1
|
Singerer I, Tempel L, Gruen K, Heiß J, Gutte C, Matasci M, Schrepper A, Bauer R, Berndt A, Jung C, Schulze PC, Neri D, Franz M. Extra domain A-containing fibronectin in pulmonary hypertension and treatment effects of a function-blocking antibody. Cardiovasc Res 2024; 120:1485-1497. [PMID: 39023231 DOI: 10.1093/cvr/cvae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 04/07/2024] [Accepted: 06/01/2024] [Indexed: 07/20/2024] Open
Abstract
AIMS Pulmonary vascular and right ventricular (RV) remodelling processes are important for development and progression of pulmonary hypertension (PH). The current study analysed the functional role of the extra domain A-containing fibronectin (ED-A+ Fn) for the development of PH by comparing ED-A+ Fn knockout (KO) and wild-type (WT) mice as well as the effects of an antibody-based therapeutic approach in a model of monocrotaline (MCT)-induced PH, which will be validated in a model of Sugen 5416/hypoxia-induced PH. METHODS AND RESULTS PH was induced using MCT (PH mice). Sixty-nine mice were divided into the following groups: sham-treated controls (WT: n = 7; KO: n = 7), PH mice without specific treatment (WT: n = 12; KO: n = 10), PH mice treated with a dual endothelin receptor antagonist (macitentan; WT: n = 6; KO: n = 11), WT PH mice treated with the F8 antibody, specifically recognizing ED-A+ Fn, (n = 8), and WT PH mice treated with an antibody of irrelevant antigen specificity (KSF, n = 8). Compared to controls, WT_PH mice showed a significant elevation of the RV systolic pressure (P = 0.04) and RV functional impairment including increased basal RV (P = 0.016) diameter or tricuspid annular plane systolic excursion (P = 0.008). In contrast, KO PH did not show such effects compared to controls (P = n.s.). In WT_PH mice treated with F8, haemodynamic and echocardiographic parameters were significantly improved compared to untreated WT_PH mice or those treated with the KSF antibody (P < 0.05). On the microscopic level, KO_PH mice showed significantly less tissue damage compared to the WT_PH mice (P = 0.008). Furthermore, lung tissue damage could significantly be reduced after F8 treatment (P = 0.04). Additionally, these findings could be verified in the Sugen 5416/hypoxia mouse model, in which F8 significantly improved echocardiographic, haemodynamic, and histologic parameters. CONCLUSION ED-A+ Fn is of crucial importance for PH pathogenesis representing a promising therapeutic target in PH. We here show a novel therapeutic approach using antibody-mediated functional blockade of ED-A+ Fn capable of attenuating and partially reversing PH-associated tissue remodelling.
Collapse
MESH Headings
- Animals
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/immunology
- Fibronectins/metabolism
- Fibronectins/genetics
- Mice, Knockout
- Disease Models, Animal
- Monocrotaline
- Ventricular Function, Right/drug effects
- Ventricular Remodeling/drug effects
- Mice, Inbred C57BL
- Pyrimidines/pharmacology
- Pulmonary Artery/physiopathology
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Male
- Endothelin Receptor Antagonists/pharmacology
- Vascular Remodeling/drug effects
- Antibodies, Blocking/pharmacology
- Antibodies, Monoclonal/pharmacology
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/physiopathology
- Hypertrophy, Right Ventricular/pathology
- Sulfonamides/pharmacology
Collapse
Affiliation(s)
- Isabell Singerer
- Department of Internal Medicine I, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine, Cardiovascular Center Rotenburg, Klinikum Hersfeld-Rotenburg, Heinz-Meise-Str. 100, 36199 Rotenburg an der Fulda, Germany
| | - Laura Tempel
- Department of Internal Medicine I, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Katja Gruen
- Department of Internal Medicine I, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Judith Heiß
- Department of Internal Medicine I, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Clara Gutte
- Department of Internal Medicine I, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany
| | | | - Andrea Schrepper
- Department of Cardiothoracic Surgery, University Hospital Jena, Jena, Germany
| | - Reinhard Bauer
- Center for Molecular Biomedicine, Institute of Molecular Cell Biology, University Hospital Jena, Jena, Germany
| | - Alexander Berndt
- Section Pathology, Institute of Legal Medicine, University Hospital Jena, Jena, Germany
| | - Christian Jung
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - P Christian Schulze
- Department of Internal Medicine I, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany
| | | | - Marcus Franz
- Department of Internal Medicine I, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine, Cardiovascular Center Rotenburg, Klinikum Hersfeld-Rotenburg, Heinz-Meise-Str. 100, 36199 Rotenburg an der Fulda, Germany
| |
Collapse
|
2
|
Peyster E, Yuan C, Arabyarmohammadi S, Lal P, Feldman M, Fu P, Margulies K, Madabhushi A. Computational Pathology Assessments of Cardiac Stromal Remodeling: Clinical Correlates and Prognostic Implications in Heart Transplantation. RESEARCH SQUARE 2024:rs.3.rs-4364681. [PMID: 38798599 PMCID: PMC11118694 DOI: 10.21203/rs.3.rs-4364681/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Both overt and indolent inflammatory insults in heart transplantation can accelerate pathologic cardiac remodeling, but there are few tools for monitoring the speed and severity of remodeling over time. To address this need, we developed an automated computational pathology system to measure pathologic remodeling in transplant biopsy samples in a large, retrospective cohort of n=2167 digitized heart transplant biopsy slides. Biopsy images were analyzed to identify the pathologic stromal changes associated with future allograft loss or advanced allograft vasculopathy. Biopsy images were then analyzed to assess which historical allo-inflammatory events drive progression of these pathologic stromal changes over time in serial biopsy samples. The top-5 features of pathologic stromal remodeling most strongly associated with adverse outcomes were also strongly associated with histories of both overt and indolent inflammatory events. Our findings identify previously unappreciated subgroups of higher- and lower-risk transplant patients, and highlight the translational potential of digital pathology analysis.
Collapse
|
3
|
Serum Liberation of Fetal Fibronectin Variants in Patients with Pulmonary Hypertension: ED-A + Fn as Promising Novel Biomarker of Pulmonary Vascular and Right Ventricular Myocardial Remodeling. J Clin Med 2021; 10:jcm10122559. [PMID: 34207881 PMCID: PMC8229629 DOI: 10.3390/jcm10122559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 11/25/2022] Open
Abstract
Background and Aims: Pulmonary Hypertension (PH) represents an aetiologically and clinically heterogeneous disorder accompanied by a severely impaired prognosis. Key steps of PH pathogenesis are vascular and right ventricular myocardial remodelling entailing the re-occurrence of fetal variants of the cell adhesion modulating protein fibronectin (Fn) being virtually absent in healthy adult tissues. These variants are liberated into circulation and are therefore qualified as excellent novel serum biomarkers. Moreover, these molecules might serve as promising therapeutic targets. The current study was aimed at quantifying the serum levels of two functionally important fetal Fn variants (ED-A+ and ED-B+ Fn) in patients suffering from PH due to different aetiologies compared to healthy controls. Methods: Serum levels of ED-A+ and ED-B+ Fn were quantified using novel ELISA protocols established and validated in our group in 80 PH patients and 40 controls. Results were analysed with respect to clinical, laboratory, echocardiographic and functional parameters. Results: Serum levels of ED-A+ Fn (p = 0.001) but not ED-B+ Fn (p = 0.722) were significantly increased in PH patients compared to healthy controls. Thus, the following analyses were performed only for ED-A+ Fn. When dividing PH patients into different aetiological groups according to current ESC guidelines, the increase in ED-A+ Fn in PH patients compared to controls remained significant for group 1 (p = 0.032), 2 (p = 0.007) and 3 (p = 0.001) but not for group 4 (p = 0.156). Correlation analysis revealed a significant relation between ED-A+ Fn and brain natriuretic peptide (BNP) (r = 0.310; p = 0.002), six minutes’ walk test (r = −0.275; p = 0.02) and systolic pulmonary artery pressure (PAPsys) (r = 0.364; p < 0.001). By logistic regression analysis (backward elimination WALD) including a variety of potentially relevant patients’ characteristics, only chronic kidney disease (CKD) (OR: 8.866; CI: 1.779–44.187; p = 0.008), C reactive protein (CRP) (OR: 1.194; CI: 1.011–1.410; p = 0.037) and ED-A+ Fn (OR: 1.045; CI: 1.011–1.080; p = 0.009) could be identified as independent predictors of the presence of PH. Conclusions: Against the background of our results, ED-A+ Fn could serve as a promising novel biomarker of PH with potential value for initial diagnosis and aetiological differentiation. Moreover, it might contribute to more precise risk stratification of PH patients. Beyond that, the future role of ED-A+ Fn as a therapeutic target has to be evaluated in further studies.
Collapse
|
4
|
Zhang Z, Zhang N, Shi J, Dai C, Wu S, Jiao M, Tang X, Liu Y, Li X, Xu Y, Tan Z, Gong F, Zheng F. Allograft or Recipient ST2 Deficiency Oppositely Affected Cardiac Allograft Vasculopathy via Differentially Altering Immune Cells Infiltration. Front Immunol 2021; 12:657803. [PMID: 33815420 PMCID: PMC8012811 DOI: 10.3389/fimmu.2021.657803] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/05/2021] [Indexed: 12/07/2022] Open
Abstract
The role of IL-33/ST2 signaling in cardiac allograft vasculopathy (CAV) is not fully addressed. Here, we investigated the role of IL-33/ST2 signaling in allograft or recipient in CAV respectively using MHC-mismatch murine chronic cardiac allograft rejection model. We found that recipients ST2 deficiency significantly exacerbated allograft vascular occlusion and fibrosis, accompanied by increased F4/80+ macrophages and CD3+ T cells infiltration in allografts. In contrast, allografts ST2 deficiency resulted in decreased infiltration of F4/80+ macrophages, CD3+ T cells and CD20+ B cells and thus alleviated vascular occlusion and fibrosis of allografts. These findings indicated that allografts or recipients ST2 deficiency oppositely affected cardiac allograft vasculopathy/fibrosis via differentially altering immune cells infiltration, which suggest that interrupting IL-33/ST2 signaling locally or systematically after heart transplantation leads different outcome.
Collapse
Affiliation(s)
- Zhenggang Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyu Shi
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chan Dai
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suo Wu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengya Jiao
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuhuan Tang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunfei Liu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiao Li
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Xu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Tan
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Feili Gong
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Zheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
5
|
Serum Biomarkers of Cardiovascular Remodelling Reflect Extra-Valvular Cardiac Damage in Patients with Severe Aortic Stenosis. Int J Mol Sci 2020; 21:ijms21114174. [PMID: 32545310 PMCID: PMC7312014 DOI: 10.3390/ijms21114174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
In patients with aortic stenosis (AS), a novel staging classification of extra-valvular left and right heart damage with prognostic relevance was introduced in 2017. The aim of the study was to evaluate the biomarkers of cardiovascular tissue remodelling in relation to this novel staging classification. Patients were categorized according to the novel staging classification into stages 0 to 4. The levels of matrix metalloproteinase 9 (MMP-9), tissue inhibitor of metalloproteinases 1 (TIMP-1), B and C domain containing tenascin-C (B+ Tn-C, C+ Tn-C), the ED-A and ED-B domain containing fibronectin (ED-A+ Fn, ED-B+ Fn), endothelin 1 (ET-1) and neutrophil gelatinase-associated lipocalin (NGAL) were determined in serum by ELISA. There were significantly decreased serum levels of MMP-9 and increased levels of B+ Tn-C and C+ Tn-C when comparing stages 0 and 1 with stage 2, with no further dynamics in stages 3 and 4. In contrast, for TIMP-1, C+ Tn-C, ED-A+ Fn, ET-1 and NGAL, significantly increased serum levels could be detected in stages 3 and 4 compared to both stages 0 and 1 and stage 2. ED-A+ Fn and ET-1 could be identified as independent predictors of the presence of stage 3 and/or 4. To the best of our knowledge, this is the first study identifying novel serum biomarkers differentially reflecting the patterns of left and right heart extra-valvular damage in patients suffering from AS. Our findings might indicate a more precise initial diagnosis and risk stratification.
Collapse
|
6
|
Franz M, Grün K, Betge S, Rohm I, Ndongson-Dongmo B, Bauer R, Schulze PC, Lichtenauer M, Petersen I, Neri D, Berndt A, Jung C. Lung tissue remodelling in MCT-induced pulmonary hypertension: a proposal for a novel scoring system and changes in extracellular matrix and fibrosis associated gene expression. Oncotarget 2018; 7:81241-81254. [PMID: 27835899 PMCID: PMC5348389 DOI: 10.18632/oncotarget.13220] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/27/2016] [Indexed: 11/25/2022] Open
Abstract
Pulmonary hypertension (PH) is associated with vasoconstriction and remodelling. We studied lung tissue remodelling in a rat model of PH with special focus on histology and extracellular matrix (ECM) remodelling. After induction of PH by monocrotaline, lung tissue was analysed histologically, by gene expression analysis and immunofluorescence labelling of ED-A domain containing fibronectin (ED-A+ Fn), B domain containing tenascin-C (B+ Tn-C) as well as alpha-smooth muscle actin (α-SMA). Serum concentrations of ED-A+ Fn were determined by ELISA. Systolic right ventricular pressure (RVPsys) values were significantly elevated in PH (n = 18; 75 ± 26.4 mmHg) compared to controls (n = 10; 29 ± 19.3 mmHg; p = 0.015). The histological sum-score was significantly increased in PH (8.0 ± 2.2) compared to controls (2.5 ± 1.6; p < 0.001). Gene expression analysis revealed relevant induction of several key genes of extracellular matrix remodelling. Increased protein deposition of ED-A+ Fn but not of B+ Tn-C and α-SMA in lung tissue was found in PH (2.88 ± 3.19 area%) compared to controls (1.32 ± 0.16 area%; p = 0.030). Serum levels of ED-A+ Fn were significantly higher in PH (p = 0.007) positively correlating with RVPsys (r = 0.618, p = 0.019). We here present a novel histological scoring system to assess lung tissue remodelling in PH. Gene expression analysis revealed induction of candidate genes involved in collagen matrix turnover, fibrosis and vascular remodelling. The stable increased tissue deposition of ED-A+ Fn in PH as well as its dynamics in serum suggests a role as a promising novel biomarker and potential therapeutic target.
Collapse
Affiliation(s)
- Marcus Franz
- Department of Internal Medicine I, Jena University Hospital, Jena, Germany
| | - Katja Grün
- Department of Internal Medicine I, Jena University Hospital, Jena, Germany
| | - Stefan Betge
- Department of Angiology, Cardiovascular Center Bad Bevensen, Bad Bevensen, Germany
| | - Ilonka Rohm
- Department of Internal Medicine I, Jena University Hospital, Jena, Germany
| | - Bernadin Ndongson-Dongmo
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | | | - Michael Lichtenauer
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, Austria
| | - Iver Petersen
- Institute of Pathology, Jena University Hospital, Jena, Germany
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | | | - Christian Jung
- Department of Internal Medicine, Division of Cardiology, Pulmonology and Vascular Medicine, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
7
|
Sigdel TK, Sarwal MM. Assessment of Circulating Protein Signatures for Kidney Transplantation in Pediatric Recipients. Front Med (Lausanne) 2017; 4:80. [PMID: 28670579 PMCID: PMC5472654 DOI: 10.3389/fmed.2017.00080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/31/2017] [Indexed: 11/17/2022] Open
Abstract
Identification and use of non-invasive biomarkers for kidney transplantation monitoring is an unmet need. A total of 121 biobanked sera collected from 111 unique kidney transplant (KT) patients (children and adolescent) and 10 age-matched healthy normal controls were used to profile serum proteins using semi-quantitative proteomics. The proteomics data were analyzed to identify panels of serum proteins that were specific to various transplant injuries, which included acute rejection (AR), BK virus nephropathy (BKVN), and chronic allograft nephropathy (CAN). Gene expression data from matching peripheral blood mononuclear cells were interrogated to investigate the association between soluble serum proteins and altered gene expression of corresponding genes in different injury phenotypes. Analysis of the proteomics data identified from different patient phenotypes, with criteria of false discovery rate <0.05 and at least twofold changes in either direction, resulted in a list of 10 proteins that distinguished KT injury from no injury. Similar analyses to identify proteins specific to chronic injury, acute injury, and AR after kidney transplantation identified 22, 6, and 10 proteins, respectively. Elastic-Net logistic regression method was applied on the 137 serum proteins to classify different transplant injuries. This algorithm has identified panels of 10 serum proteins specific for AR, BKVN, and CAN with classification rates 93, 93, and 95%, respectively. The identified proteins could prove to be potential surrogate biomarkers for routine monitoring of the injury status of pediatric KT patients.
Collapse
Affiliation(s)
- Tara K Sigdel
- University of California, San Francisco, San Francisco, CA, United States
| | - Minnie M Sarwal
- University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
8
|
AS2553627, a novel JAK inhibitor, prevents chronic rejection in rat cardiac allografts. Eur J Pharmacol 2017; 796:69-75. [DOI: 10.1016/j.ejphar.2016.12.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/15/2016] [Accepted: 12/15/2016] [Indexed: 12/14/2022]
|
9
|
Detection of Soluble ED-A(+) Fibronectin and Evaluation as Novel Serum Biomarker for Cardiac Tissue Remodeling. DISEASE MARKERS 2016; 2016:3695454. [PMID: 27635109 PMCID: PMC5007333 DOI: 10.1155/2016/3695454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 07/10/2016] [Indexed: 01/22/2023]
Abstract
Background and Aims. Fibronectin containing the extra domain A (ED-A+ Fn) was proven to serve as a valuable biomarker for cardiac remodeling. The study was aimed at establishing an ELISA to determine ED-A+ Fn in serum of heart failure patients. Methods. ED-A+ Fn was quantified in serum samples from 114 heart failure patients due to ischemic (ICM, n = 44) and dilated (DCM, n = 39) cardiomyopathy as well as hypertensive heart disease (HHD, n = 31) compared to healthy controls (n = 12). Results. In comparison to healthy volunteers, heart failure patients showed significantly increased levels of ED-A+ Fn (p < 0.001). In particular in ICM patients there were significant associations between ED-A+ Fn serum levels and clinical parameters, for example, increased levels with rising NYHA class (p = 0.013), a negative correlation with left ventricular ejection fraction (p = 0.026, r: −0.353), a positive correlation with left atrial diameter (p = 0.008, r: 0.431), and a strong positive correlation with systolic pulmonary artery pressure (p = 0.002, r: 0.485). In multivariate analysis, ED-A+ Fn was identified as an independent predictor of an ischemic heart failure etiology. Conclusions. The current study could clearly show that ED-A+ Fn is a promising biomarker in cardiovascular diseases, especially in heart failure patients due to an ICM. We presented a valid ELISA method, which could be applied for further studies investigating the value of ED-A+ Fn.
Collapse
|
10
|
Franz M, Doll F, Grün K, Richter P, Köse N, Ziffels B, Schubert H, Figulla HR, Jung C, Gummert J, Renner A, Neri D, Berndt A. Targeted delivery of interleukin-10 to chronic cardiac allograft rejection using a human antibody specific to the extra domain A of fibronectin. Int J Cardiol 2015; 195:311-22. [PMID: 26056964 DOI: 10.1016/j.ijcard.2015.05.144] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 05/13/2015] [Accepted: 05/26/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND AIMS Management of chronic rejection is challenging since there are not sufficient preventive or therapeutic strategies. The rejection process leads to overexpression of ED-A(+) fibronectin (ED-A(+) Fn). The human antibody F8, specific to ED-A(+) Fn, may serve as a vehicle for targeted delivery of bioactive payloads, e.g. interleukin 10 (IL-10). The aim of this study was to investigate the therapeutic effects of the fusion protein F8-interleukin-10 (F8-IL10) in the process of chronic rejection development. METHODS A heterotopic rat heart transplantation model was used to induce chronic rejection. For therapeutic interventions, the immunocytokines F8-humanIL10 (DEKAVIL), F8-ratIL10 as well as KSF-humanIL10 (irrelevant antigen-specificity) were used. Treatment was performed weekly for 10 weeks starting at day 7 after transplantation (1mg/animal). RESULTS In the cardiac allografts, treatment with F8-huIL10 or F8-ratIL10 was associated with increased heart weights, a higher grade of chronic rejection, increased CIF, higher protein expression levels of alpha-smooth muscle actin (α-SMA), an augmented infiltration with inflammatory cells (CD4+, CD8+ and CD68+ cells) and higher serum levels of brain natriuretic peptide (BNP) compared to the control groups. CONCLUSIONS All observed treatment effects are transplantation-specific since the F8 antibody is specific to ED-A(+) Fn that is not expressed in healthy hearts. A clear targeting effect of F8-huIL10 as well as F8-ratIL10 could be proven. Against that background, a further study is needed to address the question, if F8-IL10 treatment is capable to reduce CAV and CIF starting at a time point when chronic rejection has fully developed (therapeutic approach).
Collapse
Affiliation(s)
- Marcus Franz
- Department of Internal Medicine I, Jena University Hospital, Jena, Germany.
| | - Fabia Doll
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Katja Grün
- Department of Internal Medicine I, Jena University Hospital, Jena, Germany
| | - Petra Richter
- Institute of Pathology, Jena University Hospital, Jena, Germany
| | - Nilay Köse
- Institute of Pathology, Jena University Hospital, Jena, Germany
| | - Barbara Ziffels
- Department of Internal Medicine I, Jena University Hospital, Jena, Germany
| | - Harald Schubert
- Institute of Laboratory Animal Science and Welfare, Jena University Hospital, Jena, Germany
| | - Hans R Figulla
- Department of Internal Medicine I, Jena University Hospital, Jena, Germany
| | - Christian Jung
- Department of Internal Medicine I, Jena University Hospital, Jena, Germany
| | - Jan Gummert
- Clinic for Thoracic and Cardiovascular Surgery, Heart Center North Rhine-Westphalia, Ruhr-University of Bochum, Bad Oeynhausen, Germany
| | - André Renner
- Clinic for Thoracic and Cardiovascular Surgery, Heart Center North Rhine-Westphalia, Ruhr-University of Bochum, Bad Oeynhausen, Germany
| | - Dario Neri
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | | |
Collapse
|
11
|
Franz M, Matusiak-Brückner M, Richter P, Grün K, Ziffels B, Neri D, Maschek H, Schulz U, Pfeil A, Jung C, Figulla HR, Gummert J, Berndt A, Renner A. De novo expression of fetal ED-A(+) fibronectin and B (+) tenascin-C splicing variants in human cardiac allografts: potential impact for targeted therapy of rejection. J Mol Histol 2014; 45:519-32. [PMID: 24792713 DOI: 10.1007/s10735-014-9573-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/22/2014] [Indexed: 02/06/2023]
Abstract
Management of acute and especially chronic rejection after human cardiac transplantation is still challenging. Chronic rejection, represented by allograft vasculopathy (CAV) and cardiac interstitial fibrosis (CIF) is known to cause severe long-term complications. Rejection associated tissue-remodelling entails the reoccurrence of fetal variants of Fibronectin (Fn) and Tenascin-C (Tn-C), which are virtually absent in adult human organs. In a rat model, an extensive re-expression could be demonstrated for ED-A(+) Fn with spatial association to CAV and CIF. Thus, it is of great interest to investigate the cardiac tissue expression and distribution in human samples. From 48 heart transplanted patients, 64 tissue specimens derived from right ventricular biopsies were available. Histopathological analysis was performed according to the International Society for Heart and Lung Transplantation (ISHLT) guidelines for the detection of acute rejection. By immunohistochemistry, protein expression of ED-A(+) Fn, B(+) Tn-C, alpha-smooth muscle actin, CD31 and CD45 was assessed and analysed semiquantitatively. Co-localisation studies were performed by means of immunofluorescence double labelling. Histopathological analysis of the 64 samples revealed different ISHLT grades (0R in 36 cases, 1R in 20 cases and 2R in 8 cases). There was a distinct and quantitatively relevant re-occurrence of ED-A(+) Fn and B(+) Tn-C in most samples. Semi-quantitative evaluation did not show any correlation to the acute rejection grade for all markers. Interestingly, significant correlations to the extent of inflammation could be shown for ED-A(+) Fn (r = 0.442, p = 0.000) and B(+) Tn-C (r = 0.408, p = 0.001) as well as between both proteins (r = 0.663, p = 0.000). A spatial association of ED-A(+) Fn and B(+) Tn-C to CAV and CIF could be demonstrated. A relevant re-occurrence of ED-A(+) Fn and B(+) Tn-C following human heart transplantation could be demonstrated with spatial association to signs of rejection and a significant correlation to tissue inflammation. These data might contribute to the identification of novel biomarkers reflecting the rejection process and to the development of promising strategies to image, prevent or treat cardiac rejection.
Collapse
Affiliation(s)
- Marcus Franz
- Department of Internal Medicine I, Jena University Hospital, Erlanger Allee 101, 07740, Jena, Germany,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Franz M, Berndt A, Neri D, Galler K, Grün K, Porrmann C, Reinbothe F, Mall G, Schlattmann P, Renner A, Figulla HR, Jung C, Küthe F. Matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1, B⁺ tenascin-C and ED-A⁺ fibronectin in dilated cardiomyopathy: potential impact on disease progression and patients' prognosis. Int J Cardiol 2013; 168:5344-51. [PMID: 23998545 DOI: 10.1016/j.ijcard.2013.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/23/2013] [Accepted: 08/03/2013] [Indexed: 11/25/2022]
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is associated with heart failure and increased mortality and there is no reliable biomarker to estimate patients' prognosis. During cardiac remodeling, an extensive reorganization of the extracellular matrix occurs. The study was aimed to investigate matrix metalloproteinase 9 (MMP-9), tissue inhibitor of metalloproteinase 1 (TIMP-1) and fetal tenascin-C (B(+) Tn-C) and fibronectin (ED-A(+) Fn) variants known to be involved in that process. METHODS AND RESULTS In 187 patients with DCM, levels of MMP-9, TIMP-1 and B(+) Tn-C in serum as well as B(+) Tn-C and ED-A(+) Fn in tissue were quantified and subjected to univariate analysis. For all serum markers, concentrations above a calculated threshold were associated with decreased survival (MMP-9: p = 0.008, TIMP-1: p = 0.001, B(+) Tn-C: p < 0.001) and a significantly higher risk to die or undergo transplantation. In tissue, a reexpression of B(+) Tn-C and ED-A(+) Fn could be shown. Protein deposition levels of ≥4.5% for B(+) Tn-C and ≥2.1% for ED-A(+) Fn were associated with a significantly decreased survival (p = 0.001 for B(+) Tn-C, p = 0.031 for ED-A(+) Fn) and an increased risk to die or undergo transplantation. In a multivariate analysis, TIMP-1 is the superior parameter to predict transplantation free survival (p = 0.027). CONCLUSIONS Serum levels of MMP-9, TIMP-1 and B(+) Tn-C and tissue levels of B(+) Tn-C and ED-A(+) Fn are promising markers for risk assessment. The reoccurrence of ED-A(+) Fn and the availability of a human antibody usable as a vehicle for targeted drug delivery might be the basis for novel therapeutic strategies.
Collapse
Affiliation(s)
- Marcus Franz
- Department of Internal Medicine I, University Hospital Jena, Erlanger Allee 101, 07740 Jena, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Franz M, Hilger I, Grün K, Kossatz S, Richter P, Petersen I, Jung C, Gummert J, Figulla HR, Kosmehl H, Neri D, Berndt A, Renner A. Selective imaging of chronic cardiac rejection using a human antibody specific to the alternatively spliced EDA domain of fibronectin. J Heart Lung Transplant 2013; 32:641-50. [DOI: 10.1016/j.healun.2013.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 03/06/2013] [Accepted: 04/02/2013] [Indexed: 10/26/2022] Open
|