1
|
Ozel B, Kipcak S, Biray Avci C, Gunduz C, Saydam G, Aktan C, Selvi Gunel N. Combination of dasatinib and okadaic acid induces apoptosis and cell cycle arrest by targeting protein phosphatase PP2A in chronic myeloid leukemia cells. Med Oncol 2022; 39:46. [PMID: 35092492 DOI: 10.1007/s12032-021-01643-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/28/2021] [Indexed: 11/28/2022]
Abstract
Chronic myeloid leukemia (CML) is a cancer type of the white blood cells and because of BCR-ABL translocation it results in increased tyrosine kinase activity. For this purpose, dasatinib is the second-generation tyrosine kinase inhibitor that is used for inhibition of BCR-ABL. Effectively and safetly, dasatinib has been used for imatinib-intolerant/resistant CML patients. Protein phosphatase 2A (PP2A) is the major serine/threonine phosphatase ensuring cellular homeostasis in cells and is associated with many cancer types including leukemias. In this study, we aimed to investigate the effects of dasatinib and okadaic acid (OA), either alone or in combination, on apoptosis and cell cycle arrest and dasatinib effect on enzyme activity and protein-level changes of PP2A in K562 cell line. The cytotoxic effects of dasatinib were evaluated by WST-1 analysis. Apoptosis was determined by Annexin V and Apo-Direct assays by flow cytometry. Cell cycle arrest analysis was performed for the investigation of the cytostatic effect. We also used OA as a PP2A inhibitor to assess apoptosis and cell cycle arrest changes in case of reducing the level of PP2A. PP2A enyzme activity and protein levels of PP2A were examined by serine/threonine phosphatase assay and Western blot analysis, respectively. Apoptosis was increased with dasatinib and OA combination. Cell cycle arrest was determined especially after OA treatment. The enzyme activity was decreased depending on time after dasatinib application. PP2A regulatory and catalytic subunit protein levels were decreased compared to control. Targeting the PP2A by dasatinib and OA has potential for CML treatment.
Collapse
Affiliation(s)
- Buket Ozel
- Medical Biology Department, Faculty of Medicine, Ege University, Izmir, Turkey.
| | - Sezgi Kipcak
- Medical Biology Department, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Cigir Biray Avci
- Medical Biology Department, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Cumhur Gunduz
- Medical Biology Department, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Guray Saydam
- Division of Haematology, Department of Internal Medicine, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Cagdas Aktan
- Medical Biology Department, Faculty of Medicine, Beykent University, Istanbul, Turkey
| | - Nur Selvi Gunel
- Medical Biology Department, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
2
|
Proteomic Comparison of Malignant Human Germ Cell Tumor Cell Lines. DISEASE MARKERS 2019; 2019:8298524. [PMID: 31565104 PMCID: PMC6745167 DOI: 10.1155/2019/8298524] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/10/2019] [Accepted: 06/25/2019] [Indexed: 11/17/2022]
Abstract
Malignant germ cell tumors (GCT) are the most common malignant tumors in young men between 18 and 40 years. The correct identification of histological subtypes, in difficult cases supported by immunohistochemistry, is essential for therapeutic management. Furthermore, biomarkers may help to understand pathophysiological processes in these tumor types. Two GCT cell lines, TCam-2 with seminoma-like characteristics, and NTERA-2, an embryonal carcinoma-like cell line, were compared by a quantitative proteomic approach using high-resolution mass spectrometry (MS) in combination with stable isotope labelling by amino acid in cell culture (SILAC). We were able to identify 4856 proteins and quantify the expression of 3936. 347 were significantly differentially expressed between the two cell lines. For further validation, CD81, CBX-3, PHF6, and ENSA were analyzed by western blot analysis. The results confirmed the MS results. Immunohistochemical analysis on 59 formalin-fixed and paraffin-embedded (FFPE) normal and GCT tissue samples (normal testis, GCNIS, seminomas, and embryonal carcinomas) of these proteins demonstrated the ability to distinguish different GCT subtypes, especially seminomas and embryonal carcinomas. In addition, siRNA-mediated knockdown of these proteins resulted in an antiproliferative effect in TCam-2, NTERA-2, and an additional embryonal carcinoma-like cell line, NCCIT. In summary, this study represents a proteomic resource for the discrimination of malignant germ cell tumor subtypes and the observed antiproliferative effect after knockdown of selected proteins paves the way for the identification of new potential drug targets.
Collapse
|
3
|
Liu L, Wang H, Cui J, Zhang Q, Zhang W, Xu W, Lu H, Liu S, Shen S, Fang F, Li L, Yang W, Zhuang Z, Li J. Inhibition of Protein Phosphatase 2A Sensitizes Mucoepidermoid Carcinoma to Chemotherapy via the PI3K-AKT Pathway in Response to Insulin Stimulus. Cell Physiol Biochem 2018; 50:317-331. [PMID: 30282066 DOI: 10.1159/000494008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/25/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND/AIMS Protein phosphatase 2A (PP2A) is a ubiquitous serine/threonine phosphatase that mediates cell cycle regulation and metabolism. Mounting evidence has indicated that PP2A inhibition exhibits considerable anticancer potency in multiple types of human cancers. However, the efficacy of PP2A inhibition remains unexplored in mucoepidermoid carcinoma (MEC), especially in locally advanced and metastatic cases with limited systemic treatment. In this study, we demonstrated the therapeutic potency of LB100 in mucoepidermoid carcinoma. METHODS In this study, the expression of PP2A was evaluated using immunohistochemical (IHC) staining. The effects associated with LB100 alone and in combination with cisplatin for the treatment of mucoepidermoid carcinoma were investigated both in vitro, regarding metabolism, proliferation, and migration, and in vivo in a mucoepidermoid carcinoma xenograft model. In addition, with LB100 treatment and in response to an insulin stimulus, the expression levels and phosphorylation levels of targets in the PI3K-AKT pathway were determined using western blot analysis and immunoblotting. RESULTS The expression of protein phosphatase 2A was significantly upregulated in the clinical specimens of high-grade MECs compared with those of low-/medium-grade MECs and normal controls. In this article, we report that a small molecule PP2A inhibitor, LB100, decreased cellular viability and glycolytic activity and induced G2/M cell cycle arrest. Importantly, LB100 enhanced the efficacy of cisplatin in mucoepidermoid carcinoma cells both in vitro and in vivo. PP2A inhibition by LB100 increased the phosphorylation of insulin receptor substrate 1(IRS-1) on serine residues, downregulated the expression of phosphatidylinositol 3-kinase (PI3K) p110 alpha subunit and dephosphorylated AKT at Ser473 and Thr308 in mucoepidermoid carcinoma cells in response to insulin stimulus. CONCLUSION These results highlight the translational potential of PP2A inhibition to synergize with cisplatin in mucoepidermoid carcinoma treatment.
Collapse
Affiliation(s)
- Limin Liu
- Department of Oral Pathology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, National Clinical Research Center for Oral Diseases, Shanghai, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.,Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Herui Wang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jing Cui
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Qi Zhang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Wei Zhang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Wanlin Xu
- Department of Oral Pathology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, National Clinical Research Center for Oral Diseases, Shanghai, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hao Lu
- Department of Oral Pathology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, National Clinical Research Center for Oral Diseases, Shanghai, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shengwen Liu
- Department of Oral Pathology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, National Clinical Research Center for Oral Diseases, Shanghai, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shukun Shen
- Department of Oral Pathology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, National Clinical Research Center for Oral Diseases, Shanghai, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | | | - Lei Li
- Department of Oral Pathology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, National Clinical Research Center for Oral Diseases, Shanghai, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Wenjun Yang
- Department of Oral Pathology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, National Clinical Research Center for Oral Diseases, Shanghai, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhengping Zhuang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jiang Li
- Department of Oral Pathology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, National Clinical Research Center for Oral Diseases, Shanghai, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
4
|
KIAA1199 promotes metastasis of colorectal cancer cells via microtubule destabilization regulated by a PP2A/stathmin pathway. Oncogene 2018; 38:935-949. [PMID: 30202098 DOI: 10.1038/s41388-018-0493-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/15/2018] [Accepted: 08/19/2018] [Indexed: 12/29/2022]
Abstract
Tumor metastasis is the main cause of death in advanced colorectal cancer. Our previous research showed that upregulation of KIAA1199 predicted poorer outcomes, and promoted cell motility and tumor metastasis in colorectal cancer, with the mechanisms not being fully elucidated. Here, we demonstrate that silencing of KIAA1199 results in reduced tumor metastasis in the orthotopic transplantation tumor model of colorectal cancer. Importantly, we find that KIAA1199 interacts with protein phosphatase 2A (PP2A) through the C-terminal domain and increases phosphatase activity of PP2A, which is essential for KIAA1199-mediated cell motility. Moreover, we identify stathmin, a microtubule-destabilizing protein, as a downstream of KIAA1199-PP2A complex. KIAA1199-induced dephosphorylation of stathmin results in microtubule destabilization and leads to enhanced cell motility. Furthermore, a microtubule-stabilizing drug paclitaxel could prevent KIAA1199-induced microtubule destabilization, and inhibit cell migration and invasion in vitro and tumor metastasis in vivo in colorectal cancer. Collectively, our study reveals that KIAA1199 promotes metastasis of colorectal cancer cells via microtubule destabilization regulated by a PP2A/stathmin pathway, and suggests that KIAA1199 may be a promising target for preventing metastasis in colorectal cancer.
Collapse
|
5
|
Wang SC, Chow JM, Chien MH, Lin CW, Chen HY, Hsiao PC, Yang SF. Cantharidic acid induces apoptosis of human leukemic HL-60 cells via c-Jun N-terminal kinase-regulated caspase-8/-9/-3 activation pathway. ENVIRONMENTAL TOXICOLOGY 2018; 33:514-522. [PMID: 29345422 DOI: 10.1002/tox.22537] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/03/2018] [Accepted: 01/06/2018] [Indexed: 06/07/2023]
Abstract
Cantharidin, a natural toxin from blister beetles, has shown potent anticancer activities on many solid tumor cells. Recently, cantharidin and its analogue, norcantharidin, were also shown to suppress nonsolid tumors such as chronic myeloid leukemia, acute myeloid leukemia (AML), and leukemic stem cells. However, there is no available information to address the effects of cantharidic acid (CAC), a hydrolysis product of cantharidin, on human AML cells. The present study showed that CAC, at a range of concentrations (0-20 μM), concentration-dependently inhibited cell proliferation in the HL-60 AML cell line. Western blot and flow cytometric assays demonstrated that CAC induced several features of apoptosis such as sub G1-phase cell increase, phosphatidylserine (PS) externalization, and significantly activated proapoptotic signaling including caspase-8, -9, and -3 activation and poly(ADP-ribose) polymerase (PARP) cleavage in HL-60 AML cells. Moreover, treatment of HL-60 cells with CAC induced concentration- and time- dependent activation of p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun N-terminal kinase (JNK). Only JNK-, but not p38 MAPK-specific inhibitor can reverse the CAC-induced activation of the caspase-8, -9, and -3. We concluded that CAC can induce apoptosis in human leukemic HL-60 cells via a caspases-dependent pathway, and that the apoptosis-inducing effect of CAC can be regulated by JNK activation signaling.
Collapse
Affiliation(s)
- Shih-Chung Wang
- Department of Pediatric Hematology/Oncology, Changhua Christian Children's Hospital, Changhua, Taiwan
| | - Jyh-Ming Chow
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hui-Yu Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Ching Hsiao
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
6
|
Yu S, Li L, Wu Q, Dou N, Li Y, Gao Y. PPP2R2D, a regulatory subunit of protein phosphatase 2A, promotes gastric cancer growth and metastasis via mechanistic target of rapamycin activation. Int J Oncol 2018; 52:2011-2020. [PMID: 29568966 DOI: 10.3892/ijo.2018.4329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 03/15/2018] [Indexed: 11/06/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is an essential serine/threonine protein phosphatase that regulates the basic activities of eukaryotes by dephosphorylating its substrates. The function and substrate specificity of PP2A are generally determined by its regulatory subunits. In the present study, the clinical significance and roles of PPP2R2D, one of the regulatory subunits of PP2A, were demonstrated in gastric cancer (GC) carcinogenesis. Through a tissue microarray and quantitative polymerase chain reaction analysis, it was demonstrated that PPP2R2D was commonly upregulated in GC samples. This upregulation was positively correlated with the patients' tumor stage (P<0.01), T classification (P<0.01) and N classification (P=0.01). Furthermore, a high expression of PPP2R2D was closely associated with poor prognosis of patients. Knockdown of PPP2R2D significantly inhibited the proliferation and migration of GC cells in vitro, as well as the tumorigenicity and metastasis in vivo in an animal GC model. By contrast, overexpression of PPP2R2D promoted GC cell proliferation and migration in vitro. The analysis of underlying mechanisms indicated that PPP2R2D silencing decreased the phosphorylation level of mechanistic target of rapamycin (mTOR), thereby implicating that PPP2R2D is involved in the regulation of mTOR activity during tumorigenesis. Thus, the findings of the present study suggested that PPP2R2D may serve as a potential oncogene in GC and as a novel target for therapeutic strategies against this disease.
Collapse
Affiliation(s)
- Shijun Yu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Li Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Qiong Wu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Ning Dou
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Yandong Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| |
Collapse
|
7
|
Feng IC, Hsieh MJ, Chen PN, Hsieh YH, Ho HY, Yang SF, Yeh CB. Cantharidic acid induces apoptosis through the p38 MAPK signaling pathway in human hepatocellular carcinoma. ENVIRONMENTAL TOXICOLOGY 2018; 33:261-268. [PMID: 29159945 DOI: 10.1002/tox.22513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
Cantharidin analogs exhibit anticancer activities, including apoptosis. However, the molecular mechanisms underlying the effects of cantharidic acid (CA), a cantharidin analog, on apoptosis in hepatocellular carcinoma (HCC) cells are unclear. Thus, in this study, we evaluated the anticancer activities of CA by investigating its ability to trigger apoptosis in SK-Hep-1 cells. Our data demonstrated that CA effectively inhibited the proliferation of SK-Hep-1 cells in a dose-dependent manner. Furthermore, CA effectively triggered cell cycle arrest and induced apoptosis, as determined by flow cytometric analysis. Western blotting revealed that CA significantly activated proapoptotic signaling including caspase-3, -8, and -9 in SK-Hep-1 cells. Moreover, treatment of SK-Hep-1 cells with CA induced the activation of ERK, p38, and c-Jun N-terminal kinase. Moreover, the inhibition of p38 by specific inhibitors abolished CA-induced cell apoptosis. In conclusion, our results indicated that CA induces apoptosis in SK-Hep-1 cells through a p38-mediated apoptotic pathway and could be a new HCC therapeutic agent.
Collapse
Affiliation(s)
- I-Che Feng
- Division of Gastroenterology and Hepatology, Chi Mei Medical Center, Yongkang District, Tainan, Taiwan
- Department of Internal Medicine, Chi Mei Medical Center, Yongkang District, Tainan, Taiwan
| | - Ming-Ju Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Pei-Ni Chen
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hsin-Yu Ho
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chao-Bin Yeh
- Department of Emergency Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Emergency Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
8
|
Wang B, Liu J, Huang P, Xu K, Wang H, Wang X, Guo Z, Xu L. Protein phosphatase 2A inhibition and subsequent cytoskeleton reorganization contributes to cell migration caused by microcystin-LR in human laryngeal epithelial cells (Hep-2). ENVIRONMENTAL TOXICOLOGY 2017; 32:890-903. [PMID: 27393157 DOI: 10.1002/tox.22289] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/08/2016] [Accepted: 05/08/2016] [Indexed: 06/06/2023]
Abstract
The major toxic mechanism of Microcystin-LR is inhibition of the activity of protein phosphatase 2A (PP2A), resulting in a series of cytotoxic effects. Our previous studies have demonstrated that microcystin-LR (MCLR) induced very different molecular effects in normal cells and the tumor cell line SMMC7721. To further explore the MCLR toxicity mechanism in tumor cells, human laryngeal epithelial cells (Hep-2) was examined in this study. Western blot, immunofluorescence, immunoprecipitation, and transwell migration assay were used to detect the effects of MCLR on PP2A activity, PP2A substrates, cytoskeleton, and cell migration. The results showed that the protein level of PP2A subunits and the posttranslational modification of the catalytic subunit were altered and that the binding of the AC core enzyme as well as the binding of PP2A/C and α4, was also affected. As PP2A substrates, the phosphorylation of MAPK pathway members, p38, ERK1/2, and the cytoskeleton-associated proteins, Hsp27, VASP, Tau, and Ezrin were increased. Furthermore, MCLR induced reorganization of the cytoskeleton and promoted cell migration. Taken together, direct covalent binding to PP2A/C, alteration of the protein levels and posttranslational modification, as well as the binding of subunits, are the main pattern for the effects of MCLR on PP2A in Hep-2. A dose-dependent change in p-Tau and p-Ezrin due to PP2A inhibition may contribute to the changes in the cytoskeleton and be related to the cell migration in Hep-2. Our data provide a comprehensive exposition of the MCLR mechanism on tumor cells. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 890-903, 2017.
Collapse
Affiliation(s)
- Beilei Wang
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jinghui Liu
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Pu Huang
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Kailun Xu
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Hanying Wang
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiaofeng Wang
- Zhejiang Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Zonglou Guo
- Department of Biosystem Engineering, College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Lihong Xu
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
9
|
PP2A inhibitors arrest G2/M transition through JNK/Sp1- dependent down-regulation of CDK1 and autophagy-dependent up-regulation of p21. Oncotarget 2016; 6:18469-83. [PMID: 26053095 PMCID: PMC4621904 DOI: 10.18632/oncotarget.4063] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/14/2015] [Indexed: 01/07/2023] Open
Abstract
Protein phosphatase 2A (PP2A) plays an important role in the control of the cell cycle. We previously reported that the PP2A inhibitors, cantharidin and okadaic acid (OA), efficiently repressed the growth of cancer cells. In the present study, we found that PP2A inhibitors arrested the cell cycle at the G2 phase through a mechanism that was dependent on the JNK pathway. Microarrays further showed that PP2A inhibitors induced expression changes in multiple genes that participate in cell cycle transition. To verify whether these expression changes were executed in a PP2A-dependent manner, we targeted the PP2A catalytic subunit (PP2Ac) using siRNA and evaluated gene expression with a microarray. After the cross comparison of these microarray data, we identified that CDK1 was potentially the same target when treated with either PP2A inhibitors or PP2Ac siRNA. In addition, we found that the down-regulation of CDK1 occurred in a JNK-dependent manner. Luciferase reporter gene assays demonstrated that repression of the transcription of CDK1 was executed through the JNK-dependent activation of the Sp1 transcription factor. By constructing deletion mutants of the CDK1 promoter and by using ChIP assays, we identified an element in the CDK1 promoter that responded to the JNK/Sp1 pathway after stimulation with PP2A inhibitors. Cantharidin and OA also up-regulated the expression of p21, an inhibitor of CDK1, via autophagy rather than PP2A/JNK pathway. Thus, this present study found that the PP2A/JNK/Sp1/CDK1 pathway and the autophagy/p21 pathway participated in G2/M cell cycle arrest triggered by PP2A inhibitors.
Collapse
|
10
|
Gong SJ, Feng XJ, Song WH, Chen JM, Wang SM, Xing DJ, Zhu MH, Zhang SH, Xu AM. Upregulation of PP2Ac predicts poor prognosis and contributes to aggressiveness in hepatocellular carcinoma. Cancer Biol Ther 2015; 17:151-62. [PMID: 26618405 DOI: 10.1080/15384047.2015.1121345] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a heterotrimeric protein phosphatase consisting of a 36-kD catalytic C subunit (PP2Ac). This study aimed to explore the prognostic and biological significance of PP2Ac in human hepatocellular carcinoma (HCC). High PP2Ac expression was significantly (P < 0.01) associated with serum hepatitis B surface antigen positivity, serum hepatitis B e antigen positivity, liver cirrhosis, moderate to poor differentiation grade, advanced disease stage, intrahepatic metastasis, and early recurrence in HCC. Multivariate analysis revealed PP2Ac as an independent prognostic factor for overall survival. Enforced expression of hepatitis B virus X protein (HBx) and its carboxyl-terminal truncated isoform induced PP2Ac expression in HCC cells. Co-immunoprecipitation assay revealed a direct interaction between PP2Ac and HBx. Small interfering RNA-mediated knockdown of PP2Ac significantly inhibited in vitro cell proliferation, colony formation, migration, and invasion and reduced tumor growth in an xenograft mouse model. In contrast, overexpression of PP2Ac promoted HCC cell proliferation, colony formation, and tumorigenesis. Additionally, silencing of PP2Ac impaired the growth-promoting effects on HepG2 HCC cells elicited by overexpression of carboxyl-terminal truncated HBx. Gene expression profiling analysis showed that PP2Ac downregulation modulated the expression of numerous genes involved in cell cycle and apoptosis regulation. Collectively, PP2Ac upregulation has a poor prognostic impact on the overall survival of HCC patients and contributes to the aggressiveness of HCC. PP2Ac may represent a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Shao-Juan Gong
- a Department of Interventional oncology , Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| | - Xiao-Jun Feng
- b Department of Pathology , Yueyang Hospital, Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Wei-Hua Song
- a Department of Interventional oncology , Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| | - Jian-Ming Chen
- a Department of Interventional oncology , Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| | - Shou-Mei Wang
- b Department of Pathology , Yueyang Hospital, Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Dong-Juan Xing
- a Department of Interventional oncology , Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| | - Ming-Hua Zhu
- c Department of Pathology , Changhai Hospital and Institute of Liver Diseases, Second Military Medical University , Shanghai , China
| | - Shu-Hui Zhang
- b Department of Pathology , Yueyang Hospital, Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Ai-Min Xu
- a Department of Interventional oncology , Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| |
Collapse
|
11
|
Kiely M, Kiely PA. PP2A: The Wolf in Sheep's Clothing? Cancers (Basel) 2015; 7:648-69. [PMID: 25867001 PMCID: PMC4491676 DOI: 10.3390/cancers7020648] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/16/2015] [Accepted: 03/23/2015] [Indexed: 12/21/2022] Open
Abstract
Protein Phosphatase 2A (PP2A) is a major serine/threonine phosphatase in cells. It consists of a catalytic subunit (C), a structural subunit (A), and a regulatory/variable B-type subunit. PP2A has a critical role to play in homeostasis where its predominant function is as a phosphatase that regulates the major cell signaling pathways in cells. Changes in the assembly, activity and substrate specificity of the PP2A holoenzyme have a direct role in disease and are a major contributor to the maintenance of the transformed phenotype in cancer. We have learned a lot about how PP2A functions from specific mutations that disrupt the core assembly of PP2A and from viral proteins that target PP2A and inhibit its effect as a phosphatase. This prompted various studies revealing that restoration of PP2A activity benefits some cancer patients. However, our understanding of the mechanism of action of this is limited because of the complex nature of PP2A holoenzyme assembly and because it acts through a wide variety of signaling pathways. Information on PP2A is also conflicting as there are situations whereby inactivation of PP2A induces apoptosis in many cancer cells. In this review we discuss this relationship and we also address many of the pertinent and topical questions that relate to novel therapeutic strategies aimed at altering PP2A activity.
Collapse
Affiliation(s)
- Maeve Kiely
- Department of Life Sciences, and Materials and Surface Science Institute, University of Limerick, Limerick 78666, Ireland.
| | - Patrick A Kiely
- Department of Life Sciences, and Materials and Surface Science Institute, University of Limerick, Limerick 78666, Ireland.
- Stokes Institute, University of Limerick 78666, Limerick, Ireland.
| |
Collapse
|
12
|
Xie X, Wu MY, Shou LM, Chen LP, Gong FR, Chen K, Li DM, Duan WM, Xie YF, Mao YX, Li W, Tao M. Tamoxifen enhances the anticancer effect of cantharidin and norcantharidin in pancreatic cancer cell lines through inhibition of the protein kinase C signaling pathway. Oncol Lett 2014; 9:837-844. [PMID: 25624908 PMCID: PMC4301527 DOI: 10.3892/ol.2014.2711] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 08/22/2014] [Indexed: 11/22/2022] Open
Abstract
Cantharidin is an active constituent of mylabris, a traditional Chinese therapeutic agent. Cantharidin is a potent and selective inhibitor of protein phosphatase 2A (PP2A). Cantharidin has been previously reported to efficiently repress the growth of pancreatic cancer cells. However, excessively activated protein kinase C (PKC) has been shown to improve cell survival following the adminstration of cantharidin. Tamoxifen is widely used in the treatment of estrogen receptor-positive breast cancer. In addition, an increasing number of studies have found that tamoxifen selectively inhibits PKC and represses growth in estrogen receptor-negative cancer cells. Administration of a combination of PKC inhibitor and PP2A inhibitors has been demonstrated to exert a synergistic anticancer effect. The proliferation of pancreatic cancer cells was analyzed by 3-(4,5-dimethyltiazol-2-yl]2, 5-diphenyltetrazo-lium bromide assay. The expression levels of ERα and ERβ in various pancreatic cancer cell lines were determined by reverse transcription polymerase chain reaction. In addition, the protein levels of PKCα and phosphorylated PKCα in pancreatic cell lines were analyzed by western blot analysis. In the present study, tamoxifen was found to exert a cytotoxic effect against pancreatic cancer cells independent of the hormone receptor status. Tamoxifen repressed the phosphorylation of PKC, and amplified the anticancer effect induced by cantharidin and norcantharidin. The findings reveal a novel potential strategy against pancreatic cancer using co-treatment with tamoxifen plus cantharidin or cantharidin derivatives.
Collapse
Affiliation(s)
- Xin Xie
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China ; Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221006, P.R. China
| | - Meng-Yao Wu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Liu-Mei Shou
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Long-Pei Chen
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Fei-Ran Gong
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China ; Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China ; Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Kai Chen
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Dao-Ming Li
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Wei-Ming Duan
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yu-Feng Xie
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yi-Xiang Mao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Min Tao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China ; Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
13
|
Puerto Galvis CE, Vargas Méndez LY, Kouznetsov VV. Cantharidin-Based Small Molecules as Potential Therapeutic Agents. Chem Biol Drug Des 2013; 82:477-99. [DOI: 10.1111/cbdd.12180] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Carlos E. Puerto Galvis
- Laboratorio de Química Orgánica y Biomolecular; Escuela de Química; Universidad Industrial de Santander; A.A. 678; Bucaramanga; Colombia
| | - Leonor Y. Vargas Méndez
- Grupo de Investigaciones Ambientales; Facultad de Química Ambiental; Universidad Santo Tomás; A. A. 1076; Bucaramanga; Colombia
| | - Vladimir V. Kouznetsov
- Laboratorio de Química Orgánica y Biomolecular; Escuela de Química; Universidad Industrial de Santander; A.A. 678; Bucaramanga; Colombia
| |
Collapse
|
14
|
Duong FHT, Dill MT, Matter MS, Makowska Z, Calabrese D, Dietsche T, Ketterer S, Terracciano L, Heim MH. Protein phosphatase 2A promotes hepatocellular carcinogenesis in the diethylnitrosamine mouse model through inhibition of p53. Carcinogenesis 2013; 35:114-22. [PMID: 23901063 DOI: 10.1093/carcin/bgt258] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Most HCCs develop in cirrhotic livers. Alcoholic liver disease, chronic hepatitis B and chronic hepatitis C are the most common underlying liver diseases. Hepatitis C virus (HCV)-specific mechanisms that contribute to HCC are presently unknown. Transgenic expression of HCV proteins in the mouse liver induces an overexpression of the protein phosphatase 2A catalytic subunit (PP2Ac). We have previously reported that HCV-induced PP2Ac overexpression modulates histone methylation and acetylation and inhibits DNA damage repair. In this study, we analyze tumor formation and gene expression using HCV transgenic mice that overexpress PP2Ac and liver tissues from patients with HCC. We demonstrate that PP2Ac overexpression interferes with p53-induced apoptosis. Injection of the carcinogen, diethylnitrosamine, induced significantly more and larger liver tumors in HCV transgenic mice that overexpress PP2Ac compared with control mice. In human liver biopsies from patients with HCC, PP2Ac expression was significantly higher in HCC tissue compared with non-tumorous liver tissue from the same patients. Our findings demonstrate an important role of PP2Ac overexpression in liver carcinogenesis and provide insights into the molecular pathogenesis of HCV-induced HCC.
Collapse
|
15
|
Tagaya Y, Miura A, Okada S, Ohshima K, Mori M. Nucleobindin-2 is a positive modulator of EGF-dependent signals leading to enhancement of cell growth and suppression of adipocyte differentiation. Endocrinology 2012; 153:3308-19. [PMID: 22514047 DOI: 10.1210/en.2011-2154] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nucleobindin-2 is a 420-amino-acid EF-hand calcium-binding protein that undergoes proteolytic processing to generate an 82-amino-acid amino-terminal peptide termed nesfatin-1. To determine whether nucleobindin-2 has any biological function, nucleobindin-2 was either overexpressed or knocked down by short hairpin RNA in cultured CHO cells expressing the human insulin and epidermal growth factor (EGF) receptors (CHO/IE) and in 3T3-L1 cells. Reduction in nucleobindin-2 expression inhibited EGF-stimulated MAPK kinase (S217/S221) and Erk phosphorylation (T202/Y204). In contrast, there was no significant effect on EGF-stimulated EGF receptor phosphorylation, EGF receptor internalization, or 52-kDa Shc and c-Raf phosphorylation. Although kinase suppressor of Ras-1 and protein phosphatase 2A expression was not changed, intracellular calcium concentrations and PP2A activity was significantly increased in nucleobindin-2 knocked-down cells. Concomitant with these alterations in EGF-stimulated signaling, cell proliferation was significantly reduced in nucleobindin-2 knocked-down cells. Moreover, reduced nucleobindin-2 expression in 3T3-L1 preadipocytes resulted in a greater extent of 3T3-L1 cell adipocyte differentiation. Taken together, these data indicate that nucleobindin-2 regulates EGF-stimulated MAPK kinase/Erk signaling, cell proliferation, and adipocyte differentiation.
Collapse
Affiliation(s)
- Yuko Tagaya
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | | | | | | | | |
Collapse
|
16
|
Bioactive component, cantharidin from Mylabris cichorii and its antitumor activity against Ehrlich ascites carcinoma. Cell Biol Toxicol 2012; 28:133-47. [DOI: 10.1007/s10565-011-9206-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 12/01/2011] [Indexed: 10/28/2022]
|
17
|
Li W, Chen Z, Gong FR, Zong Y, Chen K, Li DM, Yin H, Duan WM, Miao Y, Tao M, Han X, Xu ZK. Growth of the pancreatic cancer cell line PANC-1 is inhibited by protein phosphatase 2A inhibitors through overactivation of the c-Jun N-terminal kinase pathway. Eur J Cancer 2011; 47:2654-64. [PMID: 21958460 DOI: 10.1016/j.ejca.2011.08.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 06/22/2011] [Accepted: 08/20/2011] [Indexed: 12/24/2022]
Abstract
Protein phosphatase 2A (PP2A) is a multimeric serine/threonine phosphatase that can dephosphorylate multiple kinases. It is generally considered to be a cancer suppressor as its inhibition can induce phosphorylation and activation of substrate kinases that mainly accelerate growth. We previously reported that cantharidin, an active constituent of a traditional Chinese medicine, potently and selectively inhibited PP2A, yet efficiently repressed the growth of pancreatic cancer cells through activation of the c-Jun N-terminal kinase (JNK) pathway. This suggested that activation of kinase pathways might also be a potential strategy for cancer therapy. In this study, we have confirmed that the basal activity of the phospatidylinositol 3-kinase (PI3K)/JNK/activator protein 1 (AP-1) pathway promoted pancreatic cancer cell growth when stimulated by growth factors. Interestingly, although treatment with the PP2A inhibitors, cantharidin or okadaic acid (OA), amplified the PI3K-dependent activation of JNK, cell growth was repressed. We therefore hypothesised that a specific level of activity of the JNK pathway might be required to maintain the promitogenic function, as both repression and overactivation of JNK could inhibit cell proliferation. It was found that the JNK-dependent growth inhibition was independent of the activation of AP-1, but dependent on the repression of Akt. Although the PP2A inhibitors triggered overactivation of JNK and inhibited cell growth, excessively activated protein kinase C (PKC) improved cell survival. Combined treatment with a PP2A inhibitor and a PKC inhibitor produced a synergistic effect, which indicates a potentially promising therapeutic approach to pancreatic cancer treatment.
Collapse
Affiliation(s)
- Wei Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Li W, Xie L, Chen Z, Zhu Y, Sun Y, Miao Y, Xu Z, Han X. Cantharidin, a potent and selective PP2A inhibitor, induces an oxidative stress-independent growth inhibition of pancreatic cancer cells through G2/M cell-cycle arrest and apoptosis. Cancer Sci 2010; 101:1226-33. [PMID: 20331621 PMCID: PMC11158714 DOI: 10.1111/j.1349-7006.2010.01523.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Cantharidin is an active constituent of mylabris, a traditional Chinese medicine. It is a potent and selective inhibitor of protein phosphatase 2A (PP2A) that plays an important role in control of cell cycle, apoptosis, and cell-fate determination. Owing to its antitumor activity, cantharidin has been frequently used in clinical practice. In the present study, we investigated the therapeutic potential of cantharidin in pancreatic cancer. Cantharidin efficiently inhibited the growth of pancreatic cancer cells, but presented a much lighter toxicity effect against normal pancreatic duct cells. It caused G2/M cell-cycle arrest that was accompanied by the down-regulation of cyclin-dependent kinase 1 (CDK1) and up-regulation of p21 expression. It induced apoptosis and elevated the expressions of pro-apoptotic factors tumor necrosis factor-alpha (TNF-alpha), TNF-related apoptosis inducing receptor 1 (TRAILR1), TRAILR2, Bad, Bak, and Bid, and decreased the expression of anti-apoptotic Bcl-2. Activation of caspase-8 and caspase-9 suggested that both extrinsic and intrinsic pathways are involved in the induction of apoptosis. Interestingly, unlike previous studies on other cancer cells, we found that the inhibitory role of cantharidin is independent of oxidative stress in pancreatic cancer cells. Mitogen-activated protein kinases (MAPKs), including ERK, JNK, and p38, were activated after treatment with cantharidin. Inhibition of JNK, but not ERK or p38, alleviated the cytotoxity effect of cantharidin, suggesting cantharidin exerted its anticancer effect through the JNK-dependent way. Hence, in addition to being an attractive candidate compound with therapeutic potential, cantharidin also highlighted the possibility of using PP2A as a therapeutic target for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Wei Li
- Department of General Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Duong FHT, Christen V, Lin S, Heim MH. Hepatitis C virus-induced up-regulation of protein phosphatase 2A inhibits histone modification and DNA damage repair. Hepatology 2010; 51:741-51. [PMID: 20043320 DOI: 10.1002/hep.23388] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
UNLABELLED The molecular mechanisms underlying hepatocarcinogenesis in chronic viral hepatitis are poorly understood. A potential tumorigenic pathway could involve protein phosphatase 2A (PP2A) and protein arginine methyltransferase 1 (PRMT1), because both enzymes are dysregulated in chronic hepatitis C, and both enzymes have been involved in chromatin remodeling and DNA damage repair. We used cell lines that allow the inducible expression of hepatitis C virus proteins (UHCV57.3) and of the catalytic subunit of PP2A (UPP2A-C8) as well as Huh7.5 cells infected with recombinant cell culture-derived hepatitis C virus (HCVcc) to study epigenetic histone modifications and DNA damage repair. The induction of viral proteins, the overexpression of PP2Ac, or the infection of Huh7.5 cells with HCVcc resulted in an inhibition of histone H4 methylation/acetylation and histone H2AX phosphorylation, in a significantly changed expression of genes important for hepatocarcinogenesis, and inhibited DNA damage repair. Overexpression of PP2Ac in NIH-3T3 cells increased anchorage-independent growth. These changes were partially reversed by the treatment of cells with the methyl-group donor S-adenosyl-L-methionine (SAMe). CONCLUSION Hepatitis C virus-induced overexpression of PP2Ac contributes to hepatocarcinogenesis through dysregulation of epigenetic histone modifications. The correction of defective histone modifications by S-adenosyl-L-methionine makes this drug a candidate for chemopreventive therapies in patients with chronic hepatitis C who are at risk for developing hepatocellular carcinoma.
Collapse
Affiliation(s)
- Francois H T Duong
- Department of Biomedicine, Hepatology Laboratory, University Hospital Basel, 4031 Basel, Switzerland
| | | | | | | |
Collapse
|
20
|
Monteiro HP, Arai RJ, Travassos LR. Protein tyrosine phosphorylation and protein tyrosine nitration in redox signaling. Antioxid Redox Signal 2008; 10:843-89. [PMID: 18220476 DOI: 10.1089/ars.2007.1853] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Reversible phosphorylation of protein tyrosine residues by polypeptide growth factor-receptor protein tyrosine kinases is implicated in the control of fundamental cellular processes including the cell cycle, cell adhesion, and cell survival, as well as cell proliferation and differentiation. During the last decade, it has become apparent that receptor protein tyrosine kinases and the signaling pathways they activate belong to a large signaling network. Such a network can be regulated by various extracellular cues, which include cell adhesion, agonists of G protein-coupled receptors, and oxidants. It is well documented that signaling initiated by receptor protein tyrosine kinases is directly dependent on the intracellular production of oxidants, including reactive oxygen and nitrogen species. Accumulated evidence indicates that the intracellular redox environment plays a major role in the mechanisms underlying the actions of growth factors. Oxidation of cysteine thiols and nitration of tyrosine residues on signaling proteins are described as posttranslational modifications that regulate, positively or negatively, protein tyrosine phosphorylation (PTP). Early observations described the inhibition of PTP activities by oxidants, resulting in increased levels of proteins phosphorylated on tyrosine. Therefore, a redox circuitry involving the increasing production of intracellular oxidants associated with growth-factor stimulation/cell adhesion, oxidative reversible inhibition of protein tyrosine phosphatases, and the activation of protein tyrosine kinases can be delineated.
Collapse
Affiliation(s)
- Hugo P Monteiro
- Department of Biochemistry/Molecular Biology and CINTERGEN, Universidade Federal de São Paulo, São Paulo, Brazil.
| | | | | |
Collapse
|