1
|
Zhou S, Zheng Z, Wang L, Song W, Xia Y, Shao L, Liang X. Correlation of FUT3 and FUT6 Gene Polymorphisms With Helicobacter pylori Infection. Helicobacter 2024; 29:e13122. [PMID: 39108208 DOI: 10.1111/hel.13122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Helicobacter pylori infection is a significant pathogen in gastrointestinal diseases. Previous studies have identified single-nucleotide polymorphisms (SNPs) are factors associated with H. pylori infection. Notably, Leb and Sialyl-Lex antigens, regulated by the FUT3 and FUT6 genes, play a crucial role in H. pylori infection. This study aimed to investigate the correlation between FUT3 and FUT6 gene polymorphisms and H. pylori infection in the Han population of northern China. MATERIALS AND METHODS An immunoturbidimetric assay was employed to detect H. pylori infection, categorizing subjects into infected and noninfected groups. Gene variants were identified through sequencing. Finally, FUT3 and FUT6 gene polymorphisms were analyzed to assess their association with H. pylori infection. RESULTS The frequency of the T allele (rs778805) and the G allele (rs61147939) in the infection group was significantly higher than that in the noninfection group (63.4% vs. 55.1%, p = 0.045; 55.2% vs. 47.0%, p = 0.042, respectively). In the infection group, the frequency of the AA genotype (rs3745635) in the recessive model, the TT genotype (rs778805) in the recessive model, and the GG genotype (rs61147939) in the recessive model were significantly higher than the noninfection group (5.8% vs. 2.3%, p = 0.042; 41.9% vs. 29.3%, p = 0.022; 34.9% vs. 20.5%, p = 0.0068, respectively). The frequency of the A13 haplotype and the A13/A13 diplotype of the FUT6 gene was significantly higher in the infection group than in the noninfection group (55.56% vs. 46.32%, p = 0.019; 34.94% vs. 20.30%, p = 0.045, respectively). The rs778805-rs17855739-rs28362459-rs3745635 combination was identified as the best interaction model (p < 0.05). CONCLUSIONS This study suggests that FUT3 and FUT6 gene polymorphisms are significantly associated with H. pylori infection in the Han Chinese from northern China.
Collapse
Affiliation(s)
| | - Ziwei Zheng
- College of Laboratory Medicine, Dalian Medical University, Dalian, China
| | | | | | | | | | | |
Collapse
|
2
|
Zhang SZ, Lobo A, Li PF, Zhang YF. Sialylated glycoproteins and sialyltransferases in digestive cancers: Mechanisms, diagnostic biomarkers, and therapeutic targets. Crit Rev Oncol Hematol 2024; 197:104330. [PMID: 38556071 DOI: 10.1016/j.critrevonc.2024.104330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024] Open
Abstract
Sialic acid (SA), as the ultimate epitope of polysaccharides, can act as a cap at the end of polysaccharide chains to prevent their overextension. Sialylation is the enzymatic process of transferring SA residues onto polysaccharides and is catalyzed by a group of enzymes known as sialyltransferases (SiaTs). It is noteworthy that the sialylation level of glycoproteins is significantly altered when digestive cancer occurs. And this alteration exhibits a close correlation with the progression of these cancers. In this review, from the perspective of altered SiaTs expression levels and changed glycoprotein sialylation patterns, we summarize the pathogenesis of gastric cancer (GC), colorectal cancer (CRC), pancreatic ductal adenocarcinoma (PDAC), and hepatocellular carcinoma (HCC). Furthermore, we propose potential early diagnostic biomarkers and prognostic indicators for different digestive cancers. Finally, we summarize the therapeutic value of sialylation in digestive system cancers.
Collapse
Affiliation(s)
- Shao-Ze Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Amara Lobo
- Department of Critical Care Medicine Holy Family Hospital, St Andrew's Road, Bandra (West), Mumbai 400050, India
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
3
|
El-Sayed MM, Mohak S, Gala D, Fabian R, Peterfi Z, Fabian Z. The Role of the Intestinal Microbiome in Multiple Sclerosis-Lessons to Be Learned from Hippocrates. BIOLOGY 2023; 12:1463. [PMID: 38132289 PMCID: PMC10740531 DOI: 10.3390/biology12121463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023]
Abstract
Based on recent advances in research of chronic inflammatory conditions, there is a growing body of evidence that suggests a close correlation between the microbiota of the gastrointestinal tract and the physiologic activity of the immune system. This raises the idea that disturbances of the GI ecosystem contribute to the unfolding of chronic diseases including neurodegenerative pathologies. Here, we overview our current understanding on the putative interaction between the gut microbiota and the immune system from the aspect of multiple sclerosis, one of the autoimmune conditions accompanied by severe chronic neuroinflammation that affects millions of people worldwide.
Collapse
Affiliation(s)
- Mohamed Mahmoud El-Sayed
- School of Medicine and Dentistry, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Fylde Rd, Preston PR1 2HE, UK;
| | - Sidhesh Mohak
- Department of Clinical Sciences, Saint James School of Medicine, Park Ridge, IL 60068, USA;
| | - Dhir Gala
- American University of the Caribbean School of Medicine, 1 University Drive, Jordan Road, Cupecoy, St Marteen, The Netherlands;
| | - Reka Fabian
- Salerno, Secondary School, Threadneedle Road, H91 D9H3 Galway, Ireland;
| | - Zoltan Peterfi
- Division of Infectology, 1st Department of Internal Medicine, University of Pecs, Clinical Centre, 7623 Pécs, Hungary;
| | - Zsolt Fabian
- School of Medicine and Dentistry, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Fylde Rd, Preston PR1 2HE, UK;
| |
Collapse
|
4
|
Jajosky RP, Wu SC, Zheng L, Jajosky AN, Jajosky PG, Josephson CD, Hollenhorst MA, Sackstein R, Cummings RD, Arthur CM, Stowell SR. ABO blood group antigens and differential glycan expression: Perspective on the evolution of common human enzyme deficiencies. iScience 2023; 26:105798. [PMID: 36691627 PMCID: PMC9860303 DOI: 10.1016/j.isci.2022.105798] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Enzymes catalyze biochemical reactions and play critical roles in human health and disease. Enzyme variants and deficiencies can lead to variable expression of glycans, which can affect physiology, influence predilection for disease, and/or directly contribute to disease pathogenesis. Although certain well-characterized enzyme deficiencies result in overt disease, some of the most common enzyme deficiencies in humans form the basis of blood groups. These carbohydrate blood groups impact fundamental areas of clinical medicine, including the risk of infection and severity of infectious disease, bleeding risk, transfusion medicine, and tissue/organ transplantation. In this review, we examine the enzymes responsible for carbohydrate-based blood group antigen biosynthesis and their expression within the human population. We also consider the evolutionary selective pressures, e.g. malaria, that may account for the variation in carbohydrate structures and the implications of this biology for human disease.
Collapse
Affiliation(s)
- Ryan Philip Jajosky
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Biconcavity Inc, Lilburn, GA, USA
| | - Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Leon Zheng
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Audrey N. Jajosky
- University of Rochester Medical Center, Department of Pathology and Laboratory Medicine, West Henrietta, NY, USA
| | | | - Cassandra D. Josephson
- Cancer and Blood Disorders Institute and Blood Bank/Transfusion Medicine Division, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
- Departments of Oncology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marie A. Hollenhorst
- Department of Pathology and Department of Medicine, Stanford University, Stanford, CA, USA
| | - Robert Sackstein
- Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Richard D. Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Connie M. Arthur
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Sean R. Stowell
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
5
|
Matos R, Sousa HS, Nogueiro J, Magalhães A, Reis CA, Carneiro F, Amorim I, Haesebrouck F, Gärtner F. Helicobacter species binding to the human gastric mucosa. Helicobacter 2022; 27:e12867. [PMID: 34967491 DOI: 10.1111/hel.12867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023]
Abstract
Helicobacter pylori infects half of the world population, being associated with several gastric disorders, such as chronic gastritis and gastric carcinoma. The Helicobacter genus also includes other gastric helicobacters, such as H. heilmannii¸ H. ailurogastricus, H. suis, H. felis, H. bizzozeronii, and H. salomonis. These gastric helicobacters colonize both the human and animal stomach. The prevalence of gastric non-Helicobacter pylori Helicobacter (NHPH) species in humans has been described as low, and the in vitro binding to the human gastric mucosa was never assessed. Herein, human gastric tissue sections were used for the evaluation of the tissue glycophenotype and for the binding of gastric NHPH strains belonging to different species. Histopathological evaluation showed that 37.5% of the patients enrolled in our cohort presented chronic gastritis, while the presence of neutrophil or eosinophilic activity (chronic active gastritis) was observed in 62.5% of the patients. The secretor phenotype was observed in 68.8% of the individuals, based on the expression of Lewis B antigen and binding of the UleX lectin. The in vitro binding assay showed that all the NHPH strains evaluated were able to bind, albeit in low frequency, to the human gastric mucosa. The H. heilmannii, H. bizzozeronii, and H. salomonis strains displayed the highest binding ability both to the gastric superficial epithelium and to the deep glands. Interestingly, we observed binding of NHPH to the gastric mucosa of individuals with severe chronic inflammation and intestinal metaplasia, suggesting that NHPH binding may not be restricted to the healthy gastric mucosa or slight chronic gastritis. Furthermore, the in vitro binding of NHPH strains was observed both in secretor and non-secretor individuals in a similar frequency. In conclusion, this study is the first report of the in vitro binding ability of gastric NHPH species to the human gastric mucosa. The results suggest that other glycans, besides the Lewis antigens, could be involved in the bacterial adhesion mechanism; however, the molecular intervenients remain unknown.
Collapse
Affiliation(s)
- Rita Matos
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS), Porto, Portugal
| | - Hugo Santos Sousa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Centro Hospitalar Universitário de São João (CHUSJ), Porto, Portugal
| | - Jorge Nogueiro
- Centro Hospitalar Universitário de São João (CHUSJ), Porto, Portugal.,Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS), Porto, Portugal
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS), Porto, Portugal.,Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| | - Fátima Carneiro
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal.,Centro Hospitalar Universitário de São João (CHUSJ), Porto, Portugal.,Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| | - Irina Amorim
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS), Porto, Portugal
| | - Freddy Haesebrouck
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Belgium
| | - Fátima Gärtner
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
| |
Collapse
|
6
|
Matos R, Amorim I, Magalhães A, Haesebrouck F, Gärtner F, Reis CA. Adhesion of Helicobacter Species to the Human Gastric Mucosa: A Deep Look Into Glycans Role. Front Mol Biosci 2021; 8:656439. [PMID: 34026832 PMCID: PMC8138122 DOI: 10.3389/fmolb.2021.656439] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/22/2021] [Indexed: 12/15/2022] Open
Abstract
Helicobacter species infections may be associated with the development of gastric disorders, such as gastritis, peptic ulcers, intestinal metaplasia, dysplasia and gastric carcinoma. Binding of these bacteria to the gastric mucosa occurs through the recognition of specific glycan receptors expressed by the host epithelial cells. This review addresses the state of the art knowledge on these host glycan structures and the bacterial adhesins involved in Helicobacter spp. adhesion to gastric mucosa colonization. Glycans are expressed on every cell surface and they are crucial for several biological processes, including protein folding, cell signaling and recognition, and host-pathogen interactions. Helicobacter pylori is the most predominant gastric Helicobacter species in humans. The adhesion of this bacterium to glycan epitopes present on the gastric epithelial surface is a crucial step for a successful colonization. Major adhesins essential for colonization and infection are the blood-group antigen-binding adhesin (BabA) which mediates the interaction with fucosylated H-type 1 and Lewis B glycans, and the sialic acid-binding adhesin (SabA) which recognizes the sialyl-Lewis A and X glycan antigens. Since not every H. pylori strain expresses functional BabA or SabA adhesins, other bacterial proteins are most probably also involved in this adhesion process, including LabA (LacdiNAc-binding adhesin), which binds to the LacdiNAc motif on MUC5AC mucin. Besides H. pylori, several other gastric non-Helicobacter pylori Helicobacters (NHPH), mainly associated with pigs (H. suis) and pets (H. felis, H. bizzozeronii, H. salomonis, and H. heilmannii), may also colonize the human stomach and cause gastric disease, including gastritis, peptic ulcers and mucosa-associated lymphoid tissue (MALT) lymphoma. These NHPH lack homologous to the major known adhesins involved in colonization of the human stomach. In humans, NHPH infection rate is much lower than in the natural hosts. Differences in the glycosylation profile between gastric human and animal mucins acting as glycan receptors for NHPH-associated adhesins, may be involved. The identification and characterization of the key molecules involved in the adhesion of gastric Helicobacter species to the gastric mucosa is important to understand the colonization and infection strategies displayed by different members of this genus.
Collapse
Affiliation(s)
- Rita Matos
- Instituto de Investigação e Inovação Em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS), Porto, Portugal
| | - Irina Amorim
- Instituto de Investigação e Inovação Em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS), Porto, Portugal
| | - Ana Magalhães
- Instituto de Investigação e Inovação Em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Fátima Gärtner
- Instituto de Investigação e Inovação Em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
| | - Celso A. Reis
- Instituto de Investigação e Inovação Em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS), Porto, Portugal
- Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| |
Collapse
|
7
|
Baj J, Forma A, Sitarz M, Portincasa P, Garruti G, Krasowska D, Maciejewski R. Helicobacter pylori Virulence Factors-Mechanisms of Bacterial Pathogenicity in the Gastric Microenvironment. Cells 2020; 10:E27. [PMID: 33375694 PMCID: PMC7824444 DOI: 10.3390/cells10010027] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer constitutes one of the most prevalent malignancies in both sexes; it is currently the fourth major cause of cancer-related deaths worldwide. The pathogenesis of gastric cancer is associated with the interaction between genetic and environmental factors, among which infection by Helicobacter pylori (H. pylori) is of major importance. The invasion, survival, colonization, and stimulation of further inflammation within the gastric mucosa are possible due to several evasive mechanisms induced by the virulence factors that are expressed by the bacterium. The knowledge concerning the mechanisms of H. pylori pathogenicity is crucial to ameliorate eradication strategies preventing the possible induction of carcinogenesis. This review highlights the current state of knowledge and the most recent findings regarding H. pylori virulence factors and their relationship with gastric premalignant lesions and further carcinogenesis.
Collapse
Affiliation(s)
- Jacek Baj
- Department of Anatomy, Medical University of Lublin, 20-400 Lublin, Poland;
| | - Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Monika Sitarz
- Department of Conservative Dentistry with Endodontics, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Piero Portincasa
- Clinica Medica “Augusto Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Gabriella Garruti
- Section of Endocrinology, Department of Emergency and Organ Transplantations, University of Bari “Aldo Moro” Medical School, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Danuta Krasowska
- Department of Dermatology, Venerology and Paediatric Dermatology of Medical University of Lublin, 20-081 Lublin, Poland;
| | | |
Collapse
|
8
|
Kpoghomou MA, Wang J, Wang T, Jin G. Association of Helicobacter pylori babA2 gene and gastric cancer risk: a meta-analysis. BMC Cancer 2020; 20:465. [PMID: 32448131 PMCID: PMC7247142 DOI: 10.1186/s12885-020-06962-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 05/13/2020] [Indexed: 01/06/2023] Open
Abstract
Background The association of Helicobacter pylori (H. pylori) babA2 gene with gastric cancer (GC) was reported by several studies, but results were inconsistent. This meta-analysis was performed to investigate the relationship between H. pylori babA2 gene and GC risk. Methods Case-control studies involving the association between H. pylori babA2 gene and GC risk were systematically identified from PubMed databases. A meta-analysis was used to pool studies and to estimate odds ratios (ORs) with 95% confidence intervals (CIs) of H. pylori babA2 gene associated with GC risk. Results Twenty studies were identified with a total of 1289 GC cases and 1081 controls. H. pylori babA2 gene was associated with an increased risk of GC by 2.05 fold (95% CI, 1.30–3.24, P = 0.002). In subgroup analysis, we found that H. pylori babA2 gene was significantly associated with GC risk in Asian population (OR = 2.63, 95% CI: 1.36–5.09 P = 0.004) but not in South American population (OR = 1.35, 95% CI: 0.69–2.64, P = 0.379). Conclusions This meta-analysis indicates that H. pylori babA2 gene may be associated with increased risk of GC, especially in Asian population.
Collapse
Affiliation(s)
- Marce-Amara Kpoghomou
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Jinchen Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Tianpei Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Guanfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
9
|
Polfus LM, Raffield LM, Wheeler MM, Tracy RP, Lange LA, Lettre G, Miller A, Correa A, Bowler RP, Bis JC, Salimi S, Jenny NS, Pankratz N, Wang B, Preuss MH, Zhou L, Moscati A, Nadkarni GN, Loos RJF, Zhong X, Li B, Johnsen JM, Nickerson DA, Reiner AP, Auer PL. Whole genome sequence association with E-selectin levels reveals loss-of-function variant in African Americans. Hum Mol Genet 2019; 28:515-523. [PMID: 30307499 PMCID: PMC6337694 DOI: 10.1093/hmg/ddy360] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/01/2018] [Accepted: 10/07/2018] [Indexed: 12/13/2022] Open
Abstract
E-selectin mediates the rolling of circulating leukocytes during inflammatory processes. Previous genome-wide association studies in European and Asian individuals have identified the ABO locus associated with E-selectin levels. Using Trans-Omics for Precision Medicine whole genome sequencing data in 2249 African Americans (AAs) from the Jackson Heart Study, we examined genome-wide associations with soluble E-selectin levels. In addition to replicating known signals at ABO, we identified a novel association of a common loss-of-function, missense variant in Fucosyltransferase 6 (FUT6; rs17855739,p.Glu274Lys, P = 9.02 × 10-24) with higher soluble E-selectin levels. This variant is considerably more common in populations of African ancestry compared to non-African ancestry populations. We replicated the association of FUT6 p.Glu274Lys with higher soluble E-selectin in an independent population of 748 AAs from the Women's Health Initiative and identified an additional pleiotropic association with vitamin B12 levels. Despite the broad role of both selectins and fucosyltransferases in various inflammatory, immune and cancer-related processes, we were unable to identify any additional disease associations of the FUT6 p.Glu274Lys variant in an electronic medical record-based phenome-wide association scan of over 9000 AAs.
Collapse
Affiliation(s)
- Linda M Polfus
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Marsha M Wheeler
- Department of Genome Sciences, University of Washington Center for Mendelian Genomics, Seattle, WA, USA
| | - Russell P Tracy
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Leslie A Lange
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Guillaume Lettre
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
- Montreal Heart Institute, Montréal, QC, Canada
| | - Amanda Miller
- Zilber School of Public Health, University of Wisconsin–Milwaukee, Milwaukee, WI, USA
| | - Adolfo Correa
- Department of Pediatrics and Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | | | - Joshua C Bis
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Shabnam Salimi
- School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Nancy Swords Jenny
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Biqi Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Michael H Preuss
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lisheng Zhou
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arden Moscati
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Girish N Nadkarni
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ruth J F Loos
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xue Zhong
- Vanderbilt Genetics Institute, Nashville, TN, USA
| | - Bingshan Li
- Vanderbilt Genetics Institute, Nashville, TN, USA
| | - Jill M Johnsen
- Bloodworks Northwest Research Institute, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington Center for Mendelian Genomics, Seattle, WA, USA
| | - Alex P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Paul L Auer
- Zilber School of Public Health, University of Wisconsin–Milwaukee, Milwaukee, WI, USA
| | | |
Collapse
|
10
|
Surendran S, Adaikalakoteswari A, Saravanan P, Shatwaan IA, Lovegrove JA, Vimaleswaran KS. An update on vitamin B12-related gene polymorphisms and B12 status. GENES AND NUTRITION 2018; 13:2. [PMID: 29445423 PMCID: PMC5801754 DOI: 10.1186/s12263-018-0591-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/23/2018] [Indexed: 12/12/2022]
Abstract
Background Vitamin B12 is an essential micronutrient in humans needed for health maintenance. Deficiency of vitamin B12 has been linked to dietary, environmental and genetic factors. Evidence for the genetic basis of vitamin B12 status is poorly understood. However, advancements in genomic techniques have increased the knowledge-base of the genetics of vitamin B12 status. Based on the candidate gene and genome-wide association (GWA) studies, associations between genetic loci in several genes involved in vitamin B12 metabolism have been identified. Objective The objective of this literature review was to identify and discuss reports of associations between single-nucleotide polymorphisms (SNPs) in vitamin B12 pathway genes and their influence on the circulating levels of vitamin B12. Methods Relevant articles were obtained through a literature search on PubMed through to May 2017. An article was included if it examined an association of a SNP with serum or plasma vitamin B12 concentration. Beta coefficients and odds ratios were used to describe the strength of an association, and a P < 0.05 was considered as statistically significant. Two reviewers independently evaluated the eligibility for the inclusion criteria and extracted the data. Results From 23 studies which fulfilled the selection criteria, 16 studies identified SNPs that showed statistically significant associations with vitamin B12 concentrations. Fifty-nine vitamin B12-related gene polymorphisms associated with vitamin B12 status were identified in total, from the following populations: African American, Brazilian, Canadian, Chinese, Danish, English, European ancestry, Icelandic, Indian, Italian, Latino, Northern Irish, Portuguese and residents of the USA. Conclusion Overall, the data analyzed suggests that ethnic-specific associations are involved in the genetic determination of vitamin B12 concentrations. However, despite recent success in genetic studies, the majority of identified genes that could explain variation in vitamin B12 concentrations were from Caucasian populations. Further research utilizing larger sample sizes of non-Caucasian populations is necessary in order to better understand these ethnic-specific associations.
Collapse
Affiliation(s)
- S Surendran
- 1Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, PO Box 226, Whiteknights, Reading, RG6 6AP UK
| | - A Adaikalakoteswari
- 2Warwick Medical School - Population Evidence and Technologies, University of Warwick, Coventry, CV4 7AL UK.,3UK Academic Department of Diabetes and Metabolism, George Eliot Hospital, Nuneaton, UK
| | - P Saravanan
- 2Warwick Medical School - Population Evidence and Technologies, University of Warwick, Coventry, CV4 7AL UK.,3UK Academic Department of Diabetes and Metabolism, George Eliot Hospital, Nuneaton, UK
| | - I A Shatwaan
- 1Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, PO Box 226, Whiteknights, Reading, RG6 6AP UK
| | - J A Lovegrove
- 1Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, PO Box 226, Whiteknights, Reading, RG6 6AP UK
| | - K S Vimaleswaran
- 1Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, PO Box 226, Whiteknights, Reading, RG6 6AP UK
| |
Collapse
|
11
|
Abdi E, Latifi-Navid S, Yazdanbod A, Zahri S. Helicobacter pylori babA2 Positivity Predicts Risk of Gastric Cancer in Ardabil, a Very High-Risk Area in Iran. Asian Pac J Cancer Prev 2016; 17:733-8. [DOI: 10.7314/apjcp.2016.17.2.733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
12
|
Maroni L, van de Graaf SFJ, Hohenester SD, Oude Elferink RPJ, Beuers U. Fucosyltransferase 2: a genetic risk factor for primary sclerosing cholangitis and Crohn's disease--a comprehensive review. Clin Rev Allergy Immunol 2015; 48:182-91. [PMID: 24828903 DOI: 10.1007/s12016-014-8423-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fucosyltransferase 2 (FUT2) mediates the inclusion of fucose in sugar moieties of glycoproteins and glycolipids. ABO blood group antigens and host-microbe interactions are influenced by FUT2 activity. About 20 % of the population has a "non-secretor" status caused by inactivating variants of FUT2 on both alleles. The non-sense mutation G428A and the missense mutation A385T are responsible for the vast majority of the non-secretor status in Caucasians, Africans, and Asians, respectively. Non-secretor individuals do not secrete fucose-positive antigens and lack fucosylation in epithelia. They also appear to be protected against a number of infectious diseases, such as Norovirus and Rotavirus infections. In recent years, genome-wide association studies (GWAS) identified inactivating variants at the FUT2 locus to be associated with primary sclerosing cholangitis (PSC), Crohn's disease (CD), and biochemical markers of biliary damage. These associations are intriguing given the important roles of fucosylated glycans in host-microbe interactions and membrane stability. Non-secretors have a reduced fecal content of Bifidobacteria. The intestinal bacterial composition of CD patients resembles the one of non-secretors, with an increase in Firmicutes and decreases in Proteobacteria and Actinobacteria. Non-secretor individuals lack fucosylated glycans at the surface of biliary epithelium and display a different bacterial composition of bile compared to secretors. Notably, an intact biliary epithelial glycocalix is relevant for a stable 'biliary HCO3 (-) umbrella' to protect against toxic effects of hydrophobic bile salt monomers. Here, the biology of FUT2 will be discussed as well as hypotheses to explain the role of FUT2 in the pathophysiology of PSC and Crohn's disease.
Collapse
Affiliation(s)
- Luca Maroni
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
13
|
Duell EJ, Bonet C, Muñoz X, Lujan-Barroso L, Weiderpass E, Boutron-Ruault MC, Racine A, Severi G, Canzian F, Rizzato C, Boeing H, Overvad K, Tjønneland A, Argüelles M, Sánchez-Cantalejo E, Chamosa S, Huerta JM, Barricarte A, Khaw KT, Wareham N, Travis RC, Trichopoulou A, Trichopoulos D, Yiannakouris N, Palli D, Agnoli C, Tumino R, Naccarati A, Panico S, Bueno-de-Mesquita HB, Siersema PD, Peeters PHM, Ohlsson B, Lindkvist B, Johansson I, Ye W, Johansson M, Fenger C, Riboli E, Sala N, González CA. Variation at ABO histo-blood group and FUT loci and diffuse and intestinal gastric cancer risk in a European population. Int J Cancer 2015; 136:880-93. [PMID: 24947433 DOI: 10.1002/ijc.29034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 05/16/2014] [Indexed: 12/12/2022]
Abstract
ABO blood serotype A is known to be associated with risk of gastric cancer (GC), but little is known how ABO alleles and the fucosyltransferase (FUT) enzymes and genes which are involved in Lewis antigen formation [and in Helicobacter pylori (H. pylori) binding and pathogenicity] may be related to GC risk in a European population. The authors conducted an investigation of 32 variants at ABO and FUT1-7 loci and GC risk in a case-control study of 365 cases and 1,284 controls nested within the EPIC cohort (the EPIC-Eurgast study). Four variants (including rs505922) in ABO, and allelic blood group A (AO+AA, odds ratio=1.84, 95%CI=1.20-2.80) were associated with diffuse-type GC; however, conditional models with other ABO variants indicated that the associations were largely due to allelic blood group A. One variant in FUT5 was also associated with diffuse-type GC, and four variants (and haplotypes) in FUT2 (Se), FUT3 (Le) and FUT6 with intestinal-type GC. Further, one variant in ABO, two in FUT3 and two in FUT6 were associated with H. pylori infection status in controls, and two of these (in FUT3 and FUT6) were weakly associated with intestinal-type GC risk. None of the individual variants surpassed a Bonferroni corrected p-value cutoff of 0.0016; however, after a gene-based permutation test, two loci [FUT3(Le)/FUT5/FUT6 and FUT2(Se)] were significantly associated with diffuse- and intestinal-type GC, respectively. Replication and functional studies are therefore recommended to clarify the role of ABO and FUT alleles in H. pylori infection and subtype-specific gastric carcinogenesis.
Collapse
Affiliation(s)
- Eric J Duell
- Unit of Nutrition, Environment and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Amorim I, Freitas DP, Magalhães A, Faria F, Lopes C, Faustino AM, Smet A, Haesebrouck F, Reis CA, Gärtner F. A comparison of Helicobacter pylori and non-Helicobacter pylori Helicobacter spp. Binding to canine gastric mucosa with defined gastric glycophenotype. Helicobacter 2014; 19:249-59. [PMID: 24689986 DOI: 10.1111/hel.12125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The gastric mucosa of dogs is often colonized by non-Helicobacter pylori helicobacters (NHPH), while H. pylori is the predominant gastric Helicobacter species in humans. The colonization of the human gastric mucosa by H. pylori is highly dependent on the recognition of host glycan receptors. Our goal was to define the canine gastric mucosa glycophenotype and to evaluate the capacity of different gastric Helicobacter species to adhere to the canine gastric mucosa. MATERIALS AND METHODS The glycosylation profile in body and antral compartments of the canine gastric mucosa, with focus on the expression of histo-blood group antigens was evaluated. The in vitro binding capacity of FITC-labeled H. pylori and NHPH to the canine gastric mucosa was assessed in cases representative of the canine glycosylation pattern. RESULTS The canine gastric mucosa lacks expression of type 1 Lewis antigens and presents a broad expression of type 2 structures and A antigen, both in the surface and glandular epithelium. Regarding the canine antral mucosa, H. heilmannii s.s. presented the highest adhesion score whereas in the body region the SabA-positive H. pylori strain was the strain that adhered more. CONCLUSIONS The canine gastric mucosa showed a glycosylation profile different from the human gastric mucosa suggesting that alternative glycan receptors may be involved in Helicobacter spp. binding. Helicobacter pylori and NHPH strains differ in their ability to adhere to canine gastric mucosa. Among the NHPH, H. heilmannii s.s. presented the highest adhesion capacity in agreement with its reported colonization of the canine stomach.
Collapse
Affiliation(s)
- Irina Amorim
- Department of Pathology and Molecular Immunology of the Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira nr. 228, Porto, 4050-313, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Dr. Roberto Frias s/n, Porto, 4200-465, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ki MR, Hwang M, Kim AY, Lee EM, Lee EJ, Lee MM, Sung SE, Kim SH, Lee HS, Jeong KS. Role of vacuolating cytotoxin VacA and cytotoxin-associated antigen CagA of Helicobacter pylori in the progression of gastric cancer. Mol Cell Biochem 2014; 396:23-32. [DOI: 10.1007/s11010-014-2138-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/17/2014] [Indexed: 12/28/2022]
|
16
|
Lin X, Lu D, Gao Y, Tao S, Yang X, Feng J, Tan A, Zhang H, Hu Y, Qin X, Kim ST, Peng T, Li L, Mo L, Zhang S, Trent JM, Mo Z, Zheng SL, Xu J, Sun J. Genome-wide association study identifies novel loci associated with serum level of vitamin B12 in Chinese men. Hum Mol Genet 2012; 21:2610-7. [PMID: 22367966 DOI: 10.1093/hmg/dds062] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Vitamin B12 (VitB12 or cobalamin) is an essential cofactor in several metabolic pathways. Clinically, VitB12 deficiency is associated with pernicious anemia, neurodegenerative disorder, cardiovascular disease and gastrointestinal disease. Although previous genome-wide association studies (GWAS) identified several genes, including FUT2, CUBN, TCN1 and MUT, that may influence VitB12 levels in European populations, common genetic determinants of VitB12 remain largely unknown, especially in Asian populations. Here we performed a GWAS in 1999 healthy Chinese men and replicated the top findings in an independent Chinese sample with 1496 subjects. We identified four novel genomic loci that were significantly associated with serum level of VitB12 at a genome-wide significance level of 5.00 × 10(-8). These four loci were MS4A3 (11q12.1; rs2298585; P= 2.64 × 10(-15)), CLYBL (13q32; rs41281112; P= 9.23 × 10(-10)), FUT6 (19p13.3; rs3760776; P= 3.68 × 10(-13)) and 5q32 region (rs10515552; P= 3.94 × 10(-8)). In addition, we also confirmed the association with the serum level of VitB12 for the previously reported FUT2 gene and identified one novel non-synonymous single-nucleotide polymorphism in FUT2 gene in this Chinese population (19q13.33; rs1047781; P= 3.62 × 10(-36)). The new loci identified offer new insights into the biochemical pathways involved in determining the serum level of VitB12 and provide opportunities to better delineate the role of VitB12 in health and disease.
Collapse
Affiliation(s)
- Xiaoling Lin
- Fudan Institute of Urology, Huashan Hospital, School of Life Sciences, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Risch HA. Pancreatic cancer: Helicobacter pylori colonization, N-nitrosamine exposures, and ABO blood group. Mol Carcinog 2012; 51:109-18. [PMID: 22162235 DOI: 10.1002/mc.20826] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Thirty years of research with animal models has shown that pancreatic adenocarcinoma is induced by N-nitrosamine carcinogens, which damage DNA through adduct formation. Human risk factors for pancreatic cancer include gastric colonization by Helicobacter pylori, as well as dietary intake of those same N-nitrosamines or of nitrite which forms those N-nitrosamines in the stomach, and cigarette smoking which also contains those N-nitrosamines. Physiologic actions of H. pylori colonization enhance the carcinogenic effect of N-nitrosamines delivered by smoking or dietary sources. This effect is modulated by host inflammatory response to the organism, by various virulence and other properties of the Helicobacter itself, and by host-organism interactions. A recent genome-wide association study identified SNPs within the ABO 9q34 locus as statistically significantly associated with risk of pancreatic cancer. A number of recent and older studies going back 40 yr also support the ABO association. ABO-product antigens are expressed on gastrointestinal epithelium on which H. pylori binds, and ABO genotype is known to be associated with risks of duodenal and gastric ulcer and with risk of gastric cancer, conditions definitively related to Helicobacter colonization. We suspect that ABO genotype/phenotype status influences the behavior of H. pylori which in turn affects gastric and pancreatic secretory function, and these ultimately influence the pancreatic carcinogenicity of dietary- and smoking-related N-nitrosamine exposures, and thus risk of pancreatic cancer. Our study results on the interaction of ABO and H. pylori significantly confirm this hypothesis and together with other existing studies strongly implicate this organism in the disease etiology.
Collapse
Affiliation(s)
- Harvey A Risch
- Department of Epidemiology and Public Health, Yale University, School of Public Health, School of Medicine, New Haven, Connecticut 06520-8034, USA
| |
Collapse
|
18
|
Ohno T, Vallström A, Rugge M, Ota H, Graham DY, Arnqvist A, Yamaoka Y. Effects of blood group antigen-binding adhesin expression during Helicobacter pylori infection of Mongolian gerbils. J Infect Dis 2011; 203:726-35. [PMID: 21227917 DOI: 10.1093/infdis/jiq090] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori outer membrane proteins, such as the blood group antigen-binding adhesin (BabA), are associated with severe pathological outcomes. However, the in vivo role of BabA during long-term infection is not clear. In this study, Mongolian gerbils were infected with H. pylori and necropsied continuously during 18 months. Bacterial clones were recovered and analyzed for BabA expression, Leb-binding activity, and adhesion to gastric mucosa. BabA expression was completely absent by 6 months post-infection. Loss of BabA expression was attributable to nucleotide changes within the babA gene that resulted in a truncated BabA. In response to the infection, changes in the epithelial glycosylation pattern were observed that were similar to responses observed in humans and monkeys. Furthermore, infections with BabA-expressing and BabA-nonexpressing H. pylori showed no differences in colonization, but infection with the BabA-expressing strain exhibited histological changes and increased inflammatory cell infiltration. This suggests that BabA expression contributes to severe mucosal injury.
Collapse
Affiliation(s)
- Tomoyuki Ohno
- Department of Medicine-Gastroenterology, Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Magalhães A, Gomes J, Ismail MN, Haslam SM, Mendes N, Osório H, David L, Le Pendu J, Haas R, Dell A, Borén T, Reis CA. Fut2-null mice display an altered glycosylation profile and impaired BabA-mediated Helicobacter pylori adhesion to gastric mucosa. Glycobiology 2009; 19:1525-36. [PMID: 19706747 PMCID: PMC2782244 DOI: 10.1093/glycob/cwp131] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 08/21/2009] [Accepted: 08/21/2009] [Indexed: 12/14/2022] Open
Abstract
Glycoconjugates expressed on gastric mucosa play a crucial role in host-pathogen interactions. The FUT2 enzyme catalyzes the addition of terminal alpha(1,2)fucose residues, producing the H type 1 structure expressed on the surface of epithelial cells and in mucosal secretions of secretor individuals. Inactivating mutations in the human FUT2 gene are associated with reduced susceptibility to Helicobacter pylori infection. H. pylori infects over half the world's population and causes diverse gastric lesions, from gastritis to gastric cancer. H. pylori adhesion constitutes a crucial step in the establishment of a successful infection. The BabA adhesin binds the Le(b) and H type 1 structures expressed on gastric mucins, while SabA binds to sialylated carbohydrates mediating the adherence to inflamed gastric mucosa. In this study, we have used an animal model of nonsecretors, Fut2-null mice, to characterize the glycosylation profile and evaluate the effect of the observed glycan expression modifications in the process of H. pylori adhesion. We have demonstrated expression of terminal difucosylated glycan structures in C57Bl/6 mice gastric mucosa and that Fut2-null mice showed marked alteration in gastric mucosa glycosylation, characterized by diminished expression of alpha(1,2)fucosylated structures as indicated by lectin and antibody staining and further confirmed by mass spectrometry analysis. This altered glycosylation profile was further confirmed by the absence of Fucalpha(1,2)-dependent binding of calicivirus virus-like particles. Finally, using a panel of H. pylori strains, with different adhesin expression profiles, we have demonstated an impairment of BabA-dependent adhesion of H. pylori to Fut2-null mice gastric mucosa, whereas SabA-mediated binding was not affected.
Collapse
Affiliation(s)
- Ana Magalhães
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Joana Gomes
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Mohd Nazri Ismail
- Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Stuart M Haslam
- Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Nuno Mendes
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Hugo Osório
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | | | | | - Rainer Haas
- Max von Pettenkofer Institute, LMU München, München, Germany
| | - Anne Dell
- Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Thomas Borén
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Celso A Reis
- To whom correspondence should be addressed: Tel: +351-225570700; Fax: +351-225570799; e-mail:
| |
Collapse
|
20
|
Chiarini A, Calà C, Bonura C, Gullo A, Giuliana G, Peralta S, D'Arpa F, Giammanco A. Prevalence of virulence-associated genotypes of Helicobacter pylori and correlation with severity of gastric pathology in patients from western Sicily, Italy. Eur J Clin Microbiol Infect Dis 2008; 28:437-46. [PMID: 18958508 DOI: 10.1007/s10096-008-0644-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 10/03/2008] [Indexed: 12/16/2022]
Abstract
In a bacterium like Helicobacter pylori, which is characterized by a recombinant population structure, the associated presence of genes encoding virulence factors might be considered an expression of a selective advantage conferred to strains with certain genotypes and, therefore, a potentially useful tool for predicting the clinical outcome of infections. However, differences in the geographical and ethnic prevalence of the H. pylori virulence-associated genotypes can affect their clinical predictive value and need to be considered in advance. In this study we carried out such an evaluation in a group of patients living in Sicily, the largest and most populous island in the Mediterranean Sea. cagA, vacA, babA2, hopQ, oipA, sabA, and hopZ were the H. pylori virulence-associated genes assayed; their presence, expression status or allelic homologs were detected in H. pylori DNA samples and/or isolated strains, obtained by gastric biopsy from 90 Sicilian patients with chronic gastritis, inactive (n = 37), active (n = 26), or active with peptic ulcer (n = 27). Genotypes cagA (+), vacAs1, vacAm1, babA2 (+), and hopQ I, I/II were identified in 51.8, 80.4, 35.2, 47.3, and 67.7% of the different samples respectively. Only these genotypes were associated with each other and with the active form of chronic gastritis, irrespective of the presence of a peptic ulcer. In our isolates their prevalence was more similar to values observed in the north of Italy and France than to those observed in Spain or other Mediterranean countries that are closer and climatically more similar to western Sicily.
Collapse
Affiliation(s)
- A Chiarini
- Department of Sciences for Health Promotion, University of Palermo, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Interactions between BabA and Lewis b (Leb) related antigens are the best characterized adhesin-receptor interactions in Helicobacter pylori (H pylori). Several mechanisms for the regulation of BabA expression are predicted, including at both transcriptional and translational levels. The formation of chimeric proteins (babA/B or babB/A chimeras) seems to play an especially important role in translational regulation. Chimeric BabB/A protein had the potential to bind Leb; however, protein production was subject to phase variation through slipped strand mispairing. The babA gene was cloned initially from strain CCUG17875, which contains a silent babA1 gene and an expressed babA2 gene. The sequence of these two genes differs only by the presence of a 10 bp deletion in the signal peptide sequence of babA1 that eliminates its translational initiation codon. However, the babA1 type deletion was found only in strain CCUG17875. A few studies evaluated BabA status by immunoblot and confirmed that BabA-positive status in Western strains was closely associated with severe clinical outcomes. BabA-positive status also was associated with the presence of other virulence factors (e.g. cagA-positive status and vacA s1 genotype). A small class of strains produced low levels of the BabA protein and lacked Leb binding activity. These were more likely to be associated with increased mucosal inflammation and severe clinical outcomes than BabA-positive strains that exhibited Leb binding activity. The underlying mechanism is unclear, and further studies will be necessary to investigate how the complex BabA-receptor network is functionally coordinated during the interaction of H pylori with the gastric mucosa.
Collapse
|
22
|
Azevedo M, Eriksson S, Mendes N, Serpa J, Figueiredo C, Resende LP, Ruvoën-Clouet N, Haas R, Borén T, Le Pendu J, David L. Infection by Helicobacter pylori expressing the BabA adhesin is influenced by the secretor phenotype. J Pathol 2008; 215:308-16. [PMID: 18498114 DOI: 10.1002/path.2363] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2008] [Accepted: 04/02/2008] [Indexed: 12/25/2022]
Abstract
Helicobacter pylori (Hp) infects half the world's population and causes diverse gastric lesions, from gastritis to gastric cancer. Our aim was to evaluate the significance of secretor and Lewis status in infection and in vitro adherence by Hp expressing BabA adhesin. We enrolled 304 Hp-infected individuals from Northern Portugal. Gastric biopsies, blood and saliva were collected. Polymerase chain reaction (PCR) and immunofluorescence were used to detect BabA+ Hp in gastric biopsies. In vitro adherence by a BabA expressing Hp strain to gastric biopsies was performed. Secretor status was identified by Ulex, a lectin that recognizes secretor-dependent glycan structures in saliva and in gastric mucosa, and by Lewis(a/b) antibodies, and indirectly by identification of an inactivating mutation in the FUT2 gene (G428A). BabA status of infecting Hp was associated with CagA and VacAs1 (p < 0.05), intercellular localization of Hp (p < 0.01) and the presence of intestinal metaplasia (p < 0.05) and degenerative alterations (p < 0.005) in the biopsies. BabA was associated (p < 0.05) with Ulex staining of gastric biopsies and, although not significantly, to absence of homozygosity for FUT2 G428A inactivating polymorphism. In vitro Hp adherence was higher in cases wild-type or heterozygous for FUT2 G428A mutation (p < 0.0001), cases staining for Ulex (p < 0.0001) and a(-)b+ and a(-)b(-) secretor phenotypes (p < 0.001). In conclusion, BabA+ Hp infection/adhesion is secretor-dependent and associated with the severity of gastric lesions.
Collapse
Affiliation(s)
- M Azevedo
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Patel KK, Babyatsky MW. Medical education: a key partner in realizing personalized medicine in gastroenterology. Gastroenterology 2008; 134:656-61. [PMID: 18325381 DOI: 10.1053/j.gastro.2008.01.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kalpesh K Patel
- Division of Gastroenterology, Mount Sinai Medical Center, New York, New York, USA
| | | |
Collapse
|
24
|
Xie XF, Ito M, Sumii M, Tanaka S, Yoshihara M, Chayama K. Helicobacter pylori-associated gastritis is related to babA2 expression without heterogeneity of the 3' region of the cagA genotype in gastric biopsy specimens. Pathobiology 2007; 74:309-16. [PMID: 17890898 DOI: 10.1159/000105814] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Accepted: 01/15/2007] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cytotoxin-associated gene A (cagA) is the major virulence factor of Helicobacter pylori strains and affects the clinical outcome of patients. Blood group antigen binding adhesin (BabA) helps the strains adhere to the epithelial cell layer and is the most important adhesin of H. pylori. OBJECTIVES We tried to study the association between the status of babA2 and cagA in H. pylori strains and histological gastritis. methods: Thirty-six patients were included. RNA was extracted from two frozen biopsy samples of the antrum and corpus, respectively, and cagA/babA2 genotypes were analyzed with reverse transcription polymerase chain reaction and direct sequencing. Two gastric specimens of the antrum and corpus, respectively, were also stained with hematoxylin and eosin to analyze H. pylori-related gastritis. RESULTS In the antrum, 56% of the specimens were babA2 positive and in the corpus 53%. The gastritis scores of activity and inflammation were associated with the presence of babA2 in antrum specimens but not in corpus specimens. cagA gene encoding in the CagA EPIYA-D region was detected in all samples, and the sequence was completely identical between those from the gastric corpus and antrum. CONCLUSION babA2 expression is heterogeneous and correlated with the extent of gastritis in the antrum, but not in the corpus, whereas cagA shows a monotonous genotype.
Collapse
Affiliation(s)
- X F Xie
- Department of Medicine and Molecular Science, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Fucosylated carbohydrate structures are involved in a variety of biological and pathological processes in eukaryotic organisms including tissue development, angiogenesis, fertilization, cell adhesion, inflammation, and tumor metastasis. In contrast, fucosylation appears less common in prokaryotic organisms and has been suggested to be involved in molecular mimicry, adhesion, colonization, and modulating the host immune response. Fucosyltransferases (FucTs), present in both eukaryotic and prokaryotic organisms, are the enzymes responsible for the catalysis of fucose transfer from donor guanosine-diphosphate fucose to various acceptor molecules including oligosaccharides, glycoproteins, and glycolipids. To date, several subfamilies of mammalian FucTs have been well characterized; these enzymes are therefore delineated and used as models. Non-mammalian FucTs that possess different domain construction or display distinctive acceptor substrate specificity are highlighted. It is noteworthy that the glycoconjugates from plants and schistosomes contain some unusual fucose linkages, suggesting the presence of novel FucT subfamilies as yet to be characterized. Despite the very low sequence homology, striking functional similarity is exhibited between mammalian and Helicobacter pylori alpha1,3/4 FucTs, implying that these enzymes likely share a conserved mechanistic and structural basis for fucose transfer; such conserved functional features might also exist when comparing other FucT subfamilies from different origins. Fucosyltranferases are promising tools used in synthesis of fucosylated oligosaccharides and glycoconjugates, which show great potential in the treatment of infectious and inflammatory diseases and tumor metastasis.
Collapse
Affiliation(s)
- Bing Ma
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | |
Collapse
|