functionalities, redox properties, great conductivity, catalytic features, facile operation at room temperature and large surface area. Synergistic effects between polymeric matrix and nanomaterials are responsible for improved sensing features and environmental adaptability. This review focuses on the recent advancement in polymeric nanocomposites for sensing heavy metals, pesticides and antibiotics. The advantages, disadvantages, operating conditions and future perspectives of polymeric nanocomposites for sensing toxic pollutants have also been discussed.
Collapse
Affiliation(s)
- Ahmad Shakeel
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), Albert Ludwig University of Freiburg, Freiburg, 79110, Germany; Freiburg Materials Research Center (FMF), Albert Ludwig University of Freiburg, Freiburg, 79104, Germany; Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering & Technology, New Campus (KSK), Lahore, 54890, Pakistan; Faculty of Civil Engineering and Geosciences, Department of Hydraulic Engineering, Delft University of Technology, Stevinweg 1, 2628, CN, Delft, the Netherlands
| | - Komal Rizwan
- Department of Chemistry, University of Sahiwal, Sahiwal, 57000, Pakistan.
| | - Ujala Farooq
- Faculty of Aerospace Engineering, Department of Aerospace Structures and Materials, Delft University of Technology, Kluyverweg 1, 2629, HS, Delft, the Netherlands.
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), H-12, Islamabad, 46000, Pakistan
| | - Tanveer Iqbal
- Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering & Technology, New Campus (KSK), Lahore, 54890, Pakistan
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Department of Semi Pilot Plant, Nuclear Materials Authority, P.O. Box 530, El Maadi, Egypt
| |
Collapse
|
6
|
Sol-Gel Synthesis and Characterization of Highly Selective Poly(N-methyl pyrrole) Stannous(II)Tungstate Nano Composite for Mercury (Hg(II)) Detection. CRYSTALS 2022. [DOI: 10.3390/cryst12030371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The sol-gel process was used to create a new type of polypyrrole-Stannous(II)tungstate nanocomposite by poly(N-methyl pyrrole (PNMPy) sol in Stannous(II)tungstate gel, produced separately using sodium silicotungstic acid and Tn(II)chloride. Tin(II)tungstate (SnWO3) was made by changing the mixing volume ratios of SnWO3 and with a constant amount of an organic polymer. The composite was characterized by TGA, XRD, FTIR, and SEM measurements. A commercially available glassy carbon electrode (GCE) was modified with PNMPy/nano-Stannous(II)WO3 nanocomposites to create a chemical sensor for selective detection of Hg2+ ions using an effective electrochemical methodology. In the I-V technique, selectively toxic Hg2+ ion was targeted selectively, which shows a rapid reaction toward PNMPy/nano-Stannous(II)WO3/Nafion/GCE sensor. It also demonstrates long-term stability, an ultra-low detection limit, exceptional sensitivity, and excellent reproducibility and repeatability. For 0.1 mM to 1.0 nM aqueous Hg2+ ion solution, a linear calibration plot (r2: 0.9993) was achieved, with a suitable sensitivity value of 2.8241 AM−1 cm−2 and an extraordinarily low detection limit (LOD) of 3.40.1 pM (S/N = 3). As a result, the cationic sensor modified by PNMPy/nano-Stannous(II)WO3/GCE could be a promising electrode.
Collapse
|
7
|
Fluorescence-active and peroxidase-like expanded mesoporous silica-encapsulated ultrasmall Pt nanoclusters: a novel colorimetric/fluorescent dual-mode nanosensor for sensitive detection of mercury in medicinal and edible Pueraria lobata. Mikrochim Acta 2021; 189:18. [PMID: 34873660 DOI: 10.1007/s00604-021-05119-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022]
Abstract
A novel colorimetric/fluorescent dual-mode nanosensor for Hg2+ detection was constructed using expanded mesoporous silica (EMSN)-encapsulated ultrasmall platinum nanoclusters (EMSN@Pt NCs) with improved peroxidase-like and stable fluorescent activities. The sensing technique was based on the mechanism that the peroxidase mimetic activity and fluorescence intensity of EMSN@Pt NCs can be inhibited in the presence of Hg2+. In this sensing platform, a linear range of 5-50 nM with a detection limit of 1.78±0.38 nM and quantification limit of 5.93 nM was obtained via fluorescent analysis. A linear calibration curve from 0.25 to 200 nM with a detection limit of 8.25±0.51 nM and quantification limit of 27.47 nM was achieved via colorimetric analysis. The proposed dual-mode probe possesses excellent selectivity and reliability for Hg2+ detection, which can function as an efficient nanosensor for the quantitative determination of Hg2+ in Pueraria lobata.
Collapse
|
8
|
Luminescent Hydrogel Based on Silver Nanocluster/Malic Acid and Its Composite Film for Highly Sensitive Detection of Fe 3. Gels 2021; 7:gels7040192. [PMID: 34842652 PMCID: PMC8628787 DOI: 10.3390/gels7040192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
Metal nanoclusters (NCs) with excellent photoluminescence properties are an emerging functional material that have rich physical and chemical properties and broad application prospects. However, it is a challenging problem to construct such materials into complex ordered aggregates and cause aggregation-induced emission (AIE). In this article, we use the supramolecular self-assembly strategy to regulate a water-soluble, atomically precise Ag NCs (NH4)9[Ag9(C7H4SO2)9] (Ag9-NCs, [Ag9(mba)9], H2mba = 2-mercaptobenzoic acid) and L-malic acid (L–MA) to form a phosphorescent hydrogel with stable and bright luminescence, which is ascribed to AIE phenomenon. In this process, the AIE of Ag9-NCs could be attributed to the non-covalent interactions between L–MA and Ag9-NCs, which restrict the intramolecular vibration and rotation of ligands on the periphery of Ag9-NCs, thus inhibiting the ligand-related, non-radiative excited state relaxation and promoting radiation energy transfer. In addition, the fluorescent Ag9-NCs/L–MA xerogel was introduced into polymethylmethacrylate (PMMA) to form an excellently fluorescent film for sensing of Fe3+. Ag9-NCs/L–MA/PMMA film exhibits an excellent ability to recognize Fe3+ ion with high selectivity and a low detection limit of 0.3 μM. This research enriches self-assembly system for enhancing the AIE of metal NCs, and the prepared hybrid films will become good candidates for optical materials.
Collapse
|
9
|
AL-Refai HH, Ganash AA, Hussein MA. Composite Nanoarchitectonics with Polythiophene, MWCNTs-G, CuO and Chitosan as a Voltammetric Sensor for Detection of Cd(II) Ions. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02125-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
10
|
AL-Refai HH, Ganash AA, Hussein MA. Polythiophene-based MWCNTCOOH@RGO nanocomposites as a modified glassy carbon electrode for the electrochemical detection of Hg(II) ions. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01864-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Deepuppha N, Khadsai S, Rutnakornpituk B, Kielar F, Rutnakornpituk M. Reusable pectin‐coated magnetic nanosorbent functionalized with an aptamer for highly selective Hg
2+
detection. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Nunthiya Deepuppha
- Department of Chemistry and Center of Excellence in Biomaterials, Faculty of Science Naresuan University Phitsanulok Thailand
| | - Sudarat Khadsai
- Department of Chemistry and Center of Excellence in Biomaterials, Faculty of Science Naresuan University Phitsanulok Thailand
| | - Boonjira Rutnakornpituk
- Department of Chemistry and Center of Excellence in Biomaterials, Faculty of Science Naresuan University Phitsanulok Thailand
| | - Filip Kielar
- Department of Chemistry and Center of Excellence in Biomaterials, Faculty of Science Naresuan University Phitsanulok Thailand
| | - Metha Rutnakornpituk
- Department of Chemistry and Center of Excellence in Biomaterials, Faculty of Science Naresuan University Phitsanulok Thailand
| |
Collapse
|
12
|
Geka G, Papageorgiou G, Chatzichristidi M, Karydas AG, Psycharis V, Makarona E. CuO/PMMA Polymer Nanocomposites as Novel Resist Materials for E-Beam Lithography. NANOMATERIALS 2021; 11:nano11030762. [PMID: 33803056 PMCID: PMC8003112 DOI: 10.3390/nano11030762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/07/2021] [Accepted: 03/16/2021] [Indexed: 11/20/2022]
Abstract
Polymer nanocomposites have emerged as a new powerful class of materials because of their versatility, adaptability and wide applicability to a variety of fields. In this work, a facile and cost-effective method to develop poly(methyl methacrylate) (PMMA)-based polymer nanocomposites with copper oxide (CuO) nanofillers is presented. The study concentrates on finding an appropriate methodology to realize CuO/PMMA nanocomposites that could be used as resist materials for e-beam lithography (EBL) with the intention of being integrated into nanodevices. The CuO nanofillers were synthesized via a low-cost chemical synthesis, while several loadings, spin coating conditions and two solvents (acetone and methyl ethyl ketone) were explored and assessed with regards to their effect on producing CuO/PMMA nanocomposites. The nanocomposite films were patterned with EBL and contrast curve data and resolution analysis were used to evaluate their performance and suitability as a resist material. Micro-X-ray fluorescence spectroscopy (μ-XRF) complemented with XRF measurements via a handheld instrument (hh-XRF) was additionally employed as an alternative rapid and non-destructive technique in order to investigate the uniform dispersion of the nanofillers within the polymer matrix and to assist in the selection of the optimum preparation conditions. This study revealed that it is possible to produce low-cost CuO/PMMA nanocomposites as a novel resist material without resorting to complicated preparation techniques.
Collapse
Affiliation(s)
- Georgia Geka
- Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 157 71 Athens, Greece;
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, Aghia Paraskevi, 153 10 Athens, Greece; (G.P.); (V.P.)
| | - George Papageorgiou
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, Aghia Paraskevi, 153 10 Athens, Greece; (G.P.); (V.P.)
| | - Margarita Chatzichristidi
- Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 157 71 Athens, Greece;
- Correspondence: (M.C.); (E.M.); Tel.: +30-210-7274335 (M.C.); +30-210-6503662 (E.M.)
| | | | - Vassilis Psycharis
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, Aghia Paraskevi, 153 10 Athens, Greece; (G.P.); (V.P.)
| | - Eleni Makarona
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, Aghia Paraskevi, 153 10 Athens, Greece; (G.P.); (V.P.)
- Correspondence: (M.C.); (E.M.); Tel.: +30-210-7274335 (M.C.); +30-210-6503662 (E.M.)
| |
Collapse
|