1
|
Ahmed F, Minamizaki T, Aubin JE, Damayanti MA, Yoshiko Y. Large scale analysis of osteocyte lacunae in klotho hypomorphic mice using high-resolution micro-computed tomography. Ann Anat 2023; 250:152142. [PMID: 37572763 DOI: 10.1016/j.aanat.2023.152142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/14/2023] [Accepted: 07/26/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Osteocytes are the most abundant cell type in adult bone, and the morphological characteristics of osteocytes and their lacunae appear to influence bone mass and fragility. Although conventional computed tomography (CT) has contributed greatly to advances in bone morphometry, capturing details of the entire hierarchical assembly, e.g., osteocyte lacuna parameters, has been limited by the analytical performance of CT (> 1 µm resolution). METHODS We used high-resolution (700 nm) micro-CT to evaluate and compare the osteocyte lacuna parameters over a large scale, i.e., in a maximum of about 45,700 lacunae (average), in tibial metaphyseal cortical bones of wild-type (WT) and αKlotho-hypomorphic (kl/kl) mice, the latter a model that exhibits osteopenia and aberrant osteocytes. RESULTS Of osteocyte lacuna parameters, lacunar surface per lacunar volume were significantly lower and lacuna diameter were significantly larger in kl/kl mice compared to WT mice. By analysis of individual osteocyte lacunae, we found that lacunar sphericity in kl/kl mice was higher than that in WT mice, and the diameters in the major and the minor axes were respectively lower and higher in kl/kl mice, especially at the proximal site of the region of interest. CONCLUSION We successfully assessed osteocyte lacuna parameters on the largest scale in mice reported to date and found that the shape of osteocyte lacunae of kl/kl mice are significantly different from those of WT mice. Although the mechanisms underlying the lacunar shape differences observed are not yet clear, changes in lacunar geometry are known to affect the transitions of strains to the osteocyte microenvironment and likely local osteocyte response(s). Thus, the fact that the differences are limited to the mesial region near the primary spongiosa suggests the likelihood of site-specific anomalies in mechanosensitive effects in kl/kl osteocytes with consequent site-specific effects bone metabolism and function.
Collapse
Affiliation(s)
- Faisal Ahmed
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tomoko Minamizaki
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Jane E Aubin
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Merry Annisa Damayanti
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan; Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Padjadjaran University, Bandung, Indonesia
| | - Yuji Yoshiko
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.
| |
Collapse
|
2
|
Wang JS, Wein MN. Pathways Controlling Formation and Maintenance of the Osteocyte Dendrite Network. Curr Osteoporos Rep 2022; 20:493-504. [PMID: 36087214 PMCID: PMC9718876 DOI: 10.1007/s11914-022-00753-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss the molecular mechanisms involved in osteocyte dendrite formation, summarize the similarities between osteocytic and neuronal projections, and highlight the importance of osteocyte dendrite maintenance in human skeletal disease. RECENT FINDINGS It is suggested that there is a causal relationship between the loss of osteocyte dendrites and the increased osteocyte apoptosis during conditions including aging, microdamage, and skeletal disease. A few mechanisms are proposed to control dendrite formation and outgrowth, such as via the regulation of actin polymerization dynamics. This review addresses the impact of osteocyte dendrites in bone health and disease. Recent advances in multi-omics, in vivo and in vitro models, and microscopy-based imaging have provided novel approaches to reveal the underlying mechanisms that regulate dendrite development. Future therapeutic approaches are needed to target the process of osteocyte dendrite formation.
Collapse
Affiliation(s)
- Jialiang S Wang
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marc N Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
3
|
Vasiliadis ES, Evangelopoulos DS, Kaspiris A, Benetos IS, Vlachos C, Pneumaticos SG. The Role of Sclerostin in Bone Diseases. J Clin Med 2022; 11:806. [PMID: 35160258 PMCID: PMC8836457 DOI: 10.3390/jcm11030806] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/26/2022] Open
Abstract
Sclerostin has been identified as an important regulator of bone homeostasis through inhibition of the canonical Wnt-signaling pathway, and it is involved in the pathogenesis of many different skeletal diseases. Many studies have been published in the last few years regarding sclerostin's origin, regulation, and mechanism of action. The ongoing research emphasizes the potential therapeutic implications of sclerostin in many pathological conditions with or without skeletal involvement. Antisclerostin antibodies have recently been approved for the treatment of osteoporosis, and several animal studies and clinical trials are currently under way to evaluate the effectiveness of antisclerostin antibodies in the treatment of other than osteoporosis skeletal disorders and cancer with promising results. Understanding the exact role of sclerostin may lead to new therapeutic approaches for the treatment of skeletal disorders.
Collapse
Affiliation(s)
- Elias S. Vasiliadis
- 3rd Department of Orthopaedics, School of Medicine, National and Kapodistrian University of Athens, KAT Hospital, 16541 Athens, Greece; (D.-S.E.); (I.S.B.); (C.V.); (S.G.P.)
| | - Dimitrios-Stergios Evangelopoulos
- 3rd Department of Orthopaedics, School of Medicine, National and Kapodistrian University of Athens, KAT Hospital, 16541 Athens, Greece; (D.-S.E.); (I.S.B.); (C.V.); (S.G.P.)
| | - Angelos Kaspiris
- Laboratory of Molecular Pharmacology, Division for Orthopaedic Research, School of Health Sciences, University of Patras, 26504 Rion, Greece;
| | - Ioannis S. Benetos
- 3rd Department of Orthopaedics, School of Medicine, National and Kapodistrian University of Athens, KAT Hospital, 16541 Athens, Greece; (D.-S.E.); (I.S.B.); (C.V.); (S.G.P.)
| | - Christos Vlachos
- 3rd Department of Orthopaedics, School of Medicine, National and Kapodistrian University of Athens, KAT Hospital, 16541 Athens, Greece; (D.-S.E.); (I.S.B.); (C.V.); (S.G.P.)
| | - Spyros G. Pneumaticos
- 3rd Department of Orthopaedics, School of Medicine, National and Kapodistrian University of Athens, KAT Hospital, 16541 Athens, Greece; (D.-S.E.); (I.S.B.); (C.V.); (S.G.P.)
| |
Collapse
|
4
|
Taylor-King JP, Buenzli PR, Chapman SJ, Lynch CC, Basanta D. Modeling Osteocyte Network Formation: Healthy and Cancerous Environments. Front Bioeng Biotechnol 2020; 8:757. [PMID: 32793566 PMCID: PMC7387425 DOI: 10.3389/fbioe.2020.00757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 06/12/2020] [Indexed: 11/22/2022] Open
Abstract
Advanced cancers, such as prostate and breast cancers, commonly metastasize to bone. In the bone matrix, dendritic osteocytes form a spatial network allowing communication between osteocytes and the osteoblasts located on the bone surface. This communication network facilitates coordinated bone remodeling. In the presence of a cancerous microenvironment, the topology of this network changes. In those situations, osteocytes often appear to be either overdifferentiated (i.e., there are more dendrites than healthy bone) or underdeveloped (i.e., dendrites do not fully form). In addition to structural changes, histological sections from metastatic breast cancer xenografted mice show that number of osteocytes per unit area is different between healthy bone and cancerous bone. We present a stochastic agent-based model for bone formation incorporating osteoblasts and osteocytes that allows us to probe both network structure and density of osteocytes in bone. Our model both allows for the simulation of our spatial network model and analysis of mean-field equations in the form of integro-partial differential equations. We considered variations of our model to study specific physiological hypotheses related to osteoblast differentiation; for example predicting how changing biological parameters, such as rates of bone secretion, rates of cancer formation, and rates of osteoblast differentiation can allow for qualitatively different network topologies. We then used our model to explore how commonly applied therapies such as bisphosphonates (e.g., zoledronic acid) impact osteocyte network formation.
Collapse
Affiliation(s)
- Jake P Taylor-King
- Department of Biology, Institute of Molecular Systems Biology, ETHZ, Zurich, Switzerland.,Mathematical Institute, University of Oxford, Oxford, United Kingdom.,Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Pascal R Buenzli
- School of Mathematical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - S Jon Chapman
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Conor C Lynch
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - David Basanta
- Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| |
Collapse
|
5
|
Toscani D, Bolzoni M, Ferretti M, Palumbo C, Giuliani N. Role of Osteocytes in Myeloma Bone Disease: Anti-sclerostin Antibody as New Therapeutic Strategy. Front Immunol 2018; 9:2467. [PMID: 30410490 PMCID: PMC6209728 DOI: 10.3389/fimmu.2018.02467] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/05/2018] [Indexed: 11/16/2022] Open
Abstract
Osteocytes are terminally differentiated cells of the osteoblast lineage. They are involved in the regulation of bone remodeling by increasing osteoclast formation or decreasing bone formation by the secretion of the osteoblast inhibitor sclerostin. Monoclonal antibody anti-sclerostin, Romosozumab, has been developed and tested in clinical trials in patients with osteoporosis. In the last years, the role of osteocytes in the development of osteolytic bone lesions that occurs in multiple myeloma, have been underlined. Myeloma cells increase osteocyte death through the up-regulation of both apoptosis and autophagy that, in turn, triggers osteoclast formation, and activity. When compared to healthy controls, myeloma patients with bone disease have higher osteocyte cell death, but the treatment with proteasome inhibitor bortezomib has been shown to maintain osteocyte viability. In preclinical mouse models of multiple myeloma, treatment with blocking anti-sclerostin antibody increased osteoblast numbers and bone formation rate reducing osteolytic bone lesions. Moreover, the combination of anti-sclerostin antibody and the osteoclast inhibitor zoledronic acid increased bone mass and fracture resistance synergistically. However, anti-sclerostin antibody did not affect tumor burden in vivo or the efficacy of anti-myeloma drugs in vitro. Nevertheless, the combination therapy of anti-sclerostin antibody and the proteasome inhibitor carfilzomib, displayed potent anti-myeloma activity as well as positive effects on bone disease in vivo. In conclusion, all these data suggest that osteocytes are involved in myeloma bone disease and may be considered a novel target for the use of antibody-mediated anti-sclerostin therapy also in multiple myeloma patients.
Collapse
Affiliation(s)
- Denise Toscani
- Department Medicine and Surgery, University of Parma, Parma, Italy
| | - Marina Bolzoni
- Department Medicine and Surgery, University of Parma, Parma, Italy
| | - Marzia Ferretti
- Department of Biomedical, Metabolic and Neural Sciences, Human Morphology Section, University of Modena and Reggio Emilia, Modena, Italy
| | - Carla Palumbo
- Department of Biomedical, Metabolic and Neural Sciences, Human Morphology Section, University of Modena and Reggio Emilia, Modena, Italy
| | - Nicola Giuliani
- Department Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
6
|
Taylor-King JP, Basanta D, Chapman SJ, Porter MA. Mean-field approach to evolving spatial networks, with an application to osteocyte network formation. Phys Rev E 2017; 96:012301. [PMID: 29347066 DOI: 10.1103/physreve.96.012301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Indexed: 11/07/2022]
Abstract
We consider evolving networks in which each node can have various associated properties (a state) in addition to those that arise from network structure. For example, each node can have a spatial location and a velocity, or it can have some more abstract internal property that describes something like a social trait. Edges between nodes are created and destroyed, and new nodes enter the system. We introduce a "local state degree distribution" (LSDD) as the degree distribution at a particular point in state space. We then make a mean-field assumption and thereby derive an integro-partial differential equation that is satisfied by the LSDD. We perform numerical experiments and find good agreement between solutions of the integro-differential equation and the LSDD from stochastic simulations of the full model. To illustrate our theory, we apply it to a simple model for osteocyte network formation within bones, with a view to understanding changes that may take place during cancer. Our results suggest that increased rates of differentiation lead to higher densities of osteocytes, but with a smaller number of dendrites. To help provide biological context, we also include an introduction to osteocytes, the formation of osteocyte networks, and the role of osteocytes in bone metastasis.
Collapse
Affiliation(s)
- Jake P Taylor-King
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, United Kingdom.,Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - David Basanta
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - S Jonathan Chapman
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, United Kingdom
| | - Mason A Porter
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, United Kingdom.,Department of Mathematics, University of California Los Angeles, Los Angeles, California 90095, USA.,CABDyN Complexity Centre, University of Oxford, Oxford, OX1 1HP, United Kingdom
| |
Collapse
|
7
|
Chong Seow Khoon M. Experimental models of bone metastasis: Opportunities for the study of cancer dormancy. Adv Drug Deliv Rev 2015; 94:141-50. [PMID: 25572003 DOI: 10.1016/j.addr.2014.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 12/22/2014] [Accepted: 12/30/2014] [Indexed: 01/19/2023]
Abstract
Skeletal metastasis is prevalent in many cancers, and has been the subject of intense research, yielding innovative models to study the multiple stages of metastasis. It is now evident that, in the early stages of metastatic spread, disseminated tumour cells in the bone undergo an extended period of growth arrest in response to the microenvironment, a phenomenon known as "dormancy". Dormancy has been implicated with drug resistance, while enforced dormancy has also been seen as a radical method to control cancer, and engineering of dormant states has emerged as a novel clinical strategy. Understanding of the subject, however, is limited by the availability of models to describe early stages of metastatic spread. This mini-review provides a summary of experimental models currently being used in the study of bone metastasis and the applications of these models in the study of dormancy. Current research in developing improved models is described, leading to a discussion of challenges involved in future developments.
Collapse
|
8
|
Shay G, Hazlehurst L, Lynch CC. Dissecting the multiple myeloma-bone microenvironment reveals new therapeutic opportunities. J Mol Med (Berl) 2015; 94:21-35. [PMID: 26423531 DOI: 10.1007/s00109-015-1345-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/13/2015] [Accepted: 09/17/2015] [Indexed: 12/19/2022]
Abstract
Multiple myeloma is a plasma cell skeletal malignancy. While therapeutic agents such as bortezomib and lenalidomide have significantly improved overall survival, the disease is currently incurable with the emergence of drug resistance limiting the efficacy of chemotherapeutic strategies. Failure to cure the disease is in part due to the underlying genetic heterogeneity of the cancer. Myeloma progression is critically dependent on the surrounding microenvironment. Defining the interactions between myeloma cells and the more genetically stable hematopoietic and mesenchymal components of the bone microenvironment is critical for the development of new therapeutic targets. In this review, we discuss recent advances in our understanding of how microenvironmental elements contribute to myeloma progression and, therapeutically, how those elements can or are currently being targeted in a bid to eradicate the disease.
Collapse
Affiliation(s)
- G Shay
- Tumor Biology Department, SRB-3, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Blvd, Tampa, FL, 33612, USA
| | - L Hazlehurst
- Department of Pharmaceutical Sciences and The Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program, West Virginia University, Morgantown, WV, 26506, USA
| | - C C Lynch
- Tumor Biology Department, SRB-3, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Blvd, Tampa, FL, 33612, USA.
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Despite the increased knowledge of osteocyte biology, the contribution of this most abundant bone cell to the development and progression of multiple myeloma in bone is practically unexplored. RECENT FINDINGS Multiple myeloma bone disease is characterized by exacerbated bone resorption and the presence of osteolytic lesions that do not heal because of a concomitant reduction in bone formation. Osteocytes produce molecules that regulate both bone formation and resorption. Recent findings suggest that the life span of osteocytes is compromised in multiple myeloma patients with bone lesions. In addition, multiple myeloma cells affect the transcriptional profile of osteocytes by upregulating the production of pro-osteoclastogenic cytokines, stimulating osteoclast formation and activity. Further, patients with active multiple myeloma have elevated circulating levels of sclerostin, a potent inhibitor of bone formation which is specifically expressed by osteocytes in bone. SUMMARY Understanding the contribution of osteocytes to the mechanisms underlying the skeletal consequences of multiple myeloma bone disease has the potential to provide important new therapeutic strategies that specifically target multiple myeloma-osteocyte interactions.
Collapse
|
10
|
Olechnowicz SWZ, Edwards CM. Contributions of the host microenvironment to cancer-induced bone disease. Cancer Res 2014; 74:1625-31. [PMID: 24599133 DOI: 10.1158/0008-5472.can-13-2645] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The bone marrow provides a specialized and highly supportive microenvironment for tumor growth and development of the associated bone disease. It is a preferred site for breast and prostate cancer bone metastasis and the hematologic malignancy, multiple myeloma. For many years, researchers have focused upon the interactions between tumor cells and the cells directly responsible for bone remodeling, namely osteoclasts and osteoblasts. However, there is ever-increasing evidence for a multitude of ways in which the bone marrow microenvironment can promote disease pathogenesis, including via cancer-associated fibroblasts, the hematopoietic stem cell niche, myeloid-derived suppressor cells, and the sympathetic nervous system. This review discusses the recent advances in our understanding of the contribution of the host microenvironment to the development of cancer-induced bone disease.
Collapse
Affiliation(s)
- Sam W Z Olechnowicz
- Authors' Affiliations: Nuffield Department of Surgical Sciences and Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
11
|
Giuliani N, Ferretti M, Bolzoni M, Storti P, Lazzaretti M, Dalla Palma B, Bonomini S, Martella E, Agnelli L, Neri A, Ceccarelli F, Palumbo C. Increased osteocyte death in multiple myeloma patients: role in myeloma-induced osteoclast formation. Leukemia 2012; 26:1391-401. [PMID: 22289923 DOI: 10.1038/leu.2011.381] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The involvement of osteocytes in multiple myeloma (MM)-induced osteoclast (OCL) formation and bone lesions is still unknown. Osteocytes regulate bone remodelling at least partially, as a result of their cell death triggering OCL recruitment. In this study, we found that the number of viable osteocytes was significantly smaller in MM patients than in healthy controls, and negatively correlated with the number of OCLs. Moreover, the MM patients with bone lesions had a significantly smaller number of viable osteocytes than those without, partly because of increased apoptosis. These findings were further confirmed by ultrastructural in vitro analyses of human preosteocyte cells cocultured with MM cells, which showed that MM cells increased preosteocyte death and apoptosis. A micro-array analysis showed that MM cells affect the transcriptional profiles of preosteocytes by upregulating the production of osteoclastogenic cytokines such as interleukin (IL)-11, and increasing their pro-osteoclastogenic properties. Finally, the osteocyte expression of IL-11 was higher in the MM patients with than in those without bone lesions. Our data suggest that MM patients are characterized by a reduced number of viable osteocytes related to the presence of bone lesions, and that this is involved in MM-induced OCL formation.
Collapse
Affiliation(s)
- N Giuliani
- Department of Internal Medicine and Biomedical Science, Hematology and Bone Marrow Transplantation Center, University of Parma, Parma, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Manley PW, Drueckes P, Fendrich G, Furet P, Liebetanz J, Martiny-Baron G, Mestan J, Trappe J, Wartmann M, Fabbro D. Extended kinase profile and properties of the protein kinase inhibitor nilotinib. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:445-53. [PMID: 19922818 DOI: 10.1016/j.bbapap.2009.11.008] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 10/30/2009] [Accepted: 11/10/2009] [Indexed: 10/20/2022]
Abstract
As a drug used to treat imatinib-resistant and -intolerant, chronic and advanced phase chronic myelogenous leukaemia, nilotinib is well characterised as a potent inhibitor of the Abl tyrosine kinase activity of wild-type and imatinib-resistant mutant forms of BCR-Abl. Here we review the profile of nilotinib as a protein kinase inhibitor. Although an ATP-competitive inhibitor of Abl, nilotinib binds to a catalytically inactive conformation (DFG-out) of the activation loop. As a consequence of this, nilotinib exhibits time-dependent inhibition of Abl kinase in enzymatic assays, which can be extrapolated to other targets to explain differences between biochemical activity and cellular assays. Although these differences confound assessment of kinase selectivity, as assessed using a combination of protein binding and transphosphorylation assays, together with cellular autophosporylation and proliferation assays, well established kinase targets of nilotinib in rank order of inhibitory potency are DDR-1>DDR-2>BCR-Abl (Abl)>PDGFRalpha/beta>KIT>CSF-1R. In addition nilotinib has now been found to bind to both MAPK11 (p38beta) and MAPK12 (p38alpha), as well as with very high affinity to ZAK kinase. Although neither enzymatic nor cellular data are yet available to substantiate the drug as an inhibitor of ZAK phosphorylation, modeling predicts that it binds in an ATP-competitive fashion.
Collapse
Affiliation(s)
- Paul W Manley
- Novartis Institutes for Biomedical Research, Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|