1
|
Klimtchuk ES, Prokaeva T, Spencer BH, Wong S, Ghosh S, Urdaneta A, Morgan G, Wales TE, Gursky O. Conformational differences in the light chain constant domain of immunoglobulin G and free light chain may influence proteolysis in AL amyloidosis. J Mol Biol 2024:168837. [PMID: 39490919 DOI: 10.1016/j.jmb.2024.168837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/07/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Immunoglobulin light chain amyloidosis (AL) is a life-threatening disease caused by the deposition of light chain (LC) and its fragments containing variable (VL) and portions of constant (CL) domains. AL patients feature either monoclonal free LCs (FLCs) circulating as covalent and noncovalent homodimers, or monoclonal immunoglobulin (Ig) wherein the LC and heavy chain (HC) form disulfide-linked heterodimers, or both. The role of full-length Ig in AL amyloidosis is unclear as prior studies focused on FLC or VL domain. We used a mammalian cell-based expression system to generate four AL patient-derived full-length IgGs, two non-AL IgG controls, and six corresponding FLC proteins derived from an IGLV6-57 germline precursor. Comparison of proteins' secondary structure, thermal stability, proteolytic susceptibility, and disulfide link reduction suggested the importance of local vs. global conformational stability. Analysis of IgGs vs. corresponding FLCs using hydrogen-deuterium exchange mass spectrometry revealed major differences in the local conformation/dynamics of the CL domain. In all IgGs vs. FLCs, segments containing β-strand and α-helix βAC-αACBC were more dynamic/exposed while segment βDC-βEC was less dynamic/exposed. Notably, these segments overlapped proteolysis-prone regions whose in vivo cleavage generates LC fragments found in AL deposits. Altogether, the results suggest that preferential cleavage in segments βAC-αACBC of FLC or βDC-βEC of LC in IgG helps generate amyloid protein precursors. We propose that protecting these segments using small-molecule stabilizers, which bind to the interfacial cavities CL-CL in FLC and/or CL-CH1 in IgG, is a potential therapeutic strategy to complement current approaches targeting VL-VL or VL-CL stabilization of LC dimer.
Collapse
Affiliation(s)
- Elena S Klimtchuk
- Amyloidosis Center, Chobanian & Avedisian School of Medicine, Boston University, Boston MA 02118, United States.
| | - Tatiana Prokaeva
- Amyloidosis Center, Chobanian & Avedisian School of Medicine, Boston University, Boston MA 02118, United States; Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States.
| | - Brian H Spencer
- Amyloidosis Center, Chobanian & Avedisian School of Medicine, Boston University, Boston MA 02118, United States.
| | - Sherry Wong
- Amyloidosis Center, Chobanian & Avedisian School of Medicine, Boston University, Boston MA 02118, United States.
| | - Shreya Ghosh
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, United States.
| | - Angela Urdaneta
- Department of Pharmacology, Physiology & Biophysics, Chobanian & Avedisian School of Medicine, Boston University, 700 Albany Street, Boston, MA, 02118, United States.
| | - Gareth Morgan
- Amyloidosis Center, Chobanian & Avedisian School of Medicine, Boston University, Boston MA 02118, United States.
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, United States.
| | - Olga Gursky
- Department of Pharmacology, Physiology & Biophysics, Chobanian & Avedisian School of Medicine, Boston University, 700 Albany Street, Boston, MA, 02118, United States.
| |
Collapse
|
2
|
Misra P, Tischer A, Lampe L, Pierluissi-Ruiz V, Dick CJ, Bragantini B, Kormshchikov N, Auton M, Ramirez-Alvarado M. Biophysical characterization of human-cell-expressed, full-length κI O18/O8, AL-09, λ6a, and Wil immunoglobulin light chains. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140993. [PMID: 38169170 PMCID: PMC10939777 DOI: 10.1016/j.bbapap.2023.140993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/12/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Immunoglobulin light chain (AL) amyloidosis involves the deposition of insoluble monoclonal AL protein fibrils in the extracellular space of different organs leading to dysfunction and death. Development of methods to efficiently express and purify AL proteins with acceptable standards of homogeneity and structural integrity has become critical to understand the in vitro and in vivo aspects of AL protein aggregation, and thus the disease progression. In this study, we report the biophysical characterization of His-tagged and untagged versions of AL full-length (FL) κI and λ6 subgroup proteins and their mutants expressed from the Expi293F human cell line. We used an array of biophysical and biochemical methods to analyze the structure and stability of the monomers, oligomerization states, and thermodynamic characteristics of the purified FL proteins and how they compare with the bacterially expressed FL proteins. Our results demonstrate that the tagged and untagged versions of FL proteins have comparable stability to proteins expressed in bacterial cells but exhibit multiple unfolding transitions and reversibility. Non-reducing SDS-PAGE and analytical ultracentrifugation analysis showed presence of monomers and dimers, with an insignificant amount of higher-order oligomers, in the purified fraction of all proteins. Overall, the FL proteins were expressed with sufficient yields for biophysical studies and can replace bacterial expression systems.
Collapse
Affiliation(s)
- Pinaki Misra
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
| | - Alexander Tischer
- Department of Hematology, Mayo Clinic, 200 First St SW, Rochester, MN, USA.
| | - Lindsey Lampe
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Valeria Pierluissi-Ruiz
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Christopher J Dick
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Benoit Bragantini
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Nikita Kormshchikov
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Matthew Auton
- Department of Hematology, Mayo Clinic, 200 First St SW, Rochester, MN, USA
| | - Marina Ramirez-Alvarado
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic, 200 First St SW, Rochester, MN, USA.
| |
Collapse
|
3
|
Lavatelli F, Natalello A, Marchese L, Ami D, Corazza A, Raimondi S, Mimmi MC, Malinverni S, Mangione PP, Palmer MT, Lampis A, Concardi M, Verona G, Canetti D, Arbustini E, Bellotti V, Giorgetti S. Truncation of the constant domain drives amyloid formation by immunoglobulin light chains. J Biol Chem 2024; 300:107174. [PMID: 38499153 PMCID: PMC11016911 DOI: 10.1016/j.jbc.2024.107174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024] Open
Abstract
AL amyloidosis is a life-threatening disease caused by deposition of immunoglobulin light chains. While the mechanisms underlying light chains amyloidogenesis in vivo remain unclear, several studies have highlighted the role that tissue environment and structural amyloidogenicity of individual light chains have in the disease pathogenesis. AL natural deposits contain both full-length light chains and fragments encompassing the variable domain (VL) as well as different length segments of the constant region (CL), thus highlighting the relevance that proteolysis may have in the fibrillogenesis pathway. Here, we investigate the role of major truncated species of the disease-associated AL55 light chain that were previously identified in natural deposits. Specifically, we study structure, molecular dynamics, thermal stability, and capacity to form fibrils of a fragment containing both the VL and part of the CL (133-AL55), in comparison with the full-length protein and its variable domain alone, under shear stress and physiological conditions. Whereas the full-length light chain forms exclusively amorphous aggregates, both fragments generate fibrils, although, with different kinetics, aggregate structure, and interplay with the unfragmented protein. More specifically, the VL-CL 133-AL55 fragment entirely converts into amyloid fibrils microscopically and spectroscopically similar to their ex vivo counterpart and increases the amorphous aggregation of full-length AL55. Overall, our data support the idea that light chain structure and proteolysis are both relevant for amyloidogenesis in vivo and provide a novel biocompatible model of light chain fibrillogenesis suitable for future mechanistic studies.
Collapse
Affiliation(s)
- Francesca Lavatelli
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy; Research Area, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
| | - Loredana Marchese
- Pathology Unit, Fondazione IRCSS Policlinico San Matteo, Pavia, Italy
| | - Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Alessandra Corazza
- Department of Medicine (DAME), University of Udine, Udine, Italy; Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy
| | - Sara Raimondi
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - Maria Chiara Mimmi
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Silvia Malinverni
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - P Patrizia Mangione
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy; Research Area, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Manel Terrones Palmer
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Alessio Lampis
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - Monica Concardi
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Guglielmo Verona
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy; Centre for Amyloidosis, Division of Medicine, University College London, London, UK
| | - Diana Canetti
- Centre for Amyloidosis, Division of Medicine, University College London, London, UK
| | - Eloisa Arbustini
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Vittorio Bellotti
- Research Area, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Sofia Giorgetti
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy; Research Area, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| |
Collapse
|
4
|
Wong S, West ME, Morgan GJ. Kinetic evidence for multiple aggregation pathways in antibody light chain variable domains. Protein Sci 2024; 33:e4871. [PMID: 38100259 PMCID: PMC10868443 DOI: 10.1002/pro.4871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Aggregation of antibody light chain proteins is associated with the progressive disease light chain amyloidosis. Patient-derived amyloid fibrils are formed from light chain variable domain residues in non-native conformations, highlighting a requirement that light chains unfold from their native structures in order to aggregate. However, mechanistic studies of amyloid formation have primarily focused on the self-assembly of natively unstructured peptides, and the role of native state unfolding is less well understood. Using a well-studied light chain variable domain protein known as WIL, which readily aggregates in vitro under conditions where the native state predominates, we asked how the protein concentration and addition of pre-formed fibril "seeds" alter the kinetics of aggregation. Monitoring aggregation with thioflavin T fluorescence revealed a distinctly non-linear dependence on concentration, with a maximum aggregation rate observed at 8 μM protein. This behavior is consistent with formation of alternate aggregate structures in the early phases of amyloid formation. Addition of N- or C-terminal peptide tags, which did not greatly affect the folding or stability of the protein, altered the concentration dependence of aggregation. Aggregation rates increased in the presence of pre-formed seeds, but this effect did not eliminate the delay before aggregation and became saturated when the proportion of seeds added was greater than 1 in 1600. The complexity of aggregation observed in vitro highlights how multiple species may contribute to amyloid pathology in patients.
Collapse
Affiliation(s)
- Sherry Wong
- Boston University Amyloidosis Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Madeline E West
- Boston University Amyloidosis Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Gareth J Morgan
- Boston University Amyloidosis Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Klimtchuk ES, Peterle D, Bullitt EA, Connors LH, Engen JR, Gursky O. Role of complementarity-determining regions 1 and 3 in pathologic amyloid formation by human immunoglobulin κ1 light chains. Amyloid 2023; 30:364-378. [PMID: 37216473 PMCID: PMC10663386 DOI: 10.1080/13506129.2023.2212397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Immunoglobulin light chain (LC) amyloidosis is a life-threatening disease complicated by vast numbers of patient-specific mutations. We explored 14 patient-derived and engineered proteins related to κ1-family germline genes IGKVLD-33*01 and IGKVLD-39*01. METHODS Hydrogen-deuterium exchange mass spectrometry analysis of conformational dynamics in recombinant LCs and their fragments was integrated with studies of thermal stability, proteolytic susceptibility, amyloid formation and amyloidogenic sequence propensity. The results were mapped on the structures of native and fibrillary proteins. RESULTS Proteins from two κ1 subfamilies showed unexpected differences. Compared to their germline counterparts, amyloid LC related to IGKVLD-33*01 was less stable and formed amyloid faster, whereas amyloid LC related to IGKVLD-39*01 had similar stability and formed amyloid slower, suggesting different major factors influencing amyloidogenesis. In 33*01-related amyloid LC, these factors involved destabilization of the native structure and probable stabilization of amyloid. The atypical behavior of 39*01-related amyloid LC stemmed from increased dynamics/exposure of amyloidogenic segments in βC'V and βEV that could initiate aggregation and decreased dynamics/exposure near the Cys23-Cys88 disulfide. CONCLUSIONS The results suggest distinct amyloidogenic pathways for closely related LCs and point to the complementarity-defining regions CDR1 and CDR3, linked via the conserved internal disulfide, as key factors in amyloid formation.
Collapse
Affiliation(s)
- Elena S. Klimtchuk
- Amyloidosis Center, Boston University Chobanian and Avedisian School of Medicine, Boston MA 02118, United States
| | - Daniele Peterle
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, United States
| | - Esther A. Bullitt
- Department of Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, W302, 700 Albany Street, Boston, MA, 02118, United States
| | - Lawreen H. Connors
- Amyloidosis Center, Boston University Chobanian and Avedisian School of Medicine, Boston MA 02118, United States
| | - John R. Engen
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, United States
| | - Olga Gursky
- Amyloidosis Center, Boston University Chobanian and Avedisian School of Medicine, Boston MA 02118, United States
- Department of Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, W302, 700 Albany Street, Boston, MA, 02118, United States
| |
Collapse
|
6
|
Puri S, Schulte T, Chaves-Sanjuan A, Mazzini G, Caminito S, Pappone C, Anastasia L, Milani P, Merlini G, Bolognesi M, Nuvolone M, Palladini G, Ricagno S. The Cryo-EM STRUCTURE of Renal Amyloid Fibril Suggests Structurally Homogeneous Multiorgan Aggregation in AL Amyloidosis. J Mol Biol 2023; 435:168215. [PMID: 37516426 DOI: 10.1016/j.jmb.2023.168215] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/15/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
Immunoglobulin light chain amyloidosis (AL) is caused by the aberrant production of amyloidogenic light chains (LC) that accumulate as amyloid deposits in vital organs. Distinct LC sequences in each patient yield distinct amyloid structures. However different tissue microenvironments may also cause identical protein precursors to adopt distinct amyloid structures. To address the impact of the tissue environment on the structural polymorphism of amyloids, we extracted fibrils from the kidney of an AL patient (AL55) whose cardiac amyloid structure was previously determined by our group. Here we show that the 4.0 Å resolution cryo-EM structure of the renal fibril is virtually identical to that reported for the cardiac fibril. These results provide the first structural evidence that LC amyloids independently deposited in different organs of the same AL patient share a common fold.
Collapse
Affiliation(s)
- Sarita Puri
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy. https://twitter.com/@Saritapuri1504
| | - Tim Schulte
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, 20097 Milan, Italy. https://twitter.com/@timpaul81
| | - Antonio Chaves-Sanjuan
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Pediatric Research Center Fondazione R.E. Invernizzi and NOLIMITS Center, Università degli Studi di Milano, Milan, Italy. https://twitter.com/@ChavesSanjuan
| | - Giulia Mazzini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Serena Caminito
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Carlo Pappone
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, 20097 Milan, Italy; Faculty of Medicine, University of Vita-Salute San Raffaele, 20132 Milan, Italy; Arrhythmia and Electrophysiology Department, IRCCS Policlinico San Donato, San Donato, 20097 Milan, Italy
| | - Luigi Anastasia
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, 20097 Milan, Italy; Faculty of Medicine, University of Vita-Salute San Raffaele, 20132 Milan, Italy. https://twitter.com/@skinski74
| | - Paolo Milani
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giampaolo Merlini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Martino Bolognesi
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Pediatric Research Center Fondazione R.E. Invernizzi and NOLIMITS Center, Università degli Studi di Milano, Milan, Italy. https://twitter.com/@Martinobologne2
| | - Mario Nuvolone
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giovanni Palladini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Stefano Ricagno
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, 20097 Milan, Italy.
| |
Collapse
|
7
|
Wong S, West ME, Morgan GJ. Kinetic evidence for multiple aggregation pathways in antibody light chain variable domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555139. [PMID: 37693524 PMCID: PMC10491100 DOI: 10.1101/2023.08.28.555139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Aggregation of antibody light chain proteins is associated with the progressive disease light chain amyloidosis. Patient-derived amyloid fibrils are formed from light chain variable domain residues in non-native conformations, highlighting a requirement that light chains unfold from their native structures in order to aggregate. However, mechanistic studies of amyloid formation have primarily focused on the self-assembly of natively unstructured peptides, and the role of native state unfolding is less well understood. Using a well-studied light chain variable domain protein known as WIL, which readily aggregates in vitro under conditions where the native state predominates, we asked how the protein concentration and addition of pre-formed fibril "seeds" alter the kinetics of aggregation. Monitoring aggregation with thioflavin T fluorescence revealed a distinctly non-linear dependence on concentration, with a maximum aggregation rate observed at 8 μM protein. This behavior is consistent with formation of alternate aggregate structures in the early phases of amyloid formation. Addition of N- or C-terminal peptide tags, which did not greatly affect the folding or stability of the protein, altered the concentration dependence of aggregation. Aggregation rates increased in the presence of pre-formed seeds, but this effect did not eliminate the delay before aggregation and became saturated when the proportion of seeds added was greater than 1 in 1600. The complexity of aggregation observed in vitro highlights how multiple species may contribute to amyloid pathology in patients.
Collapse
Affiliation(s)
- Sherry Wong
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Madeline E West
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Gareth J Morgan
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
8
|
Sizova DV, Raiker S, Lakheram D, Rao V, Proffitt A, Jmeian Y, Voegtli W, Batonick M. Producing amyloid fibrils in vitro: A tool for studying AL amyloidosis. Biochem Biophys Rep 2023; 34:101442. [PMID: 36875796 PMCID: PMC9982448 DOI: 10.1016/j.bbrep.2023.101442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/03/2023] [Accepted: 02/16/2023] [Indexed: 02/27/2023] Open
Abstract
Amyloid light-chain (AL) amyloidosis is the second most common form of systemic amyloidosis which is characterized by a high level of mortality and no effective treatment to remove fibril deposition. This disorder is caused by malfunctioning of B-cells resulting in production of abnormal protein fibrils composed of immunoglobulin light chain fragments that tend to deposit on various organs and tissues. AL amyloidosis is set apart from other forms of amyloidosis in that no specific sequences have been identified in the immunoglobulin light chains that are amyloid fibril formation causative and patient specific. This unusual feature hinders the therapeutic progress and requires either direct access to patient samples (which is not always possible) or a source of in vitro produced fibrils. While isolated reports of successful AL amyloid fibril formation from various patient-specific protein sequences can be found in literature, no systematic research on this topic was performed since 1999. In the present study we have developed a generalized approach to in vitro fibril production from various types of previously reported [[1], [2], [3]] amyloidogenic immunoglobulin light chains and their fragments. We describe the procedure from selection and generation of starting material, through finding of optimal assay conditions, to applying a panel of methods to confirm successful fibril formation. Procedure details are discussed in the light of the most recent findings and theories on amyloid fibril formation. The reported protocol produces high quality AL amyloid fibrils that can subsequently be used in the development of the much-needed amyloid-targeting diagnostic and therapeutic approaches.
Collapse
|
9
|
Noborn F, Thomsen C, Vorontsov E, Bobbio E, Sihlbom C, Nilsson J, Polte CL, Bollano E, Vukusic K, Sandstedt J, Dellgren G, Karason K, Oldfors A, Larson G. Subtyping of cardiac amyloidosis by mass spectrometry-based proteomics of endomyocardial biopsies. Amyloid 2023; 30:96-108. [PMID: 36209425 DOI: 10.1080/13506129.2022.2127088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND Cardiac amyloidosis is a severe condition leading to restrictive cardiomyopathy and heart failure. Mass spectrometry-based methods for cardiac amyloid subtyping have become important diagnostic tools but are currently used only in a few reference laboratories. Such methods include laser-capture microdissection to ensure the specific analysis of amyloid deposits. Here we introduce a direct proteomics-based method for subtyping of cardiac amyloidosis. METHODS Endomyocardial biopsies were retrospectively analysed from fresh frozen material of 78 patients with cardiac amyloidosis and from 12 biopsies of unused donor heart explants. Cryostat sections were digested with trypsin and analysed with liquid chromatography - mass spectrometry, and data were evaluated by proteomic software. RESULTS With a diagnostic threshold set to 70% for each of the four most common amyloid proteins affecting the heart (LC κ, LC λ, TTR and SAA), 65 of the cases (87%) could be diagnosed, and of these, 61 cases (94%) were in concordance with the original diagnoses. The specimens were also analysed for the summed intensities of the amyloid signature proteins (ApoE, ApoA-IV and SAP). The intensities were significantly higher (p < 0.001) for all assigned cases compared with controls. CONCLUSION Cardiac amyloidosis can be successfully subtyped without the prior enrichment of amyloid deposits with laser microdissection.
Collapse
Affiliation(s)
- Fredrik Noborn
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Christer Thomsen
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Egor Vorontsov
- Proteomics Core Facility, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Emanuele Bobbio
- Department of Cardiology, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Carina Sihlbom
- Proteomics Core Facility, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Jonas Nilsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Proteomics Core Facility, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Christian L Polte
- Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Entela Bollano
- Department of Cardiology, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kristina Vukusic
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Joakim Sandstedt
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Göran Dellgren
- Department of Cardiothoracic Surgery and Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kristjan Karason
- Department of Cardiology, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anders Oldfors
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Göran Larson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
10
|
Absmeier RM, Rottenaicher GJ, Svilenov HL, Kazman P, Buchner J. Antibodies gone bad - the molecular mechanism of light chain amyloidosis. FEBS J 2023; 290:1398-1419. [PMID: 35122394 DOI: 10.1111/febs.16390] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/19/2022] [Accepted: 02/03/2022] [Indexed: 12/19/2022]
Abstract
Light chain amyloidosis (AL) is a systemic disease in which abnormally proliferating plasma cells secrete large amounts of mutated antibody light chains (LCs) that eventually form fibrils. The fibrils are deposited in various organs, most often in the heart and kidney, and impair their function. The prognosis for patients diagnosed with AL is generally poor. The disease is set apart from other amyloidoses by the huge number of patient-specific mutations in the disease-causing and fibril-forming protein. The molecular mechanisms that drive the aggregation of mutated LCs into fibrils have been enigmatic, which hindered the development of efficient diagnostics and therapies. In this review, we summarize our current knowledge on AL amyloidosis and discuss open issues.
Collapse
Affiliation(s)
- Ramona M Absmeier
- Center for Functional Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Georg J Rottenaicher
- Center for Functional Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Hristo L Svilenov
- Center for Functional Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Pamina Kazman
- Center for Functional Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Johannes Buchner
- Center for Functional Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| |
Collapse
|
11
|
Klimtchuk ES, Peterle D, Bullitt EA, Connors LH, Engen JR, Gursky O. Role of Complementarity-Determining Regions 1 and 3 in Pathologic Amyloid Formation by Human Immunoglobulin κ1 Light Chains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526662. [PMID: 36778378 PMCID: PMC9915687 DOI: 10.1101/2023.02.01.526662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Immunoglobulin light chain (LC) amyloidosis is a life-threatening disease whose understanding and treatment is complicated by vast numbers of patient-specific mutations. To address molecular origins of the disease, we explored 14 patient-derived and engineered proteins related to κ1-family germline genes IGKVLD-33*01 and IGKVLD-39*01. Hydrogen-deuterium exchange mass spectrometry analysis of local conformational dynamics in full-length recombinant LCs and their fragments was integrated with studies of thermal stability, proteolytic susceptibility, amyloid formation, and amyloidogenic sequence propensities using spectroscopic, electron microscopic and bioinformatics tools. The results were mapped on the atomic structures of native and fibrillary proteins. Proteins from two κ1 subfamilies showed unexpected differences. Compared to their germline counterparts, amyloid LC related to IGKVLD-33*01 was less stable and formed amyloid faster, whereas amyloid LC related to IGKVLD-39*01 had similar stability and formed amyloid slower. These and other differences suggest different major factors influencing amyloid formation. In 33*01-related amyloid LC, these factors involved mutation-induced destabilization of the native structure and probable stabilization of amyloid. The atypical behaviour of 39*01-related amyloid LC tracked back to increased dynamics/exposure of amyloidogenic segments in βC' V and βE V that could initiate aggregation, combined with decreased dynamics/exposure near the Cys23-Cys88 disulfide whose rearrangement is rate-limiting to amyloidogenesis. The results suggest distinct amyloidogenic pathways for closely related LCs and point to the antigen-binding, complementarity-determining regions CDR1 and CDR3, which are linked via the conserved internal disulfide, as key factors in amyloid formation by various LCs.
Collapse
|
12
|
Acquasaliente L, De Filippis V. The Role of Proteolysis in Amyloidosis. Int J Mol Sci 2022; 24:ijms24010699. [PMID: 36614141 PMCID: PMC9820691 DOI: 10.3390/ijms24010699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Amyloidoses are a group of diseases associated with deposits of amyloid fibrils in different tissues. So far, 36 different types of amyloidosis are known, each due to the misfolding and accumulation of a specific protein. Amyloid deposits can be found in several organs, including the heart, brain, kidneys, and spleen, and can affect single or multiple organs. Generally, amyloid-forming proteins become prone to aggregate due to genetic mutations, acquired environmental factors, excessive concentration, or post-translational modifications. Interestingly, amyloid aggregates are often composed of proteolytic fragments, derived from the degradation of precursor proteins by yet unidentified proteases, which display higher amyloidogenic tendency compared to precursor proteins, thus representing an important mechanism in the onset of amyloid-based diseases. In the present review, we summarize the current knowledge on the proteolytic susceptibility of three of the main human amyloidogenic proteins, i.e., transthyretin, β-amyloid precursor protein, and α-synuclein, in the onset of amyloidosis. We also highlight the role that proteolytic enzymes can play in the crosstalk between intestinal inflammation and amyloid-based diseases.
Collapse
Affiliation(s)
- Laura Acquasaliente
- Correspondence: (L.A.); (V.D.F.); Tel.: +39-0498275703 (L.A.); +39-0498275698 (V.D.F.)
| | - Vincenzo De Filippis
- Correspondence: (L.A.); (V.D.F.); Tel.: +39-0498275703 (L.A.); +39-0498275698 (V.D.F.)
| |
Collapse
|
13
|
Martinez-Rivas G, Bender S, Sirac C. Understanding AL amyloidosis with a little help from in vivo models. Front Immunol 2022; 13:1008449. [PMID: 36458006 PMCID: PMC9707859 DOI: 10.3389/fimmu.2022.1008449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/27/2022] [Indexed: 08/01/2023] Open
Abstract
Monoclonal immunoglobulin (Ig) light chain amyloidosis (AL) is a rare but severe disease that may occur when a B or plasma cell clone secretes an excess of free Ig light chains (LCs). Some of these LCs tend to aggregate into organized fibrils with a β-sheet structure, the so-called amyloid fibrils, and deposit into the extracellular compartment of organs, such as the heart or kidneys, causing their dysfunction. Recent findings have confirmed that the core of the amyloid fibrils is constituted by the variable (V) domain of the LCs, but the mechanisms underlying the unfolding and aggregation of this fragment and its deposition are still unclear. Moreover, in addition to the mechanical constraints exerted by the massive accumulation of amyloid fibrils in organs, the direct toxicity of these variable domain LCs, full-length light chains, or primary amyloid precursors (oligomers) seems to play a role in the pathogenesis of the disease. Many in vitro studies have focused on these topics, but the variability of this disease, in which each LC presents unique properties, and the extent and complexity of affected organs make its study in vivo very difficult. Accordingly, several groups have focused on the development of animal models for years, with some encouraging but mostly disappointing results. In this review, we discuss the experimental models that have been used to better understand the unknowns of this pathology with an emphasis on in vivo approaches. We also focus on why reliable AL amyloidosis animal models remain so difficult to obtain and what this tells us about the pathophysiology of the disease.
Collapse
|
14
|
Fedotov SA, Khrabrova MS, Anpilova AO, Dobronravov VA, Rubel AA. Noninvasive Diagnostics of Renal Amyloidosis: Current State and Perspectives. Int J Mol Sci 2022; 23:ijms232012662. [PMID: 36293523 PMCID: PMC9604123 DOI: 10.3390/ijms232012662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
Amyloidoses is a group of diseases characterized by the accumulation of abnormal proteins (called amyloids) in different organs and tissues. For systemic amyloidoses, the disease is related to increased levels and/or abnormal synthesis of certain proteins in the organism due to pathological processes, e.g., monoclonal gammopathy and chronic inflammation in rheumatic arthritis. Treatment of amyloidoses is focused on reducing amyloidogenic protein production and inhibition of its aggregation. Therapeutic approaches critically depend on the type of amyloidosis, which underlines the importance of early differential diagnostics. In fact, the most accurate diagnostics of amyloidosis and its type requires analysis of a biopsy specimen from the disease-affected organ. However, absence of specific symptoms of amyloidosis and the invasive nature of biomaterial sampling causes the late diagnostics of these diseases, which leads to a delayed treatment, and significantly reduces its efficacy and patient survival. The establishment of noninvasive diagnostic methods and discovery of specific amyloidosis markers are essential for disease detection and identification of its type at earlier stages, which enables timely and targeted treatment. This review focuses on current approaches to the diagnostics of amyloidoses, primarily with renal involvement, and research perspectives in order to design new specific tests for early diagnosis.
Collapse
Affiliation(s)
- Sergei A. Fedotov
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg 199034, Russia
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg 199034, Russia
| | - Maria S. Khrabrova
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg 199034, Russia
- Research Institute of Nephrology, Pavlov University, St. Petersburg 197101, Russia
| | - Anastasia O. Anpilova
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg 199034, Russia
- Research Institute of Nephrology, Pavlov University, St. Petersburg 197101, Russia
| | | | - Aleksandr A. Rubel
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg 199034, Russia
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034, Russia
- Correspondence: ; Tel.: +7-812-428-40-09
| |
Collapse
|
15
|
Mazzini G, Ricagno S, Caminito S, Rognoni P, Milani P, Nuvolone M, Basset M, Foli A, Russo R, Merlini G, Palladini G, Lavatelli F. Protease-sensitive regions in amyloid light chains: what a common pattern of fragmentation across organs suggests about aggregation. FEBS J 2021; 289:494-506. [PMID: 34482629 PMCID: PMC9292950 DOI: 10.1111/febs.16182] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/26/2021] [Accepted: 09/03/2021] [Indexed: 01/31/2023]
Abstract
Light‐chain (AL) amyloidosis is characterized by deposition of immunoglobulin light chains (LC) as fibrils in target organs. Alongside the full‐length protein, abundant LC fragments are always present in AL deposits. Herein, by combining gel‐based and mass spectrometry analyses, we identified and compared the fragmentation sites of amyloid LCs from multiple organs of an AL λ amyloidosis patient (AL‐55). The positions pinpointed here in kidney and subcutaneous fat, alongside those previously detected in heart of the same patient, were aligned and mapped on the LC’s dimeric and fibrillar states. All tissues contain fragmented LCs along with the full‐length protein; the fragment pattern is coincident across organs, although microheterogeneity exists. Multiple cleavage positions were detected; some are shared, whereas some are organ‐specific, likely due to a complex of proteases. Cleavage sites are concentrated in ‘proteolysis‐prone’ regions, common to all tissues. Several proteolytic sites are not accessible on native dimers, while they are compatible with fibrils. Overall, data suggest that the heterogeneous ensemble of LC fragments originates in tissues and is consistent with digestion of preformed fibrils, or with the hypothesis that initial proteolytic cleavage of the constant domain triggers the amyloidogenic potential of LCs, followed by subsequent proteolytic degradation. This work provides a unique set of molecular data on proteolysis from ex vivo amyloid, which allows discussing hypotheses on role and timing of proteolytic events occurring along amyloid formation and accumulation in AL patients.
Collapse
Affiliation(s)
- Giulia Mazzini
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo and Università Degli Studi di Pavia, Italy
| | - Stefano Ricagno
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Italy
| | - Serena Caminito
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo and Università Degli Studi di Pavia, Italy
| | - Paola Rognoni
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo and Università Degli Studi di Pavia, Italy
| | - Paolo Milani
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo and Università Degli Studi di Pavia, Italy
| | - Mario Nuvolone
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo and Università Degli Studi di Pavia, Italy
| | - Marco Basset
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo and Università Degli Studi di Pavia, Italy
| | - Andrea Foli
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo and Università Degli Studi di Pavia, Italy
| | - Rosaria Russo
- Dipartimento di Fisiopatologia Medico-Chirurgica e Dei Trapianti, Università Degli Studi di Milano, Italy
| | - Giampaolo Merlini
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo and Università Degli Studi di Pavia, Italy
| | - Giovanni Palladini
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo and Università Degli Studi di Pavia, Italy
| | - Francesca Lavatelli
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo and Università Degli Studi di Pavia, Italy
| |
Collapse
|
16
|
Rognoni P, Mazzini G, Caminito S, Palladini G, Lavatelli F. Dissecting the Molecular Features of Systemic Light Chain (AL) Amyloidosis: Contributions from Proteomics. ACTA ACUST UNITED AC 2021; 57:medicina57090916. [PMID: 34577839 PMCID: PMC8471912 DOI: 10.3390/medicina57090916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 02/08/2023]
Abstract
Amyloidoses are characterized by aggregation of proteins into highly ordered amyloid fibrils, which deposit in the extracellular space of tissues, leading to organ dysfunction. In AL (amyloid light chain) amyloidosis, the most common form in Western countries, the amyloidogenic precursor is a misfolding-prone immunoglobulin light chain (LC), which, in the systemic form, is produced in excess by a plasma cell clone and transported to target organs though blood. Due to the primary role that proteins play in the pathogenesis of amyloidoses, mass spectrometry (MS)-based proteomic studies have gained an established position in the clinical management and research of these diseases. In AL amyloidosis, in particular, proteomics has provided important contributions for characterizing the precursor light chain, the composition of the amyloid deposits and the mechanisms of proteotoxicity in target organ cells and experimental models of disease. This review will provide an overview of the major achievements of proteomic studies in AL amyloidosis, with a presentation of the most recent acquisitions and a critical discussion of open issues and ongoing trends.
Collapse
Affiliation(s)
- Paola Rognoni
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, V.le Golgi 19, 27100 Pavia, Italy; (G.M.); (S.C.); (G.P.)
- Correspondence: (P.R.); (F.L.); Tel.: +39-0382502984 (P.R.); +39-0382502994 (F.L.)
| | - Giulia Mazzini
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, V.le Golgi 19, 27100 Pavia, Italy; (G.M.); (S.C.); (G.P.)
| | - Serena Caminito
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, V.le Golgi 19, 27100 Pavia, Italy; (G.M.); (S.C.); (G.P.)
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | - Giovanni Palladini
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, V.le Golgi 19, 27100 Pavia, Italy; (G.M.); (S.C.); (G.P.)
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | - Francesca Lavatelli
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, V.le Golgi 19, 27100 Pavia, Italy; (G.M.); (S.C.); (G.P.)
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Correspondence: (P.R.); (F.L.); Tel.: +39-0382502984 (P.R.); +39-0382502994 (F.L.)
| |
Collapse
|
17
|
Morgan GJ. Barriers to Small Molecule Drug Discovery for Systemic Amyloidosis. Molecules 2021; 26:3571. [PMID: 34208058 PMCID: PMC8230685 DOI: 10.3390/molecules26123571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
Inhibition of amyloid fibril formation could benefit patients with systemic amyloidosis. In this group of diseases, deposition of amyloid fibrils derived from normally soluble proteins leads to progressive tissue damage and organ failure. Amyloid formation is a complex process, where several individual steps could be targeted. Several small molecules have been proposed as inhibitors of amyloid formation. However, the exact mechanism of action for a molecule is often not known, which impedes medicinal chemistry efforts to develop more potent molecules. Furthermore, commonly used assays are prone to artifacts that must be controlled for. Here, potential mechanisms by which small molecules could inhibit aggregation of immunoglobulin light-chain dimers, the precursor proteins for amyloid light-chain (AL) amyloidosis, are studied in assays that recapitulate different aspects of amyloidogenesis in vitro. One molecule reduced unfolding-coupled proteolysis of light chains, but no molecules inhibited aggregation of light chains or disrupted pre-formed amyloid fibrils. This work demonstrates the challenges associated with drug development for amyloidosis, but also highlights the potential to combine therapies that target different aspects of amyloidosis.
Collapse
Affiliation(s)
- Gareth J Morgan
- Section of Hematology and Medical Oncology, Amyloidosis Center, Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA
| |
Collapse
|
18
|
Pradhan T, Annamalai K, Sarkar R, Hegenbart U, Schönland S, Fändrich M, Reif B. Solid state NMR assignments of a human λ-III immunoglobulin light chain amyloid fibril. BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:9-16. [PMID: 32946005 PMCID: PMC7973639 DOI: 10.1007/s12104-020-09975-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/11/2020] [Indexed: 05/09/2023]
Abstract
The aggregation of antibody light chains is linked to systemic light chain (AL) amyloidosis, a disease where amyloid deposits frequently affect the heart and the kidney. We here investigate fibrils from the λ-III FOR005 light chain (LC), which is derived from an AL-patient with severe cardiac involvement. In FOR005, five residues are mutated with respect to its closest germline gene segment IGLV3-19 and IGLJ3. All mutations are located close to the complementarity determining regions (CDRs). The sequence segments responsible for the fibril formation are not yet known. We use fibrils extracted from the heart of this particular amyloidosis patient as seeds to prepare fibrils for solid-state NMR. We show that the seeds induce the formation of a specific fibril structure from the biochemically produced protein. We have assigned the fibril core region of the FOR005-derived fibrils and characterized the secondary structure propensity of the observed amino acids. As the primary structure of the aggregated patient protein is different for every AL patient, it is important to study, analyze and report a greater number of light chain sequences associated with AL amyloidosis.
Collapse
Affiliation(s)
- Tejaswini Pradhan
- Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit Und Umwelt, Institute of Structural Biology, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- Department of Chemistry, Munich Center for Integrated Protein Science (CIPS-M), Technische Universität München (TUM), Lichtenbergstr. 4, 85747, Garching, Germany
| | - Karthikeyan Annamalai
- Institute of Protein Biochemistry, Ulm University, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Riddhiman Sarkar
- Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit Und Umwelt, Institute of Structural Biology, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- Department of Chemistry, Munich Center for Integrated Protein Science (CIPS-M), Technische Universität München (TUM), Lichtenbergstr. 4, 85747, Garching, Germany
| | - Ute Hegenbart
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Stefan Schönland
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Bernd Reif
- Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit Und Umwelt, Institute of Structural Biology, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.
- Department of Chemistry, Munich Center for Integrated Protein Science (CIPS-M), Technische Universität München (TUM), Lichtenbergstr. 4, 85747, Garching, Germany.
| |
Collapse
|
19
|
Molecular mechanism of amyloidogenic mutations in hypervariable regions of antibody light chains. J Biol Chem 2021; 296:100334. [PMID: 33508322 PMCID: PMC7949129 DOI: 10.1016/j.jbc.2021.100334] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
Systemic light chain (AL) amyloidosis is a fatal protein misfolding disease in which excessive secretion, misfolding, and subsequent aggregation of free antibody light chains eventually lead to deposition of amyloid plaques in various organs. Patient-specific mutations in the antibody VL domain are closely linked to the disease, but the molecular mechanisms by which certain mutations induce misfolding and amyloid aggregation of antibody domains are still poorly understood. Here, we compare a patient VL domain with its nonamyloidogenic germline counterpart and show that, out of the five mutations present, two of them strongly destabilize the protein and induce amyloid fibril formation. Surprisingly, the decisive, disease-causing mutations are located in the highly variable complementarity determining regions (CDRs) but exhibit a strong impact on the dynamics of conserved core regions of the patient VL domain. This effect seems to be based on a deviation from the canonical CDR structures of CDR2 and CDR3 induced by the substitutions. The amyloid-driving mutations are not necessarily involved in propagating fibril formation by providing specific side chain interactions within the fibril structure. Rather, they destabilize the VL domain in a specific way, increasing the dynamics of framework regions, which can then change their conformation to form the fibril core. These findings reveal unexpected influences of CDR-framework interactions on antibody architecture, stability, and amyloid propensity.
Collapse
|
20
|
Lavatelli F, Mazzini G, Ricagno S, Iavarone F, Rognoni P, Milani P, Nuvolone M, Swuec P, Caminito S, Tasaki M, Chaves-Sanjuan A, Urbani A, Merlini G, Palladini G. Mass spectrometry characterization of light chain fragmentation sites in cardiac AL amyloidosis: insights into the timing of proteolysis. J Biol Chem 2020; 295:16572-16584. [PMID: 32952127 PMCID: PMC7864057 DOI: 10.1074/jbc.ra120.013461] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 09/04/2020] [Indexed: 01/27/2023] Open
Abstract
Amyloid fibrils are polymeric structures originating from aggregation of misfolded proteins. In vivo, proteolysis may modulate amyloidogenesis and fibril stability. In light chain (AL) amyloidosis, fragmented light chains (LCs) are abundant components of amyloid deposits; however, site and timing of proteolysis are debated. Identification of the N and C termini of LC fragments is instrumental to understanding involved processes and enzymes. We investigated the N and C terminome of the LC proteoforms in fibrils extracted from the hearts of two AL cardiomyopathy patients, using a proteomic approach based on derivatization of N- and C-terminal residues, followed by mapping of fragmentation sites on the structures of native and fibrillar relevant LCs. We provide the first high-specificity map of proteolytic cleavages in natural AL amyloid. Proteolysis occurs both on the LC variable and constant domains, generating a complex fragmentation pattern. The structural analysis indicates extensive remodeling by multiple proteases, largely taking place on poorly folded regions of the fibril surfaces. This study adds novel important knowledge on amyloid LC processing: although our data do not exclude that proteolysis of native LC dimers may destabilize their structure and favor fibril formation, the data show that LC deposition largely precedes the proteolytic events documentable in mature AL fibrils.
Collapse
Affiliation(s)
- Francesca Lavatelli
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy.
| | - Giulia Mazzini
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Stefano Ricagno
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Federica Iavarone
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Faculty of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy; Clinical Chemistry, Biochemistry and Molecular Biology Clinic, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - Paola Rognoni
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Paolo Milani
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Mario Nuvolone
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Paolo Swuec
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Cryo-Electron Microscopy Facility, Human Technopole, Milan, Italy
| | - Serena Caminito
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Masayoshi Tasaki
- Department of Morphological and Physiological Sciences, Graduate School of Health Sciences, Kumamoto University, Kumamoto, Japan; Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | - Andrea Urbani
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Faculty of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy; Clinical Chemistry, Biochemistry and Molecular Biology Clinic, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - Giampaolo Merlini
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Giovanni Palladini
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| |
Collapse
|
21
|
Kazman P, Vielberg MT, Pulido Cendales MD, Hunziger L, Weber B, Hegenbart U, Zacharias M, Köhler R, Schönland S, Groll M, Buchner J. Fatal amyloid formation in a patient's antibody light chain is caused by a single point mutation. eLife 2020; 9:52300. [PMID: 32151314 PMCID: PMC7064341 DOI: 10.7554/elife.52300] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/06/2020] [Indexed: 11/29/2022] Open
Abstract
In systemic light chain amyloidosis, an overexpressed antibody light chain (LC) forms fibrils which deposit in organs and cause their failure. While it is well-established that mutations in the LC’s VL domain are important prerequisites, the mechanisms which render a patient LC amyloidogenic are ill-defined. In this study, we performed an in-depth analysis of the factors and mutations responsible for the pathogenic transformation of a patient-derived λ LC, by recombinantly expressing variants in E. coli. We show that proteolytic cleavage of the patient LC resulting in an isolated VL domain is essential for fibril formation. Out of 11 mutations in the patient VL, only one, a leucine to valine mutation, is responsible for fibril formation. It disrupts a hydrophobic network rendering the C-terminal segment of VL more dynamic and decreasing domain stability. Thus, the combination of proteolytic cleavage and the destabilizing mutation trigger conformational changes that turn the LC pathogenic. Amyloid light chain amyloidosis, shortened to AL amyloidosis, is a rare and often fatal disease. It is caused by a disorder of the bone marrow. Usually, cells in the bone marrow produce Y-shaped proteins called antibodies to fight infections. In AL amyloidosis, these cells release too much of the short arm of the antibody, known as its light chain, and the light chains also carry mutations. The antibodies are no longer able to assemble properly, and instead misfold and form structures, known as amyloid fibrils. The fibrils build up outside the cells, gradually causing damage to tissues and organs that can lead to life-threatening organ failure. Due to the rareness of the disease, diagnosis is often overlooked and delayed. People experience widely varying symptoms, depending on the organs affected. Also, given the diversity of antibodies people make, every person with AL amyloidosis has a variety of mutations implicated in their disease. It is thought that mutations in the antibody light chain make it unstable and prone to misfolding, but it remains unclear which specific mutations trigger a cascade of amyloid fibril formation. Now, Kazman et al. have pinpointed the exact mechanism in one case of the disease. First, tissue biopsies from a woman with advanced AL amyloidosis were analyzed, and the defunct antibody light chain was isolated. Eleven mutations were identified in the antibody light chain, only one of which was found to be responsible for the formation of the harmful fibrils. The next step was to determine how this one small change was so damaging. The experiments showed that after the antibody light chain was cut in two, a process that happens naturally in the body, this single mutation transforms it into a protein capable of causing disease. In this ‘bedside to lab bench’ study, Kazman et al. have succeeded in determining the molecular origin of one case of AL amyloidosis. The results have also shown that the instability of antibodies due to mutation does not alone explain the formation of amyloid fibrils in this disease and that the cutting of this protein in two is also important. It is hoped that, in the long run, this work will lead to new diagnostics and treatment options for people with AL amyloidosis.
Collapse
Affiliation(s)
- Pamina Kazman
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Garching, Germany
| | - Marie-Theres Vielberg
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Garching, Germany
| | - María Daniela Pulido Cendales
- Center for Integrated Protein Science Munich at the Department Physik, Technische Universität München, Garching, Germany
| | - Lioba Hunziger
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Garching, Germany
| | - Benedikt Weber
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Garching, Germany
| | - Ute Hegenbart
- Medical Department V, Amyloidosis Center, University of Heidelberg, Heidelberg, Germany
| | - Martin Zacharias
- Center for Integrated Protein Science Munich at the Department Physik, Technische Universität München, Garching, Germany
| | - Rolf Köhler
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Stefan Schönland
- Medical Department V, Amyloidosis Center, University of Heidelberg, Heidelberg, Germany
| | - Michael Groll
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Garching, Germany
| |
Collapse
|
22
|
Reiter T, Knafl D, Agis H, Mechtler K, Wagner L, Winnicki W. Structural analysis of urinary light chains and proteomic analysis of hyaline tubular casts in light chain associated kidney disorders. PeerJ 2019; 7:e7819. [PMID: 31592189 PMCID: PMC6778432 DOI: 10.7717/peerj.7819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/03/2019] [Indexed: 11/20/2022] Open
Abstract
Background Monoclonal overproduction of kappa and/or lambda light chains might result in renal light chain deposition disease. Light chain associated cast nephropathy and renal AL-amyloidosis represent two further pathologies going along with monoclonal gammopathy of renal significance and multiple myeloma. While cast nephropathy often manifests with acute kidney injury, AL-amyloidosis is rather accompanied with chronic kidney disease. Methods Urine samples were collected from 17 patients with multiple myeloma or monoclonal gammopathy. The urine sediment was stained for cast morphology by H/E and light chain immunofluorescence. Following micro-selection of casts under microscope, proteomic analysis of casts was performed by mass spectrometry. Sucrose gradient sedimentation was employed and light chain architecture examined by immunoblotting. Uromodulin was measured by ELISA in sucrose gradient fractions. Results Urinary casts were observed of about 30 µm in diameter by H/E staining and under immunofluorescence microscopy. Casts with a diameter of 20 µm were observed as a novel variant. Proteome analysis showed that in addition to the expected light chain variants produced by the malignant clone of plasma cells, also histones such as H2B and cathepsin B were contained. Uromodulin was not detectable in urinary casts of all patients. All eleven patients with lambda light chains showed predominant dimerized light chains in the urine immunoblot. Six patients with kappa light chains presented with predominantly monomeric forms of light chains in the immunoblot. The densitometric evaluated ratio of lambda dimers vs. monomers was significantly higher (2.12 ± 0.75) when compared with the ratio of kappa dimers vs. monomers (0.64 ± 0.47), p = 0.00001. Aggregates of light chains separated in part into denser sucrose fractions. Conclusion This work on urinary casts and light chains demonstrates that hyaline tubular casts represent a complex formation of protein-protein aggregates with histones and cathepsin B identified as novel cast components. Apart from the proteomic composition of the casts, also the formation of the light chains and aggregates is of relevance. Dimerized light chains, which are typical for lambda paraproteins, might be less dialyzable than monomeric forms and may therefore identify patients less responsive to high cut-off dialysis.
Collapse
Affiliation(s)
- Thomas Reiter
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Daniela Knafl
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Hermine Agis
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Karl Mechtler
- ProtChem Facility, IMP-IMBA, Research Institute of Molecular Pathology, Vienna, Austria
| | - Ludwig Wagner
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Winnicki
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Rennella E, Morgan GJ, Yan N, Kelly JW, Kay LE. The Role of Protein Thermodynamics and Primary Structure in Fibrillogenesis of Variable Domains from Immunoglobulin Light Chains. J Am Chem Soc 2019; 141:13562-13571. [PMID: 31364359 DOI: 10.1021/jacs.9b05499] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Immunoglobulin light-chain amyloidosis is a protein aggregation disease that leads to proteinaceous deposits in a variety of organs in the body and, if untreated, ultimately results in death. The mechanisms by which light-chain aggregation occurs are not well understood. Here we have used solution NMR spectroscopy and biophysical studies to probe immunoglobulin variable domain λV6-57 VL aggregation, a process that appears to drive the degenerative phenotypes in amyloidosis patients. Our results establish that aggregation proceeds via the unfolded state. We identify, through NMR relaxation experiments recorded on the unfolded domain ensemble, a series of hotspots that could be involved in the initial phases of aggregate formation. Mutational analysis of these hotspots reveals that the region that includes K16-R24 is particularly aggregation prone. Notably, this region includes the site of the R24G substitution, a mutation that is found in variable domains of λ light-chain deposits in 25% of patients. The R24G λV6-57 VL domain aggregates more rapidly than would be expected on the basis of thermodynamic stability alone, while substitutions in many of the aggregation-prone regions significantly slow down fibril formation.
Collapse
Affiliation(s)
- Enrico Rennella
- Departments of Molecular Genetics, Biochemistry and Chemistry , The University of Toronto , Toronto , Ontario , Canada M5S1A8
| | - Gareth J Morgan
- Departments of Molecular Medicine and Chemistry , The Scripps Research Institute , La Jolla , California 92037 , United States.,Department of Medicine , Boston University School of Medicine , Boston , Massachusetts 02118 , United States
| | - Nicholas Yan
- Departments of Molecular Medicine and Chemistry , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Jeffery W Kelly
- Departments of Molecular Medicine and Chemistry , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Lewis E Kay
- Departments of Molecular Genetics, Biochemistry and Chemistry , The University of Toronto , Toronto , Ontario , Canada M5S1A8.,The Hospital for Sick Children , Program in Molecular Medicine , 555 University Avenue , Toronto , Ontario , Canada M5G1X8
| |
Collapse
|
24
|
Swuec P, Lavatelli F, Tasaki M, Paissoni C, Rognoni P, Maritan M, Brambilla F, Milani P, Mauri P, Camilloni C, Palladini G, Merlini G, Ricagno S, Bolognesi M. Cryo-EM structure of cardiac amyloid fibrils from an immunoglobulin light chain AL amyloidosis patient. Nat Commun 2019; 10:1269. [PMID: 30894521 PMCID: PMC6427027 DOI: 10.1038/s41467-019-09133-w] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/15/2019] [Indexed: 11/09/2022] Open
Abstract
Systemic light chain amyloidosis (AL) is a life-threatening disease caused by aggregation and deposition of monoclonal immunoglobulin light chains (LC) in target organs. Severity of heart involvement is the most important factor determining prognosis. Here, we report the 4.0 Å resolution cryo-electron microscopy map and molecular model of amyloid fibrils extracted from the heart of an AL amyloidosis patient with severe amyloid cardiomyopathy. The helical fibrils are composed of a single protofilament, showing typical 4.9 Å stacking and cross-β architecture. Two distinct polypeptide stretches (total of 77 residues) from the LC variable domain (Vl) fit the fibril density. Despite Vl high sequence variability, residues stabilizing the fibril core are conserved through different cardiotoxic Vl, highlighting structural motifs that may be common to misfolding-prone LCs. Our data shed light on the architecture of LC amyloids, correlate amino acid sequences with fibril assembly, providing the grounds for development of innovative medicines.
Collapse
Affiliation(s)
- Paolo Swuec
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy.,Centro di Ricerca Pediatrica Romeo ed Enrica Invernizzi, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Francesca Lavatelli
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, and Department of Molecular Medicine, University of Pavia, P.le Golgi 19, 27100, Pavia, Italy
| | - Masayoshi Tasaki
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, and Department of Molecular Medicine, University of Pavia, P.le Golgi 19, 27100, Pavia, Italy.,Department of Morphological and Physiological Sciences, Graduate School of Health Sciences,, Kumamoto University, 4-24-1 Kuhonji, Kumamoto, 862-0976, Japan.,Department of Neurology, Graduate School of Medical Sciences, 1-1-1, Honjo, Kumamoto, 860-0811, Japan
| | - Cristina Paissoni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Paola Rognoni
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, and Department of Molecular Medicine, University of Pavia, P.le Golgi 19, 27100, Pavia, Italy
| | - Martina Maritan
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Francesca Brambilla
- Institute for Biomedical Technologies-CNR, Via Fratelli Cervi 93, 20090, Segrate, Italy
| | - Paolo Milani
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, and Department of Molecular Medicine, University of Pavia, P.le Golgi 19, 27100, Pavia, Italy
| | - Pierluigi Mauri
- Institute for Biomedical Technologies-CNR, Via Fratelli Cervi 93, 20090, Segrate, Italy
| | - Carlo Camilloni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Giovanni Palladini
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, and Department of Molecular Medicine, University of Pavia, P.le Golgi 19, 27100, Pavia, Italy
| | - Giampaolo Merlini
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, and Department of Molecular Medicine, University of Pavia, P.le Golgi 19, 27100, Pavia, Italy
| | - Stefano Ricagno
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy.
| | - Martino Bolognesi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy. .,Centro di Ricerca Pediatrica Romeo ed Enrica Invernizzi, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy.
| |
Collapse
|
25
|
Role of domain interactions in the aggregation of full-length immunoglobulin light chains. Proc Natl Acad Sci U S A 2018; 116:854-863. [PMID: 30598439 DOI: 10.1073/pnas.1817538116] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Amyloid light-chain (LC) amyloidosis is a protein misfolding disease in which the aggregation of an overexpressed antibody LC from a clonal plasma cell leads to organ toxicity and patient death if left untreated. While the overall dimeric architecture of LC molecules is established, with each LC composed of variable (VL) and constant (CL) domains, the relative contributions of LC domain-domain interfaces and intrinsic domain stabilities to protection against LC aggregation are not well understood. To address these topics we have engineered a number of domain-destabilized LC mutants and used solution NMR spectroscopy to characterize their structural properties and intrinsic stabilities. Moreover, we used fluorescence spectroscopy to assay their aggregation propensities. Our results point to the importance of both dimerization strength and intrinsic monomer stability in stabilizing VL domains against aggregation. Notably, in all cases considered VL domains aggregate at least 10-fold faster than full-length LCs, establishing the important protective role of CL domains. A strong protective coupling is found between VL-VL and CL-CL dimer interfaces, with destabilization of one interface adversely affecting the stability of the other. Fibril formation is observed when either the VL or CL domain in the full-length protein is severely destabilized (i.e., where domain unfolding free energies are less than 2 kcal/mol). The important role of CL domains in preventing aggregation highlights the potential of the CL-CL interface as a target for the development of drugs to stabilize the dimeric LC structure and hence prevent LC amyloidosis.
Collapse
|
26
|
Blancas-Mejia LM, Misra P, Dick CJ, Cooper SA, Redhage KR, Bergman MR, Jordan TL, Maar K, Ramirez-Alvarado M. Immunoglobulin light chain amyloid aggregation. Chem Commun (Camb) 2018; 54:10664-10674. [PMID: 30087961 DOI: 10.1039/c8cc04396e] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Light chain (AL) amyloidosis is a devastating, complex, and incurable protein misfolding disease. It is characterized by an abnormal proliferation of plasma cells (fully differentiated B cells) producing an excess of monoclonal immunoglobulin light chains that are secreted into circulation, where the light chains misfold, aggregate as amyloid fibrils in target organs, and cause organ dysfunction, organ failure, and death. In this article, we will review the factors that contribute to AL amyloidosis complexity, the findings by our laboratory from the last 16 years and the work from other laboratories on understanding the structural, kinetics, and thermodynamic contributions that drive immunoglobulin light chain-associated amyloidosis. We will discuss the role of cofactors and the mechanism of cellular damage. Last, we will review our recent findings on the high resolution structure of AL amyloid fibrils. AL amyloidosis is the best example of protein sequence diversity in misfolding diseases, as each patient has a unique combination of germline donor sequences and multiple amino acid mutations in the protein that forms the amyloid fibril.
Collapse
Affiliation(s)
- Luis M Blancas-Mejia
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Finkelstein AV, Dovidchenko NV, Galzitskaya OV. Anomalous Kinetics of Amyloidogenesis Suggest a Competition between Oligomers and Fibrils. Mol Biol 2018. [DOI: 10.1134/s002689331801003x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Concurrent structural and biophysical traits link with immunoglobulin light chains amyloid propensity. Sci Rep 2017; 7:16809. [PMID: 29196671 PMCID: PMC5711917 DOI: 10.1038/s41598-017-16953-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/10/2017] [Indexed: 01/08/2023] Open
Abstract
Light chain amyloidosis (AL), the most common systemic amyloidosis, is caused by the overproduction and the aggregation of monoclonal immunoglobulin light chains (LC) in target organs. Due to genetic rearrangement and somatic hypermutation, virtually, each AL patient presents a different amyloidogenic LC. Because of such complexity, the fine molecular determinants of LC aggregation propensity and proteotoxicity are, to date, unclear; significantly, their decoding requires investigating large sets of cases. Aiming to achieve generalizable observations, we systematically characterised a pool of thirteen sequence-diverse full length LCs. Eight amyloidogenic LCs were selected as responsible for severe cardiac symptoms in patients; five non-amyloidogenic LCs were isolated from patients affected by multiple myeloma. Our comprehensive approach (consisting of spectroscopic techniques, limited proteolysis, and X-ray crystallography) shows that low fold stability and high protein dynamics correlate with amyloidogenic LCs, while hydrophobicity, structural rearrangements and nature of the LC dimeric association interface (as observed in seven crystal structures here presented) do not appear to play a significant role in defining amyloid propensity. Based on the structural and biophysical data, our results highlight shared properties driving LC amyloid propensity, and these data will be instrumental for the design of synthetic inhibitors of LC aggregation.
Collapse
|
29
|
Annamalai K, Liberta F, Vielberg MT, Close W, Lilie H, Gührs KH, Schierhorn A, Koehler R, Schmidt A, Haupt C, Hegenbart U, Schönland S, Schmidt M, Groll M, Fändrich M. Common Fibril Structures Imply Systemically Conserved Protein Misfolding Pathways In Vivo. Angew Chem Int Ed Engl 2017; 56:7510-7514. [DOI: 10.1002/anie.201701761] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/15/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Karthikeyan Annamalai
- Institute of Protein Biochemistry; Ulm University; Helmholtzstrasse 8/1 89081 Ulm Germany
| | - Falk Liberta
- Institute of Protein Biochemistry; Ulm University; Helmholtzstrasse 8/1 89081 Ulm Germany
| | - Marie-Theres Vielberg
- Center for Integrated Protein Science Munich (CIPSM); Technische Universität München, Department Chemie; 85748 Garching Germany
| | - William Close
- Institute of Protein Biochemistry; Ulm University; Helmholtzstrasse 8/1 89081 Ulm Germany
| | - Hauke Lilie
- Institute for Biochemistry and Biotechnology/Technical Biochemistry; 06120 Halle (Saale) Germany
| | - Karl-Heinz Gührs
- CF Protemics; Leibniz Institute on Aging-, Fritz Lipmann Institute (FLI); Beutenbergstraße 11 07745 Jena Germany
| | - Angelika Schierhorn
- Institut für Biochemie und Biotechnologie; Serviceeinheit für Massenspektrometrie; 06120 Halle (Saale) Germany
| | - Rolf Koehler
- Institute of Human Genetics; Im Neuenheimer Feld 366 69120 Heidelberg Germany
| | - Andreas Schmidt
- Institute of Protein Biochemistry; Ulm University; Helmholtzstrasse 8/1 89081 Ulm Germany
| | - Christian Haupt
- Institute of Protein Biochemistry; Ulm University; Helmholtzstrasse 8/1 89081 Ulm Germany
| | - Ute Hegenbart
- Amyloidosis Center; Department of Internal Medicine V; Im Neuenheimer Feld 410 69120 Heidelberg Germany
| | - Stefan Schönland
- Amyloidosis Center; Department of Internal Medicine V; Im Neuenheimer Feld 410 69120 Heidelberg Germany
| | - Matthias Schmidt
- Institute of Protein Biochemistry; Ulm University; Helmholtzstrasse 8/1 89081 Ulm Germany
| | - Michael Groll
- Center for Integrated Protein Science Munich (CIPSM); Technische Universität München, Department Chemie; 85748 Garching Germany
| | - Marcus Fändrich
- Institute of Protein Biochemistry; Ulm University; Helmholtzstrasse 8/1 89081 Ulm Germany
| |
Collapse
|
30
|
Annamalai K, Liberta F, Vielberg MT, Close W, Lilie H, Gührs KH, Schierhorn A, Koehler R, Schmidt A, Haupt C, Hegenbart U, Schönland S, Schmidt M, Groll M, Fändrich M. Common Fibril Structures Imply Systemically Conserved Protein Misfolding Pathways In Vivo. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701761] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Karthikeyan Annamalai
- Institute of Protein Biochemistry; Ulm University; Helmholtzstrasse 8/1 89081 Ulm Germany
| | - Falk Liberta
- Institute of Protein Biochemistry; Ulm University; Helmholtzstrasse 8/1 89081 Ulm Germany
| | - Marie-Theres Vielberg
- Center for Integrated Protein Science Munich (CIPSM); Technische Universität München, Department Chemie; 85748 Garching Germany
| | - William Close
- Institute of Protein Biochemistry; Ulm University; Helmholtzstrasse 8/1 89081 Ulm Germany
| | - Hauke Lilie
- Institute for Biochemistry and Biotechnology/Technical Biochemistry; 06120 Halle (Saale) Germany
| | - Karl-Heinz Gührs
- CF Protemics; Leibniz Institute on Aging-, Fritz Lipmann Institute (FLI); Beutenbergstraße 11 07745 Jena Germany
| | - Angelika Schierhorn
- Institut für Biochemie und Biotechnologie; Serviceeinheit für Massenspektrometrie; 06120 Halle (Saale) Germany
| | - Rolf Koehler
- Institute of Human Genetics; Im Neuenheimer Feld 366 69120 Heidelberg Germany
| | - Andreas Schmidt
- Institute of Protein Biochemistry; Ulm University; Helmholtzstrasse 8/1 89081 Ulm Germany
| | - Christian Haupt
- Institute of Protein Biochemistry; Ulm University; Helmholtzstrasse 8/1 89081 Ulm Germany
| | - Ute Hegenbart
- Amyloidosis Center; Department of Internal Medicine V; Im Neuenheimer Feld 410 69120 Heidelberg Germany
| | - Stefan Schönland
- Amyloidosis Center; Department of Internal Medicine V; Im Neuenheimer Feld 410 69120 Heidelberg Germany
| | - Matthias Schmidt
- Institute of Protein Biochemistry; Ulm University; Helmholtzstrasse 8/1 89081 Ulm Germany
| | - Michael Groll
- Center for Integrated Protein Science Munich (CIPSM); Technische Universität München, Department Chemie; 85748 Garching Germany
| | - Marcus Fändrich
- Institute of Protein Biochemistry; Ulm University; Helmholtzstrasse 8/1 89081 Ulm Germany
| |
Collapse
|
31
|
Martin EB, Williams A, Wooliver C, Heidel RE, Adams S, Dunlap J, Ramirez-Alvarado M, Blancas-Mejia LM, Lands RH, Kennel SJ, Wall JS. Differential recruitment efficacy of patient-derived amyloidogenic and myeloma light chain proteins by synthetic fibrils-A metric for predicting amyloid propensity. PLoS One 2017; 12:e0174152. [PMID: 28350808 PMCID: PMC5369765 DOI: 10.1371/journal.pone.0174152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 03/03/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Monoclonal free light chain (LC) proteins are present in the circulation of patients with immunoproliferative disorders such as light chain (AL) amyloidosis and multiple myeloma (MM). Light chain-associated amyloid is a complex pathology composed of proteinaceous fibrils and extracellular matrix proteins found in all patients with AL and in ~10-30% of patients who presented with MM. Amyloid deposits systemically in multiple organs and tissues leading to dysfunction and ultimately death. The overall survival of patients with amyloidosis is worse than for those with early stage MM. METHODS AND FINDINGS We have developed a sensitive binding assay quantifying the recruitment of full length, patient-derived LC proteins by synthetic amyloid fibrils, as a method for studying their amyloidogenic potential. In a survey of eight urinary LC, both AL and MM-associated proteins were recruited by synthetic amyloid fibrils; however, AL-associated LC bound significantly more efficiently (p < 0.05) than did MM LCs. The LC proteins used in this study were isolated from urine and presumed to represent a surrogate of serum free light chains. CONCLUSION The binding of LC to synthetic fibrils in this assay accurately differentiated LC with amyloidogenic propensity from MM LC that were not associated with clinical amyloid disease. Notably, the LC from a MM patient who subsequently developed amyloid behaved as an AL-associated protein in the assay, indicating the possibility for identifying MM patients at risk for developing amyloidosis based on the light chain recruitment efficacy. With this information, at risk patients can be monitored more closely for the development of amyloidosis, allowing timely administration of novel, amyloid-directed immunotherapies-this approach may improve the prognosis for these patients.
Collapse
Affiliation(s)
- Emily B. Martin
- Department of Medicine, University of Tennessee Medical Center, Knoxville, Tennessee, United States of America
| | - Angela Williams
- Department of Medicine, University of Tennessee Medical Center, Knoxville, Tennessee, United States of America
| | - Craig Wooliver
- Department of Medicine, University of Tennessee Medical Center, Knoxville, Tennessee, United States of America
| | - R. Eric Heidel
- Department of Surgery, University of Tennessee Medical Center, Knoxville, Tennessee, United States of America
| | - Sarah Adams
- Department of Surgery, University of Tennessee Medical Center, Knoxville, Tennessee, United States of America
| | - John Dunlap
- Microscopy Facility, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Marina Ramirez-Alvarado
- Department of Biochemistry and Molecular Biology, and Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Luis M. Blancas-Mejia
- Department of Biochemistry and Molecular Biology, and Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ronald H. Lands
- Department of Medicine, University of Tennessee Medical Center, Knoxville, Tennessee, United States of America
| | - Stephen J. Kennel
- Department of Medicine, University of Tennessee Medical Center, Knoxville, Tennessee, United States of America
- Department of Radiology, University of Tennessee Medical Center, Knoxville, Tennessee, United States of America
| | - Jonathan S. Wall
- Department of Medicine, University of Tennessee Medical Center, Knoxville, Tennessee, United States of America
- Department of Radiology, University of Tennessee Medical Center, Knoxville, Tennessee, United States of America
| |
Collapse
|
32
|
Zhang C, Huang X, Li J. Light chain amyloidosis: Where are the light chains from and how they play their pathogenic role? Blood Rev 2017; 31:261-270. [PMID: 28336182 DOI: 10.1016/j.blre.2017.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 03/03/2017] [Indexed: 12/17/2022]
Abstract
Amyloid light-chain (AL) amyloidosis is a plasma-cell dyscrasia, as well as the most common type of systematic amyloidosis. Pathogenic plasma cells that have distinct cytogenetic and molecular properties secrete an excess amount of amyloidogenic light chains. Assisted by post-translational modifications, matrix components, and other environmental factors, these light chains undergo a conformational change that triggers the formation of amyloid fibrils that overrides the extracellular protein quality control system. Moreover, the amyloidogenic light-chain itself is cytotoxic. As a consequence, organ dysfunction is caused by both organ architecture disruption and the direct cytotoxic effect of amyloidogenic light chains. Here, we reviewed the molecular mechanisms underlying this sequence of events that ultimately leads to AL amyloidosis and also discuss current in vitro and in vivo models, as well as relevant novel therapeutic approaches.
Collapse
Affiliation(s)
- Chunlan Zhang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xufei Huang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jian Li
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
33
|
Lavatelli F, Merlini G. Advances in proteomic study of cardiac amyloidosis: progress and potential. Expert Rev Proteomics 2016; 13:1017-1027. [PMID: 27678147 DOI: 10.1080/14789450.2016.1242417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION More than ten distinct forms of amyloidoses that can involve the heart have been described, classified according to which protein originates the deposits. Cardiac amyloid infiltration translates into progressive and often life-threatening cardiomyopathy, but disease severity, prognosis and treatment drastically differ according to the amyloidosis type. The notion that protein misfolding and aggregation play a more general role in human cardiomyopathies has further raised attention towards the definition of the proteotoxicity mechanisms. Areas covered: Mass spectrometry-based proteomics plays an important role as a diagnostic tool and for understanding the molecular bases of amyloid cardiomyopathies. The landscape of applications of proteomics to the study of cardiac amyloidoses and amyloid-related cardiotoxicity is summarized, with a critical synthesis of the major achievements. Expert commentary: Current strengths and limitations of proteomics in the clinical setting and in translational research on amyloid cardiomyopathy are discussed, with the foreseen potential future directions in the field.
Collapse
Affiliation(s)
- Francesca Lavatelli
- a Amyloidosis Research and Treatment Center , Fondazione IRCCS Policlinico San Matteo, and University of Pavia , Pavia , Italy
| | - Giampaolo Merlini
- a Amyloidosis Research and Treatment Center , Fondazione IRCCS Policlinico San Matteo, and University of Pavia , Pavia , Italy
| |
Collapse
|
34
|
Kisilevsky R, Raimondi S, Bellotti V. Historical and Current Concepts of Fibrillogenesis and In vivo Amyloidogenesis: Implications of Amyloid Tissue Targeting. Front Mol Biosci 2016; 3:17. [PMID: 27243018 PMCID: PMC4860540 DOI: 10.3389/fmolb.2016.00017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 04/21/2016] [Indexed: 12/22/2022] Open
Abstract
Historical and current concepts of in vitro fibrillogenesis are considered in the light of disorders in which amyloid is deposited at anatomic sites remote from the site of synthesis of the corresponding precursor protein. These clinical conditions set constraints on the interpretation of information derived from in vitro fibrillogenesis studies. They suggest that in addition to kinetic and thermodynamic factors identified in vitro, fibrillogenesis in vivo is determined by site specific factors most of which have yet to be identified.
Collapse
Affiliation(s)
- Robert Kisilevsky
- Department of Pathology and Molecular Medicine, Queen's University Kingston, ON, Canada
| | - Sara Raimondi
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia Pavia, Italy
| | - Vittorio Bellotti
- Unit of Biochemistry, Department of Molecular Medicine, University of PaviaPavia, Italy; Wolfson Drug Discovery Unit, Division of Medicine, Centre for Amyloidosis and Acute Phase Proteins, University College LondonLondon, UK
| |
Collapse
|
35
|
Nokwe CN, Hora M, Zacharias M, Yagi H, Peschek J, Reif B, Goto Y, Buchner J. A Stable Mutant Predisposes Antibody Domains to Amyloid Formation through Specific Non-Native Interactions. J Mol Biol 2016; 428:1315-1332. [DOI: 10.1016/j.jmb.2016.01.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/10/2016] [Accepted: 01/15/2016] [Indexed: 12/17/2022]
|
36
|
Nokwe CN, Hora M, Zacharias M, Yagi H, John C, Reif B, Goto Y, Buchner J. The Antibody Light-Chain Linker Is Important for Domain Stability and Amyloid Formation. J Mol Biol 2015; 427:3572-3586. [PMID: 26408269 DOI: 10.1016/j.jmb.2015.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/11/2015] [Accepted: 09/14/2015] [Indexed: 12/14/2022]
Abstract
The association of light chains (LCs) and heavy chains is the basis for functional antibodies that are essential for adaptive immune responses. However, in some cases, LCs and especially fragments consisting of the LC variable (VL) domain are pathologically deposited in fatal aggregation diseases. The two domains of the LC are connected by a highly conserved linker. We show here that, unexpectedly, the linker residue Arg108 affects the conformational stability and folding of both VLκ and LC constant (CLκ) domains. Interestingly, the extension of VL by Arg108 results in its resistance to amyloid formation, which suggests that the nature of the truncation of the LC plays a crucial role in disease progression. Increased solvation due to the exposed charged C-terminal Arg108 residue explains its stabilizing effects on the VL domain. For the CL domain, the interaction of N-terminal loop residues with Arg108 is important for the integrity of the domain, as the disruption of this interaction results in fluctuation, partial opening of the protein's interior and the exposure of hydrophobic residues that destabilize the domain. This establishes new principles for antibody domain architecture and amyloidogenicity.
Collapse
Affiliation(s)
- Cardine N Nokwe
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - Manuel Hora
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - Martin Zacharias
- Center for Integrated Protein Science at the Department Physik, Technische Universität München, James-Franck-Strasse 1, D-85748 Garching, Germany
| | - Hisashi Yagi
- Division of Protein Structural Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Christine John
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - Bernd Reif
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - Yuji Goto
- Division of Protein Structural Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Johannes Buchner
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München Lichtenbergstrasse 4, D-85747 Garching, Germany.
| |
Collapse
|
37
|
Thermodynamic and fibril formation studies of full length immunoglobulin light chain AL-09 and its germline protein using scan rate dependent thermal unfolding. Biophys Chem 2015; 207:13-20. [PMID: 26263488 DOI: 10.1016/j.bpc.2015.07.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 07/18/2015] [Accepted: 07/18/2015] [Indexed: 11/24/2022]
Abstract
Light chain (AL) amyloidosis is a fatal disease where monoclonal immunoglobulin light chains deposit as insoluble amyloid fibrils. For many years it has been considered that AL amyloid deposits are formed primarily by the variable domain, while its constant domain has been considered not to be amyloidogenic. However recent studies identify full length (FL) light chains as part of the amyloid deposits. In this report, we compare the stabilities and amyloidogenic properties of two light chains, an amyloid-associated protein AL-09 FL, and its germline protein κ I O18/O8 FL (IGKV 1-33). We demonstrate that the thermal unfolding for both proteins is irreversible and scan rate dependent, with similar stability parameters compared to their VL counterparts. In addition, the constant domain seems to modulate their amyloidogenic properties and affect the morphology of the amyloid fibrils. These results allow us to understand the role of the kappa constant domain in AL amyloidosis.
Collapse
|
38
|
Gaffney PM, Barr B, Rowe JD, Bett C, Drygiannakis I, Giannitti F, Trejo M, Ghassemian M, Martin P, Masliah E, Sigurdson CJ. Protein profiling of isolated uterine AA amyloidosis causing fetal death in goats. FASEB J 2014; 29:911-9. [PMID: 25422367 DOI: 10.1096/fj.14-256081] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Pathologic amyloid accumulates in the CNS or in peripheral organs, yet the mechanism underlying the targeting of systemic amyloid deposits is unclear. Serum amyloid A (SAA) 1 and 2 are produced predominantly by the liver and form amyloid most commonly in the spleen, liver, and kidney. In contrast, SAA3 is produced primarily extrahepatically and has no causal link to amyloid formation. Here, we identified 8 amyloidosis cases with amyloid composed of SAA3 expanding the uterine wall of goats with near-term fetuses. Uterine amyloid accumulated in the endometrium, only at the site of placental attachment, compromising maternal-fetal gas and nutrient exchange and leading to fetal ischemia and death. No other organ contained amyloid. SAA3 mRNA levels in the uterine endometrium were as high as SAA2 in the liver, yet mass spectrometry of the insoluble uterine peptides identified SAA3 as the predominant protein, and not SAA1 or SAA2. These findings suggest that high local SAA3 production led to deposition at this unusual site. Although amyloid A (AA) amyloid deposits typically consist of an N-terminal fragment of SAA1 or SAA2, here, abundant C-terminal peptides indicated that the uterine amyloid was largely composed of full-length SAA3. The exclusive deposition of SAA3 amyloid in the uterus, together with elevated uterine SAA3 transcripts, suggests that the uterine amyloid deposits were due to locally produced SAA3. This is the first report of SAA3 as a cause of amyloidosis and of AA amyloid deposited exclusively in the uterus.
Collapse
Affiliation(s)
- Patricia M Gaffney
- Departments of *Pathology, Neuroscience, and Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA; Departments of Pathology, Immunology and Microbiology and Population Health & Reproduction, and California Animal Health and Food Safety Laboratory System, University of California, Davis, Davis, California, USA; and INRA, UMR1313 Unité Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Bradd Barr
- Departments of *Pathology, Neuroscience, and Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA; Departments of Pathology, Immunology and Microbiology and Population Health & Reproduction, and California Animal Health and Food Safety Laboratory System, University of California, Davis, Davis, California, USA; and INRA, UMR1313 Unité Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Joan D Rowe
- Departments of *Pathology, Neuroscience, and Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA; Departments of Pathology, Immunology and Microbiology and Population Health & Reproduction, and California Animal Health and Food Safety Laboratory System, University of California, Davis, Davis, California, USA; and INRA, UMR1313 Unité Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Cyrus Bett
- Departments of *Pathology, Neuroscience, and Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA; Departments of Pathology, Immunology and Microbiology and Population Health & Reproduction, and California Animal Health and Food Safety Laboratory System, University of California, Davis, Davis, California, USA; and INRA, UMR1313 Unité Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Ioannis Drygiannakis
- Departments of *Pathology, Neuroscience, and Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA; Departments of Pathology, Immunology and Microbiology and Population Health & Reproduction, and California Animal Health and Food Safety Laboratory System, University of California, Davis, Davis, California, USA; and INRA, UMR1313 Unité Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Federico Giannitti
- Departments of *Pathology, Neuroscience, and Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA; Departments of Pathology, Immunology and Microbiology and Population Health & Reproduction, and California Animal Health and Food Safety Laboratory System, University of California, Davis, Davis, California, USA; and INRA, UMR1313 Unité Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Margarita Trejo
- Departments of *Pathology, Neuroscience, and Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA; Departments of Pathology, Immunology and Microbiology and Population Health & Reproduction, and California Animal Health and Food Safety Laboratory System, University of California, Davis, Davis, California, USA; and INRA, UMR1313 Unité Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Majid Ghassemian
- Departments of *Pathology, Neuroscience, and Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA; Departments of Pathology, Immunology and Microbiology and Population Health & Reproduction, and California Animal Health and Food Safety Laboratory System, University of California, Davis, Davis, California, USA; and INRA, UMR1313 Unité Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Patrice Martin
- Departments of *Pathology, Neuroscience, and Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA; Departments of Pathology, Immunology and Microbiology and Population Health & Reproduction, and California Animal Health and Food Safety Laboratory System, University of California, Davis, Davis, California, USA; and INRA, UMR1313 Unité Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Eliezer Masliah
- Departments of *Pathology, Neuroscience, and Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA; Departments of Pathology, Immunology and Microbiology and Population Health & Reproduction, and California Animal Health and Food Safety Laboratory System, University of California, Davis, Davis, California, USA; and INRA, UMR1313 Unité Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Christina J Sigurdson
- Departments of *Pathology, Neuroscience, and Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA; Departments of Pathology, Immunology and Microbiology and Population Health & Reproduction, and California Animal Health and Food Safety Laboratory System, University of California, Davis, Davis, California, USA; and INRA, UMR1313 Unité Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| |
Collapse
|
39
|
Khalighi MA, Dean Wallace W, Palma-Diaz MF. Amyloid nephropathy. Clin Kidney J 2014; 7:97-106. [PMID: 25852856 PMCID: PMC4377792 DOI: 10.1093/ckj/sfu021] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 02/19/2014] [Indexed: 01/29/2023] Open
Abstract
Amyloidosis is an uncommon disease that is characterized by abnormal extracellular deposition of misfolded protein fibrils leading to organ dysfunction. The deposited proteins display common chemical and histologic properties but can vary dramatically in their origin. Kidney disease is a common manifestation in patients with systemic amyloidosis with a number of amyloidogenic proteins discovered in kidney biopsy specimens. The emergence of mass spectrometry-based proteomics has added to the diagnostic accuracy and overall understanding of amyloidosis. This in-depth review discusses the general histopathologic features of renal amyloidosis and includes an in-depth discussion of specific forms of amyloid affecting the kidney.
Collapse
Affiliation(s)
| | - W Dean Wallace
- Department of Pathology and Laboratory Medicine , University of California , Los Angeles, CA , USA
| | - Miguel F Palma-Diaz
- Department of Pathology and Laboratory Medicine , University of California , Los Angeles, CA , USA
| |
Collapse
|
40
|
Nasr SH, Said SM, Valeri AM, Sethi S, Fidler ME, Cornell LD, Gertz MA, Dispenzieri A, Buadi FK, Vrana JA, Theis JD, Dogan A, Leung N. The diagnosis and characteristics of renal heavy-chain and heavy/light-chain amyloidosis and their comparison with renal light-chain amyloidosis. Kidney Int 2013; 83:463-70. [PMID: 23302715 DOI: 10.1038/ki.2012.414] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Little is known about the rare entities of heavy- and light-chain amyloidosis (AHL) and heavy-chain amyloidosis (AH). Here, we report the renal and hematological characteristics, pathology, and outcome of 16 patients with renal AH/AHL (5 with AH and 11 with AHL) and compare them with 202 patients with renal light-chain amyloidosis (AL) diagnosed during the same time period. All cases were diagnosed by kidney biopsy that showed Congo red-positive deposits. Amyloid typing was done by laser microdissection and mass spectrometry (LMD/MS) on 12 patients or by immunofluorescence on four patients. All patients with renal AH/AHL were Caucasians, with a male/female ratio of 2.2 and a median age at biopsy of 63 years. Compared with patients with renal AL, those with renal AH/AHL had less frequent concurrent cardiac involvement, higher likelihood of having circulating complete monoclonal immunoglobulin, lower sensitivity of fat pad biopsy and bone marrow biopsy for detecting amyloid, higher incidence of hematuria, and better patient survival. The hematological response to chemotherapy was comparable with renal AL. In 42% of patients, AH/AHL could not have been diagnosed without LMD/MS. Thus, renal AH/AHL is an uncommon and underrecognized form of amyloidosis, and its diagnosis is greatly enhanced by the use of LMD/MS for amyloid typing. The accurate histological diagnosis of renal AH/AHL and distinction from AL may have important clinical and prognostic implications.
Collapse
Affiliation(s)
- Samih H Nasr
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Division of Anatomic Pathology, Hilton 10-20 200 First Street, SW, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hoshii Y, Nanbara H, Cui D, Takahashi M, Ikeda E. Immunohistochemical examination of Aκ amyloidosis with antibody against adjacent portion of the carboxy terminus of immunoglobulin kappa light chain. Med Mol Morphol 2012; 45:124-8. [PMID: 23001294 DOI: 10.1007/s00795-011-0548-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 05/09/2011] [Indexed: 11/30/2022]
Abstract
For the purpose of investigating the carboxy terminus distribution of immunoglobulin κ light chain in Aκ amyloid deposits in tissue sections, we examined the immunostaining pattern of Aκ amyloidosis with conventional rabbit clonal antibody against peptide derived from the C-terminal sequence of human κ light chain. This antihuman kappa light chain clone II (clone H16-E) reacted with the adjacent region of the C terminus of the κ light chain constant region in SPOT analysis. Immunohistochemically, this antibody reacted with amyloid deposits in all 18 cases of Aκ amyloidosis. In 15 cases, this antibody reacted with amyloid deposits almost uniformly. In this study, we demonstrated for the fi rst time that the peptides adjacent to the carboxy terminus of immunoglobulin κ light chain or full-length κ light chain were constituents of Aκ amyloidosis, and these molecules were distributed uniformly in almost all cases of Aκ amyloidosis in tissue sections.
Collapse
Affiliation(s)
- Yoshinobu Hoshii
- Department of Pathology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan.
| | | | | | | | | |
Collapse
|
42
|
Azevedo EPC, Guimarães-Costa AB, Torezani GS, Braga CA, Palhano FL, Kelly JW, Saraiva EM, Foguel D. Amyloid fibrils trigger the release of neutrophil extracellular traps (NETs), causing fibril fragmentation by NET-associated elastase. J Biol Chem 2012; 287:37206-18. [PMID: 22918834 DOI: 10.1074/jbc.m112.369942] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The accumulation of amyloid fibrils is a feature of amyloid diseases, where cell toxicity is due to soluble oligomeric species that precede fibril formation or are formed by fibril fragmentation, but the mechanism(s) of fragmentation is still unclear. Neutrophil-derived elastase and histones were found in amyloid deposits from patients with different systemic amyloidoses. Neutrophil extracellular traps (NETs) are key players in a death mechanism in which neutrophils release DNA traps decorated with proteins such as elastase and histones to entangle pathogens. Here, we asked whether NETs are triggered by amyloid fibrils, reasoning that because proteases are present in NETs, protease digestion of amyloid may generate soluble, cytotoxic species. We show that amyloid fibrils from three different sources (α-synuclein, Sup35, and transthyretin) induced NADPH oxidase-dependent NETs in vitro from human neutrophils. Surprisingly, NET-associated elastase digested amyloid fibrils into short species that were cytotoxic for BHK-21 and HepG2 cells. In tissue sections from patients with primary amyloidosis, we also observed the co-localization of NETs with amyloid deposits as well as with oligomers, which are probably derived from elastase-induced fibril degradation (amyloidolysis). These data reveal that release of NETs, so far described to be elicited by pathogens, can also be triggered by amyloid fibrils. Moreover, the involvement of NETs in amyloidoses might be crucial for the production of toxic species derived from fibril fragmentation.
Collapse
Affiliation(s)
- Estefania P C Azevedo
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-590, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Although AL amyloidosis usually is a systemic disease, strictly localized AL deposits are not exceptionally rare. Such case reports form a considerable body of published articles. Although both AL amyloidosis types are formed from an N-terminal segment of a monoclonal immunoglobulin light chain, a typical localized AL amyloid differs from the systemic counterpart by the morphological appearance of the amyloid, and presence of clonal plasma cells and of giant cells. In this article it is pointed out that localized AL amyloidosis ('amyloidoma') represents a true plasma cell neoplasm and not a pseudotumor. The pathogenesis of localized AL amyloidosis may differ from that of the systemic type, a suggestion underlined by the fact that localized AL amyloidosis of kappa type is as common as that of lambda origin, in contrast to the systemic form where lambda chains constitute the overwhelming majority of cases. It is suggested that oligomeric assemblies of the produced immunoglobulin light chain are toxic to plasma cells, which in this way commit suicide.
Collapse
Affiliation(s)
- Per Westermark
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
44
|
Abstract
Symptoms from a systemic amyloidosis are usually coming from one of the inner organs, e.g., heart or kidney. However, for diagnosis and for material for amyloid protein studies, biopsy from an easier accessible tissue is preferred. This chapter describes biopsy from subcutaneous adipose tissue as a particularly suitable method to obtain amyloid.
Collapse
Affiliation(s)
- Per Westermark
- Department of Immunology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
45
|
Wall JS, Kennel SJ, Richey T, Allen A, Stuckey A, Weiss DT, Macy SD, Barbour R, Seubert P, Solomon A, Schenk D. Generation and characterization of anti-AA amyloid-specific monoclonal antibodies. Front Immunol 2011; 2:32. [PMID: 22566822 PMCID: PMC3341974 DOI: 10.3389/fimmu.2011.00032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 07/24/2011] [Indexed: 11/13/2022] Open
Abstract
AA amyloidosis results from the pathologic deposition in the kidneys and other organs of fibrils composed of N-terminal fragments of serum amyloid A protein (SAA). Given that there are only limited means to visualize these deposits, we have developed a series of mAbs, 2A4, 7D8, and 8G9, that bind specifically with nanomolar affinity to a carboxy-terminal epitope generated following proteolysis of SAA that yields the predominant component of AA amyloid deposits. Notably, these antibodies do not recognize native SAA, they retain their immunoreactivity when radiolabeled with I-125 and, after injection into AA amyloidotic mice, localize, as evidenced by autoradiography and micro-single photon emission computed tomography imaging, to histologically confirmed areas of amyloid deposition; namely, spleen, liver, and pancreas. The results of our in vitro and in vivo studies demonstrate the AA fibril-selectivity of mAbs 2A4, 7D8, and 8G9 and warrant further investigation into their role as novel diagnostic agents for patients with AA amyloidosis.
Collapse
Affiliation(s)
- Jonathan S Wall
- Human Immunology and Cancer Program, Department of Medicine, University of Tennessee Graduate School of Medicine Knoxville, TN, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ren R, Hong Z, Gong H, Laporte K, Skinner M, Seldin DC, Costello CE, Connors LH, Trinkaus-Randall V. Role of glycosaminoglycan sulfation in the formation of immunoglobulin light chain amyloid oligomers and fibrils. J Biol Chem 2010; 285:37672-82. [PMID: 20870723 DOI: 10.1074/jbc.m110.149575] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Primary amyloidosis (AL) results from overproduction of unstable monoclonal immunoglobulin light chains (LCs) and the deposition of insoluble fibrils in tissues, leading to fatal organ disease. Glycosaminoglycans (GAGs) are associated with AL fibrils and have been successfully targeted in the treatment of other forms of amyloidosis. We investigated the role of GAGs in LC fibrillogenesis. Ex vivo tissue amyloid fibrils were extracted and examined for structure and associated GAGs. The GAGs were detected along the length of the fibril strand, and the periodicity of heparan sulfate (HS) along the LC fibrils generated in vitro was similar to that of the ex vivo fibrils. To examine the role of sulfated GAGs on AL oligomer and fibril formation in vitro, a κ1 LC purified from urine of a patient with AL amyloidosis was incubated in the presence or absence of GAGs. The fibrils generated in vitro at physiologic concentration, temperature, and pH shared morphologic characteristics with the ex vivo κ1 amyloid fibrils. The presence of HS and over-O-sulfated-heparin enhanced the formation of oligomers and fibrils with HS promoting the most rapid transition. In contrast, GAGs did not enhance fibril formation of a non-amyloidogenic κ1 LC purified from urine of a patient with multiple myeloma. The data indicate that the characteristics of the full-length κ1 amyloidogenic LC, containing post-translational modifications, possess key elements that influence interactions of the LC with HS. These findings highlight the importance of the variable and constant LC regions in GAG interaction and suggest potential therapeutic targets for treatment.
Collapse
Affiliation(s)
- Ruiyi Ren
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | | | |
Collapse
|