1
|
Naskar S, Sriraman N, Sarkar A, Mahajan N, Sarkar K. Tumor antigen presentation and the associated signal transduction during carcinogenesis. Pathol Res Pract 2024; 261:155485. [PMID: 39088877 DOI: 10.1016/j.prp.2024.155485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
Numerous developments have been achieved in the study and treatment of cancer throughout the decades that it has been common. After decades of research, about 100 different kinds of cancer have been found, each with unique subgroups within certain organs. This has significantly expanded our understanding of the illness. A mix of genetic, environmental, and behavioral variables contribute to the complicated and diverse process of cancer formation. Mutations, or changes in the DNA sequence, are crucial to the development of cancer. These mutations have the ability to downregulate the expression and function of Major Histocompatibility Complex class I (MHC I) and MHCII receptors, as well as activate oncogenes and inactivate tumor suppressor genes. Cancer cells use this tactic to avoid being recognized by cytotoxic CD8+T lymphocytes, which causes issues with antigen presentation and processing. This review goes into great length into the PI3K pathway, changes to MHC I, and positive impacts of tsMHC-II on disease-free survival and overall survival and the involvement of dendritic cells (DCs) in different tumor microenvironments. The vital functions that the PI3K pathway and its link to the mTOR pathway are highlighted and difficulties in developing effective cancer targeted therapies and feedback systems has also been mentioned, where resistance mechanisms include RAS-mediated oncogenic changes and active PI3K signalling.
Collapse
Affiliation(s)
- Sohom Naskar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Nawaneetan Sriraman
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Ankita Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Nitika Mahajan
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
2
|
Brisebarre A, Ancel J, Ponchel T, Loeffler E, Germain A, Dalstein V, Dormoy V, Durlach A, Delepine G, Deslée G, Polette M, Nawrocki-Raby B. Transcriptomic FHIT low/pHER2 high signature as a predictive factor of outcome and immunotherapy response in non-small cell lung cancer. Front Immunol 2022; 13:1058531. [PMID: 36544755 PMCID: PMC9760670 DOI: 10.3389/fimmu.2022.1058531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/18/2022] [Indexed: 12/11/2022] Open
Abstract
Introduction In recent decades, the development of immunotherapy and targeted therapies has considerably improved the outcome of non-small cell lung cancer (NSCLC) patients. Despite these impressive clinical benefits, new biomarkers are needed for an accurate stratification of NSCLC patients and a more personalized management. We recently showed that the tumor suppressor fragile histidine triad (FHIT), frequently lost in NSCLC, controls HER2 receptor activity in lung tumor cells and that tumor cells from NSCLC patients harboring a FHITlow/pHER2high phenotype are sensitive to anti-HER2 drugs. Here, we sought to identify the transcriptomic signature of this phenotype and evaluate its clinical significance. Materials and methods We performed RNA sequencing analysis on tumor cells isolated from NSCLC (n=12) according to FHIT/pHER2 status and a functional analysis of differentially regulated genes. We also investigated the FHITlow/pHER2high signature in The Cancer Genome Atlas (TCGA) lung adenocarcinoma (LUAD) (n=489) and lung squamous cell carcinoma (LUSC) (n=493) cohorts and used the tumor immune dysfunction and exclusion (TIDE) model to test the ability of this signature to predict response to immune checkpoint inhibitors (ICI). Results We showed that up-regulated genes in FHITlow/pHER2high tumors were associated with cell proliferation, metabolism and metastasis, whereas down-regulated genes were related to immune response. The FHITlow/pHER2high signature was associated with the higher size of tumors, lymph node involvement, and late TNM stages in LUAD and LUSC cohorts. It was identified as an independent predictor of overall survival (OS) in LUAD cohort. FHITlow/pHER2high tumors were also predictive of poor response to ICI in both LUAD and LUSC cohorts. Conclusion These data suggest that ICI might not be a relevant option for NSCLC patients with FHITlow/pHER2high tumors and that anti-HER2 targeted therapy could be a good therapeutic alternative for this molecular subclass with poorer prognosis.
Collapse
Affiliation(s)
- Audrey Brisebarre
- INSERM, Université de Reims Champagne-Ardenne, P3Cell, UMR-S 1250, SFR CAP Santé, Reims, France
| | - Julien Ancel
- INSERM, Université de Reims Champagne-Ardenne, P3Cell, UMR-S 1250, SFR CAP Santé, Reims, France,CHU Reims, Hôpital Maison Blanche, Service de Pneumologie, Reims, France
| | - Théophile Ponchel
- INSERM, Université de Reims Champagne-Ardenne, P3Cell, UMR-S 1250, SFR CAP Santé, Reims, France
| | - Emma Loeffler
- INSERM, Université de Reims Champagne-Ardenne, P3Cell, UMR-S 1250, SFR CAP Santé, Reims, France
| | - Adeline Germain
- INSERM, Université de Reims Champagne-Ardenne, P3Cell, UMR-S 1250, SFR CAP Santé, Reims, France
| | - Véronique Dalstein
- INSERM, Université de Reims Champagne-Ardenne, P3Cell, UMR-S 1250, SFR CAP Santé, Reims, France,CHU Reims, Pôle de Biologie Territoriale, Service de Pathologie, Reims, France
| | - Valérian Dormoy
- INSERM, Université de Reims Champagne-Ardenne, P3Cell, UMR-S 1250, SFR CAP Santé, Reims, France
| | - Anne Durlach
- INSERM, Université de Reims Champagne-Ardenne, P3Cell, UMR-S 1250, SFR CAP Santé, Reims, France,CHU Reims, Pôle de Biologie Territoriale, Service de Pathologie, Reims, France
| | - Gonzague Delepine
- INSERM, Université de Reims Champagne-Ardenne, P3Cell, UMR-S 1250, SFR CAP Santé, Reims, France,CHU Reims, Hôpital Robert Debré, Service de Chirurgie cardio-vasculaire et thoracique, Reims, France
| | - Gaëtan Deslée
- INSERM, Université de Reims Champagne-Ardenne, P3Cell, UMR-S 1250, SFR CAP Santé, Reims, France,CHU Reims, Hôpital Maison Blanche, Service de Pneumologie, Reims, France
| | - Myriam Polette
- INSERM, Université de Reims Champagne-Ardenne, P3Cell, UMR-S 1250, SFR CAP Santé, Reims, France,CHU Reims, Pôle de Biologie Territoriale, Service de Pathologie, Reims, France
| | - Béatrice Nawrocki-Raby
- INSERM, Université de Reims Champagne-Ardenne, P3Cell, UMR-S 1250, SFR CAP Santé, Reims, France,*Correspondence: Béatrice Nawrocki-Raby,
| |
Collapse
|
3
|
Aptsiauri N, Garrido F. The Challenges of HLA Class I Loss in Cancer Immunotherapy: Facts and Hopes. Clin Cancer Res 2022; 28:5021-5029. [PMID: 35861868 DOI: 10.1158/1078-0432.ccr-21-3501] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/09/2022] [Accepted: 07/20/2022] [Indexed: 01/24/2023]
Abstract
HLA class I molecules are key in tumor recognition and T cell-mediated elimination. Loss of tumor HLA class I expression with different underlying molecular defects results in reduced antigen presentation and facilitates cancer immune evasion. It is also linked to significant changes in tumor microenvironment and tissue architecture. In this review, we summarize the current advances and future perspectives in the understanding of the mechanisms of MHC/HLA class I alterations during the natural history of tumor progression from a primary lesion to distant metastases. We also focus on recent clinical and experimental data demonstrating that lack of response to cancer immunotherapy frequently depends on the molecular nature of tumor HLA class I aberrations. Finally, we highlight the relevance of detecting and correcting the absence of tumor HLA expression to improve immunotherapy protocols.
Collapse
Affiliation(s)
- Natalia Aptsiauri
- Department of Biochemistry, Molecular Biology III and Immunology, University of Granada Medical School, Granada, Spain.,Institute of Biosanitary Research of Granada (IBS), Granada, Spain
| | - Federico Garrido
- Department of Biochemistry, Molecular Biology III and Immunology, University of Granada Medical School, Granada, Spain.,Institute of Biosanitary Research of Granada (IBS), Granada, Spain
| |
Collapse
|
4
|
Hazini A, Fisher K, Seymour L. Deregulation of HLA-I in cancer and its central importance for immunotherapy. J Immunother Cancer 2021; 9:e002899. [PMID: 34353849 PMCID: PMC8344275 DOI: 10.1136/jitc-2021-002899] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 12/28/2022] Open
Abstract
It is now well accepted that many tumors undergo a process of clonal selection which means that tumor antigens arising at various stages of tumor progression are likely to be represented in just a subset of tumor cells. This process is thought to be driven by constant immunosurveillance which applies selective pressure by eliminating tumor cells expressing antigens that are recognized by T cells. It is becoming increasingly clear that the same selective pressure may also select for tumor cells that evade immune detection by acquiring deficiencies in their human leucocyte antigen (HLA) presentation pathways, allowing important tumor antigens to persist within cells undetected by the immune system. Deficiencies in antigen presentation pathway can arise by a variety of mechanisms, including genetic and epigenetic changes, and functional antigen presentation is a hard phenomenon to assess using our standard analytical techniques. Nevertheless, it is likely to have profound clinical significance and could well define whether an individual patient will respond to a particular type of therapy or not. In this review we consider the mechanisms by which HLA function may be lost in clinical disease, we assess the implications for current immunotherapy approaches using checkpoint inhibitors and examine the prognostic impact of HLA loss demonstrated in clinical trials so far. Finally, we propose strategies that might be explored for possible patient stratification.
Collapse
Affiliation(s)
- Ahmet Hazini
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Kerry Fisher
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Len Seymour
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| |
Collapse
|
5
|
Stephens AJ, Burgess-Brown NA, Jiang S. Beyond Just Peptide Antigens: The Complex World of Peptide-Based Cancer Vaccines. Front Immunol 2021; 12:696791. [PMID: 34276688 PMCID: PMC8279810 DOI: 10.3389/fimmu.2021.696791] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
Peptide-based cancer vaccines rely upon the strong activation of the adaptive immune response to elicit its effector function. They have shown to be highly specific and safe, but have yet to prove themselves as an efficacious treatment for cancer in the clinic. This is for a variety of reasons, including tumour heterogeneity, self-tolerance, and immune suppression. Importance has been placed on the overall design of peptide-based cancer vaccines, which have evolved from simple peptide derivatives of a cancer antigen, to complex drugs; incorporating overlapping regions, conjugates, and delivery systems to target and stimulate different components of antigen presenting cells, and to bolster antigen cross-presentation. Peptide-based cancer vaccines are increasingly becoming more personalised to an individual's tumour antigen repertoire and are often combined with existing cancer treatments. This strategy ultimately aids in combating the shortcomings of a more generalised vaccine strategy and provides a comprehensive treatment, taking into consideration cancer cell variability and its ability to avoid immune interrogation.
Collapse
Affiliation(s)
- Alexander J Stephens
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom.,Centre for Medicines Discovery, Nuffield Department of Medicine, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Nicola A Burgess-Brown
- Centre for Medicines Discovery, Nuffield Department of Medicine, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Shisong Jiang
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Duan Z, Ho M. T-Cell Receptor Mimic Antibodies for Cancer Immunotherapy. Mol Cancer Ther 2021; 20:1533-1541. [PMID: 34172530 DOI: 10.1158/1535-7163.mct-21-0115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/18/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022]
Abstract
Antibody-based immunotherapies show clinical effectiveness in various cancer types. However, the target repertoire is limited to surface or soluble antigens, which are a relatively small percentage of the cancer proteome. Most proteins of the human proteome are intracellular. Short peptides from intracellular targets can be presented by MHC class I (MHC-I) molecules on cell surface, making them potential targets for cancer immunotherapy. Antibodies can be developed to target these peptide/MHC complexes, similar to the recognition of such complexes by the T-cell receptor (TCR). These antibodies are referred to as T-cell receptor mimic (TCRm) or TCR-like antibodies. Ongoing preclinical and clinical studies will help us understand their mechanisms of action and selection of target epitopes for immunotherapy. The present review will summarize and discuss the selection of intracellular antigens, production of the peptide/MHC complexes, isolation of TCRm antibodies for therapeutic applications, limitations of TCRm antibodies, and possible ways to advance TCRm antibody-based approaches into the clinic.
Collapse
Affiliation(s)
- Zhijian Duan
- Antibody Engineering Program, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Mitchell Ho
- Antibody Engineering Program, Center for Cancer Research, NCI, NIH, Bethesda, Maryland. .,Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| |
Collapse
|
7
|
Algarra I, Garrido F, Garcia-Lora AM. MHC heterogeneity and response of metastases to immunotherapy. Cancer Metastasis Rev 2021; 40:501-517. [PMID: 33860434 DOI: 10.1007/s10555-021-09964-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/06/2021] [Indexed: 01/05/2023]
Abstract
In recent years, immunotherapy has proven to be an effective treatment against cancer. Cytotoxic T lymphocytes perform an important role in this anti-tumor immune response, recognizing cancer cells as foreign, through the presentation of tumor antigens by MHC class I molecules. However, tumors and metastases develop escape mechanisms for evading this immunosurveillance and may lose the expression of these polymorphic molecules to become invisible to cytotoxic T lymphocytes. In other situations, they may maintain MHC class I expression and promote immunosuppression of cytotoxic T lymphocytes. Therefore, the analysis of the expression of MHC class I molecules in tumors and metastases is important to elucidate these escape mechanisms. Moreover, it is necessary to determine the molecular mechanisms involved in these alterations to reverse them and recover the expression of MHC class I molecules on tumor cells. This review discusses the role and regulation of MHC class I expression in tumor progression. We focus on altered MHC class I phenotypes present in tumors and metastases, as well as the molecular mechanisms responsible for MHC-I alterations, emphasizing the mechanisms of recovery of the MHC class I molecules expression on cancer cells. The individualized study of the HLA class I phenotype of the tumor and the metastases of each patient will allow choosing the most appropriate immunotherapy treatment based on a personalized medicine.
Collapse
Affiliation(s)
- Ignacio Algarra
- Departamento de Ciencias de la Salud, Universidad de Jaén, Jaén, Spain
| | - Federico Garrido
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico, Hospital Universitario Virgen de las Nieves, Av. de las Fuerzas Armadas 2, 18014, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain.,Departamento de Bioquímica, Biología Molecular e Inmunología III, Universidad de Granada, Granada, Spain
| | - Angel M Garcia-Lora
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico, Hospital Universitario Virgen de las Nieves, Av. de las Fuerzas Armadas 2, 18014, Granada, Spain. .,Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain. .,Unidad de Biobanco, Hospital Universitario Virgen de las Nieves, Granada, Spain.
| |
Collapse
|
8
|
Shukla A, Cloutier M, Appiya Santharam M, Ramanathan S, Ilangumaran S. The MHC Class-I Transactivator NLRC5: Implications to Cancer Immunology and Potential Applications to Cancer Immunotherapy. Int J Mol Sci 2021; 22:ijms22041964. [PMID: 33671123 PMCID: PMC7922096 DOI: 10.3390/ijms22041964] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
The immune system constantly monitors the emergence of cancerous cells and eliminates them. CD8+ cytotoxic T lymphocytes (CTLs), which kill tumor cells and provide antitumor immunity, select their targets by recognizing tumor antigenic peptides presented by MHC class-I (MHC-I) molecules. Cancer cells circumvent immune surveillance using diverse strategies. A key mechanism of cancer immune evasion is downregulation of MHC-I and key proteins of the antigen processing and presentation machinery (APM). Even though impaired MHC-I expression in cancers is well-known, reversing the MHC-I defects remains the least advanced area of tumor immunology. The discoveries that NLRC5 is the key transcriptional activator of MHC-I and APM genes, and genetic lesions and epigenetic modifications of NLRC5 are the most common cause of MHC-I defects in cancers, have raised the hopes for restoring MHC-I expression. Here, we provide an overview of cancer immunity mediated by CD8+ T cells and the functions of NLRC5 in MHC-I antigen presentation pathways. We describe the impressive advances made in understanding the regulation of NLRC5 expression, the data supporting the antitumor functions of NLRC5 and a few reports that argue for a pro-tumorigenic role. Finally, we explore the possible avenues of exploiting NLRC5 for cancer immunotherapy.
Collapse
Affiliation(s)
- Akhil Shukla
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Maryse Cloutier
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Madanraj Appiya Santharam
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
- CRCHUS, Centre Hospitalier de l’Université de Sherbrooke, Sherbrooke, QC J1H5N4, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
- CRCHUS, Centre Hospitalier de l’Université de Sherbrooke, Sherbrooke, QC J1H5N4, Canada
- Correspondence: ; Tel.: +1-819-346-1110 (ext. 14834)
| |
Collapse
|
9
|
Mpakali A, Stratikos E. The Role of Antigen Processing and Presentation in Cancer and the Efficacy of Immune Checkpoint Inhibitor Immunotherapy. Cancers (Basel) 2021; 13:E134. [PMID: 33406696 PMCID: PMC7796214 DOI: 10.3390/cancers13010134] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
Recent clinical successes of cancer immunotherapy using immune checkpoint inhibitors (ICIs) are rapidly changing the landscape of cancer treatment. Regardless of initial impressive clinical results though, the therapeutic benefit of ICIs appears to be limited to a subset of patients and tumor types. Recent analyses have revealed that the potency of ICI therapies depends on the efficient presentation of tumor-specific antigens by cancer cells and professional antigen presenting cells. Here, we review current knowledge on the role of antigen presentation in cancer. We focus on intracellular antigen processing and presentation by Major Histocompatibility class I (MHCI) molecules and how it can affect cancer immune evasion. Finally, we discuss the pharmacological tractability of manipulating intracellular antigen processing as a complementary approach to enhance tumor immunogenicity and the effectiveness of ICI immunotherapy.
Collapse
Affiliation(s)
- Anastasia Mpakali
- National Centre for Scientific Research Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Efstratios Stratikos
- National Centre for Scientific Research Demokritos, Agia Paraskevi, 15341 Athens, Greece
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15784 Athens, Greece
| |
Collapse
|
10
|
MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. Cancers (Basel) 2020; 12:cancers12071760. [PMID: 32630675 PMCID: PMC7409324 DOI: 10.3390/cancers12071760] [Citation(s) in RCA: 241] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/18/2022] Open
Abstract
In recent years, major advances have been made in cancer immunotherapy. This has led to significant improvement in prognosis of cancer patients, especially in the hematological setting. Nonetheless, translation of these successes to solid tumors was found difficult. One major mechanism through which solid tumors can avoid anti-tumor immunity is the downregulation of major histocompatibility complex class I (MHC-I), which causes reduced recognition by- and cytotoxicity of CD8+ T-cells. Downregulation of MHC-I has been described in 40-90% of human tumors, often correlating with worse prognosis. Epigenetic and (post-)transcriptional dysregulations relevant in the stabilization of NFkB, IRFs, and NLRC5 are often responsible for MHC-I downregulation in cancer. The intrinsic reversible nature of these dysregulations provides an opportunity to restore MHC-I expression and facilitate adaptive anti-tumor immunity. In this review, we provide an overview of the mechanisms underlying reversible MHC-I downregulation and describe potential strategies to counteract this reduction in MHC-I antigen presentation in cancer.
Collapse
|
11
|
Pulido M, Chamorro V, Romero I, Algarra I, S-Montalvo A, Collado A, Garrido F, Garcia-Lora AM. Restoration of MHC-I on Tumor Cells by Fhit Transfection Promotes Immune Rejection and Acts as an Individualized Immunotherapeutic Vaccine. Cancers (Basel) 2020; 12:E1563. [PMID: 32545680 PMCID: PMC7352176 DOI: 10.3390/cancers12061563] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022] Open
Abstract
The capacity of cytotoxic-T lymphocytes to recognize and destroy tumor cells depends on the surface expression by tumor cells of MHC class I molecules loaded with tumor antigen peptides. Loss of MHC-I expression is the most frequent mechanism by which tumor cells evade the immune response. The restoration of MHC-I expression in cancer cells is crucial to enhance their immune destruction, especially in response to cancer immunotherapy. Using mouse models, we recovered MHC-I expression in the MHC-I negative tumor cell lines and analyzed their oncological and immunological profile. Fhit gene transfection induces the restoration of MHC-I expression in highly oncogenic MHC-I-negative murine tumor cell lines and genes of the IFN-γ transduction signal pathway are involved. Fhit-transfected tumor cells proved highly immunogenic, being rejected by a T lymphocyte-mediated immune response. Strikingly, this immune rejection was more frequent in females than in males. The immune response generated protected hosts against the tumor growth of non-transfected cells and against other tumor cells in our murine tumor model. Finally, we also observed a direct correlation between FHIT expression and HLA-I surface expression in human breast tumors. Recovery of Fhit expression on MHC class I negative tumor cells may be a useful immunotherapeutic strategy and may even act as an individualized immunotherapeutic vaccine.
Collapse
Grants
- 15-1166 Worldwide Cancer Research
- PI12/02031, PI14/01978, PI15/00528, PI17/00197, PI19/01179, PT13/0010/0039 and PT17/0015/0041 Instituto de Salud Carlos III
- Group CTS-143, CTS-3952, CVI-4740 grants Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía
Collapse
Affiliation(s)
- María Pulido
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico, Hospital Universitario Virgen de las Nieves, Av. de las Fuerzas Armadas 2, 18014 Granada, Spain; (M.P.); (V.C.); (A.S.-M.); (F.G.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Virginia Chamorro
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico, Hospital Universitario Virgen de las Nieves, Av. de las Fuerzas Armadas 2, 18014 Granada, Spain; (M.P.); (V.C.); (A.S.-M.); (F.G.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Irene Romero
- UGC Laboratorios, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Ignacio Algarra
- Departamento de Ciencias de la Salud, Universidad de Jaén, 23071 Jaén, Spain;
| | - Alba S-Montalvo
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico, Hospital Universitario Virgen de las Nieves, Av. de las Fuerzas Armadas 2, 18014 Granada, Spain; (M.P.); (V.C.); (A.S.-M.); (F.G.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Antonia Collado
- Unidad de Biobanco, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain;
| | - Federico Garrido
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico, Hospital Universitario Virgen de las Nieves, Av. de las Fuerzas Armadas 2, 18014 Granada, Spain; (M.P.); (V.C.); (A.S.-M.); (F.G.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Departamento de Bioquímica, Biología Molecular e Inmunología III, Universidad de Granada, 18071 Granada, Spain
| | - Angel M. Garcia-Lora
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico, Hospital Universitario Virgen de las Nieves, Av. de las Fuerzas Armadas 2, 18014 Granada, Spain; (M.P.); (V.C.); (A.S.-M.); (F.G.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
12
|
Tendeiro Rego R, Morris EC, Lowdell MW. T-cell receptor gene-modified cells: past promises, present methodologies and future challenges. Cytotherapy 2019; 21:341-357. [PMID: 30655164 DOI: 10.1016/j.jcyt.2018.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/13/2022]
Abstract
Immunotherapy constitutes an exciting and rapidly evolving field, and the demonstration that genetically modified T-cell receptors (TCRs) can be used to produce T-lymphocyte populations of desired specificity offers new opportunities for antigen-specific T-cell therapy. Overall, TCR-modified T cells have the ability to target a wide variety of self and non-self targets through the normal biology of a T cell. Although major histocompatibility complex (MHC)-restricted and dependent on co-receptors, genetically engineered TCRs still present a number of characteristics that ensure they are an important alternative strategy to chimeric antigen receptors (CARs), and high-affinity TCRs can now be successfully engineered with the potential to enhance therapeutic efficacy while minimizing adverse events. This review will focus on the main characteristics of TCR gene-modified cells, their potential clinical application and promise to the field of adoptive cell transfer (ACT), basic manufacturing procedures and characterization protocols and overall challenges that need to be overcome so that redirection of TCR specificity may be successfully translated into clinical practice, beyond early-phase clinical trials.
Collapse
Affiliation(s)
- Rita Tendeiro Rego
- UCL Institute of Immunity and Transplantation, London, UK; Centre for Cell, Gene & Tissue Therapeutics, Royal Free London NHS Foundation Trust, London, UK
| | - Emma C Morris
- UCL Institute of Immunity and Transplantation, London, UK
| | - Mark W Lowdell
- UCL Cancer Institute, Department of Haematology, London, UK
| |
Collapse
|
13
|
Abstract
In this chapter I describe Tumour Immune Escape mechanisms associated with MHC/HLA class I loss in human and experimental tumours. Different altered HLA class-I phenotypes can be observed that are produced by different molecular mechanisms. Experimental and histological evidences are summarized indicating that at the early stages of tumour development there is an enormous variety of tumour clones with different MHC class I expression patterns. This phase is followed by a strong T cell mediated immune-selection of MHC/HLA class-I negative tumour cells in the primary tumour lesion. This transition period results in a formation of a tumour composed only of HLA-class I negative cells. An updated description of this process observed in a large variety of human tumors is included. In the second section I focus on MHC/HLA class I alterations observed in mouse and human metastases, and describe the generation of different tumor cell clones with altered MHC class I phenotypes, which could be similar or different from the original tumor clone. The biological and immunological relevance of these observations is discussed. Finally, the interesting phenomenon of metastatic dormancy is analyzed in association with a particular MHC class I negative tumor phenotype.
Collapse
Affiliation(s)
- Federico Garrido
- Departamento de Analisis Clinicos e Inmunologia, Hospital Universitario Virgen de las Nieves, Facultad de Medicina, Universidad de Granada, Granada, Spain
| |
Collapse
|
14
|
Garrido F. HLA Class-I Expression and Cancer Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1151:79-90. [PMID: 31140107 DOI: 10.1007/978-3-030-17864-2_3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The impact of HLA class I loss in cancer immunotherapy is carefully analyzed. Why some metastatic lesions regress and other progress after immunotherapy? Are T lymphocytes responsible for tumour rejection and how these responses can be boosted? These questions are discussed in the context of the molecular mechanisms responsible for MHC/HLA class I alterations. If the metastatic tumour cells harbor "irreversible/hard" HLA lesions, they will escape and kill the host. In contrast, if the molecular lesion is "reversible/soft", tumor cells can potentially recover HLA-class I expression and can finally be destroyed. These important new concepts are integrated together and gain a great importance in the new era of "immune checkpoint antibodies". Finally, the ability to recover HLA-I expression in tumours harboring "structural-irreversible-hard" genetic lesions is seen as a challenge for the future investigation.
Collapse
Affiliation(s)
- Federico Garrido
- Departamento de Analisis Clinicos e Inmunologia, Hospital Universitario Virgen de las Nieves, Facultad de Medicina, Universidad de Granada, Granada, Spain
| |
Collapse
|
15
|
Aptsiauri N, Ruiz-Cabello F, Garrido F. The transition from HLA-I positive to HLA-I negative primary tumors: the road to escape from T-cell responses. Curr Opin Immunol 2018; 51:123-132. [PMID: 29567511 DOI: 10.1016/j.coi.2018.03.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/29/2018] [Accepted: 03/01/2018] [Indexed: 12/29/2022]
Abstract
MHC/HLA class I loss in cancer is one of the main mechanisms of tumor immune escape from T-cell recognition and destruction. Tumor infiltration by T lymphocytes (TILs) and by other immune cells was first described many years ago, but has never been directly and clearly linked to the destruction of HLA-I positive and selection of HLA-I negative tumor cells. The degree and the pattern of lymphocyte infiltration in a tumor nest may depend on antigenicity and the developmental stages of the tumors. In addition, it is becoming evident that HLA-I expression and tumor infiltration have a direct correlation with tumor tissue reorganization. We observed that at early stages (permissive Phase I) tumors are heterogeneous, with both HLA-I positive and HLA-negative cancer cells, and are infiltrated by TILs and M1 macrophages as a part of an active anti-tumor Th1 response. At later stages (encapsulated Phase II), tumor nests are mostly HLA-I negative with immune cells residing in the peri-tumoral stroma, which forms a granuloma-like encapsulated tissue structure. All these tumor characteristics, including tumor HLA-I expression pattern, have an important clinical prognostic value and should be closely and routinely investigated in different types of cancer by immunologists and by pathologists. In this review we summarize our current viewpoint about the alterations in HLA-I expression in cancer and discuss how, when and why tumor HLA-I losses occur. We also provide evidence for the negative impact of tumor HLA-I loss in current cancer immunotherapies, with the focus on reversible ('soft') and irreversible ('hard') HLA-I defects.
Collapse
Affiliation(s)
- Natalia Aptsiauri
- Instituto de Investigacion Biosanitaria ibs, 18014 Granada, Spain; Departamento de Bioquimica, Biologia Molecular e Inmunologia III, Facultad de Medicina, Universidad de Granada, Spain
| | - Francisco Ruiz-Cabello
- Servicio de Analisis Clinicos e Inmunologia, UGC Laboratorio Clinico, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain; Instituto de Investigacion Biosanitaria ibs, 18014 Granada, Spain; Departamento de Bioquimica, Biologia Molecular e Inmunologia III, Facultad de Medicina, Universidad de Granada, Spain
| | - Federico Garrido
- Servicio de Analisis Clinicos e Inmunologia, UGC Laboratorio Clinico, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain; Instituto de Investigacion Biosanitaria ibs, 18014 Granada, Spain; Departamento de Bioquimica, Biologia Molecular e Inmunologia III, Facultad de Medicina, Universidad de Granada, Spain.
| |
Collapse
|
16
|
Romero I, Garrido C, Algarra I, Chamorro V, Collado A, Garrido F, Garcia-Lora AM. MHC Intratumoral Heterogeneity May Predict Cancer Progression and Response to Immunotherapy. Front Immunol 2018; 9:102. [PMID: 29434605 PMCID: PMC5796886 DOI: 10.3389/fimmu.2018.00102] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 01/12/2018] [Indexed: 12/12/2022] Open
Abstract
An individual tumor can present intratumoral phenotypic heterogeneity, containing tumor cells with different phenotypes that do not present irreversible genetic alterations. We have developed a mouse cancer model, named GR9, derived from a methylcholanthrene-induced fibrosarcoma that was adapted to tissue culture and cloned into different tumor cell lines. The clones showed diverse MHC-I phenotypes, ranging from highly positive to weakly positive MHC-I expression. These MHC-I alterations are due to reversible molecular mechanisms, because surface MHC-I could be recovered by IFN-γ treatment. Cell clones with high MHC-I expression demonstrated low local oncogenicity and high spontaneous metastatic capacity, whereas MHC-I-low clones showed high local oncogenicity and no spontaneous metastatic capacity. Although MHC-I-low clones did not metastasize, they produced MHC-I-positive dormant micrometastases controlled by the host immune system, i.e., in a state of immunodormancy. The metastatic capacity of each clone was directly correlated with the host T-cell subpopulations; thus, a strong decrease in cytotoxic and helper T lymphocytes was observed in mice with numerous metastases derived from MHC-I positive tumor clones but a strong increase was observed in those with dormant micrometastases. Immunotherapy was administered to the hosts after excision of the primary tumor, producing a recovery in their immune status and leading to the complete eradication of overt spontaneous metastases or their decrease. According to these findings, the combination of MHC-I surface expression in primary tumor and metastases with host T-cell subsets may be a decisive indicator of the clinical outcome and response to immunotherapy in metastatic disease, allowing the identification of responders to this approach.
Collapse
Affiliation(s)
- Irene Romero
- UGC Laboratorios, Complejo Hospitalario de Jaén, Jaén, Spain
| | - Cristina Garrido
- Departamento de Bioquímica, Biología Molecular e Inmunología III, Universidad de Granada, Granada, Spain
| | - Ignacio Algarra
- Departamento de Ciencias de la Salud, Universidad de Jaén, Jaén, Spain
| | - Virginia Chamorro
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico, Hospital Universitario Virgen de las Nieves, Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
| | - Antonia Collado
- Unidad de Biobanco, Hospital Universitario Virgen de las Nieves, Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
| | - Federico Garrido
- Departamento de Bioquímica, Biología Molecular e Inmunología III, Universidad de Granada, Granada, Spain.,Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico, Hospital Universitario Virgen de las Nieves, Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
| | - Angel M Garcia-Lora
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico, Hospital Universitario Virgen de las Nieves, Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
| |
Collapse
|
17
|
Zheng HC, Liu LL. FHIT down-regulation was inversely linked to aggressive behaviors and adverse prognosis of gastric cancer: a meta- and bioinformatics analysis. Oncotarget 2017; 8:108261-108273. [PMID: 29296239 PMCID: PMC5746141 DOI: 10.18632/oncotarget.22369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/03/2017] [Indexed: 11/25/2022] Open
Abstract
FHIT (fragile histine triad) acts as diadenosine P1, P3-bis (5'-adenosyl)-triphosphate adenylohydrolase involved in purine metabolism, and induces apoptosis as a tumor suppressor. We performed a systematic meta- and bioinformatics analysis through multiple online databases up to March 14, 2017. The down-regulated FHIT expression was found in gastric cancer, compared with normal mucosa and dysplasia (p < 0.05). FHIT expression was negatively with depth of invasion, lymph node metastasis, distant metastasis, TNM staging and dedifferentiation of gastric cancer (p < 0.05). A positive association between FHIT expression and favorable overall survival was found in patients with gastric cancer (p < 0.05). According to Kaplan-Meier plotter, we found that a higher FHIT expression was negatively correlated with overall and progression-free survival rates of all cancer patients, even stratified by aggressive parameters (p < 0.05). These findings indicated that FHIT expression might be employed as a potential marker to indicate gastric carcinogenesis and subsequent progression, even prognosis.
Collapse
Affiliation(s)
- Hua-Chuan Zheng
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Li-Li Liu
- Department of Pathology, Harbin Medical University-Daqing, Daqing 163319, China
| |
Collapse
|
18
|
Garrido G, Rabasa A, Garrido C, Chao L, Garrido F, García-Lora ÁM, Sánchez-Ramírez B. Upregulation of HLA Class I Expression on Tumor Cells by the Anti-EGFR Antibody Nimotuzumab. Front Pharmacol 2017; 8:595. [PMID: 29056908 PMCID: PMC5635422 DOI: 10.3389/fphar.2017.00595] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/17/2017] [Indexed: 12/21/2022] Open
Abstract
Defining how epidermal growth factor receptor (EGFR)-targeting therapies influence the immune response is essential to increase their clinical efficacy. A growing emphasis is being placed on immune regulator genes that govern tumor – T cell interactions. Previous studies showed an increase in HLA class I cell surface expression in tumor cell lines treated with anti-EGFR agents. In particular, earlier studies of the anti-EGFR blocking antibody cetuximab, have suggested that increased tumor expression of HLA class I is associated with positive clinical response. We investigated the effect of another commercially available anti-EGFR antibody nimotuzumab on HLA class I expression in tumor cell lines. We observed, for the first time, that nimotuzumab increases HLA class I expression and its effect is associated with a coordinated increase in mRNA levels of the principal antigen processing and presentation components. Moreover, using 7A7 (a specific surrogate antibody against murine EGFR), we obtained results suggesting the importance of the increased MHC-I expression induced by EGFR-targeted therapies display higher in antitumor immune response. 7A7 therapy induced upregulation of tumor MHC-I expression in vivo and tumors treated with this antibody display higher susceptibility to CD8+ T cells-mediated lysis. Our results represent the first evidence suggesting the importance of the adaptive immunity in nimotuzumab-mediated antitumor activity. More experiments should be conducted in order to elucidate the relevance of this mechanism in cancer patients. This novel immune-related antitumor mechanism mediated by nimotuzumab opens new perspectives for its combination with various immunotherapeutic agents and cancer vaccines.
Collapse
Affiliation(s)
- Greta Garrido
- Tumor Immunology Direction, Molecular Immunology Institute, Center of Molecular Immunology, Havana, Cuba
| | - Ailem Rabasa
- Tumor Immunology Direction, Molecular Immunology Institute, Center of Molecular Immunology, Havana, Cuba
| | - Cristina Garrido
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, Granada, Spain.,Departamento de Bioquímica, Biología Molecular e Inmunología III, Universidad de Granada, Granada, Spain
| | - Lisset Chao
- Tumor Immunology Direction, Molecular Immunology Institute, Center of Molecular Immunology, Havana, Cuba
| | - Federico Garrido
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, Granada, Spain.,Departamento de Bioquímica, Biología Molecular e Inmunología III, Universidad de Granada, Granada, Spain
| | - Ángel M García-Lora
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Belinda Sánchez-Ramírez
- Tumor Immunology Direction, Molecular Immunology Institute, Center of Molecular Immunology, Havana, Cuba
| |
Collapse
|
19
|
Seliger B. Molecular mechanisms of HLA class I-mediated immune evasion of human tumors and their role in resistance to immunotherapies. HLA 2016; 88:213-220. [PMID: 27659281 DOI: 10.1111/tan.12898] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 08/30/2016] [Indexed: 12/13/2022]
Abstract
Although the human immune system can recognize and eradicate tumor cells, tumors have also been shown to develop different strategies to escape immune surveillance, which has been described for the first time in different mouse models. The evasion of immune recognition was often associated with a poor prognosis and reduced survival of patients. During the last years the molecular mechanisms, which protect tumor cells from this immune attack, have been identified and appear to be more complex than initially expected. However, next to the composition of cellular, soluble and physical components of the tumor microenvironment, the tumor cells changes to limit immune responses. Of particular importance are classical and non-classical human leukocyte antigen (HLA) class I antigens, which often showed a deregulated expression in cancers of distinct origin. Furthermore, HLA class I abnormalities were linked to defects in the interferon signaling, which have both been shown to be essential for mounting immune responses and are involved in resistances to T cell-based immunotherapies. Therefore this review summarizes the expression, regulation, function and clinical relevance of HLA class I antigens in association with the interferon signal transduction pathway and its role in adaptive resistances to immunotherapies.
Collapse
Affiliation(s)
- B Seliger
- Institute of Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle, Germany.
| |
Collapse
|
20
|
Wu X, Wu G, Yao X, Hou G, Jiang F. The clinicopathological significance and ethnic difference of FHIT hypermethylation in non-small-cell lung carcinoma: a meta-analysis and literature review. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:699-709. [PMID: 26929601 PMCID: PMC4760666 DOI: 10.2147/dddt.s85253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Emerging evidence indicates that FHIT is a candidate tumor suppressor in many types of tumors including non-small-cell lung carcinoma (NSCLC). However, the prognostic value and correlation between FHIT hypermethylation and clinicopathological characteristics of NSCLC remains unclear. In this report, we performed a meta-analysis to evaluate the effects of FHIT hypermethylation on the incidence of NSCLC and clinicopathological characteristics of human NSCLC patients. Final analysis of 1,801 NSCLC patients from 18 eligible studies was performed. FHIT hypermethylation was found to be significantly higher in NSCLC than in normal lung tissue. The pooled odds ratio (OR) from ten studies included 819 NSCLC and 792 normal lung tissues (OR =7.51, 95% confidence interval [CI] =2.98-18.91, P<0.0001). Subgroup analysis based on ethnicity implied that FHIT hypermethylation level was higher in NSCLC tissues than in normal tissues in both Caucasians (P=0.02) and Asians (P<0.0001), indicating that the difference in Asians was much more significant. FHIT hypermethylation was also correlated with sex status, smoking status, as well as pathological types. In addition, patients with FHIT hypermethylation had a lower survival rate than those without (hazard ratio =1.73, 95% CI =1.10-2.71, P=0.02). The results of this meta-analysis suggest that FHIT hypermethylation is associated with an increased risk and poor survival in NSCLC patients. FHIT hypermethylation, which induces the inactivation of FHIT gene, plays an important role in the carcinogenesis and clinical outcome and may serve as a potential diagnostic marker and drug target of NSCLC.
Collapse
Affiliation(s)
- Xiaoyu Wu
- Department of Surgical Oncology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, People's Republic of China
| | - Guannan Wu
- Department of Surgical Oncology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, People's Republic of China
| | - Xuequan Yao
- Department of Surgical Oncology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, People's Republic of China
| | - Gang Hou
- Department of Respiratory Medicine, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Feng Jiang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
21
|
The clinicopathological significance of FHIT hypermethylation in non-small cell lung cancer, a meta-analysis and literature review. Sci Rep 2016; 6:19303. [PMID: 26796853 PMCID: PMC4726317 DOI: 10.1038/srep19303] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 11/18/2015] [Indexed: 12/17/2022] Open
Abstract
Emerging evidence indicates that FHIT is a candidate tumor suppressor in non-small cell lung cancer (NSCLC). However, the correlation between FHIT hypermethylation and clinicopathological characteristics of NSCLC remains unclear. Thus, we conducted a meta-analysis to quantitatively evaluate the effects of FHIT hypermethylation on the incidence of NSCLC and clinicopathological characteristics. Final analysis of 1717 NSCLC patients from 16 eligible studies was performed. FHIT hypermethylation was found to be significantly higher in NSCLC than in normal lung tissue, the pooled OR from 8 studies including 735 NSCLC and 708 normal lung tissue, OR = 5.45, 95% CI = 2.15-13.79, p = 0.0003. FHIT hypermethylation was also correlated with sex status, smoking status, as well as pathological types. We did not find that FHIT hypermethylation was correlated with the differentiated types or clinical stages in NSCLC patients. However, patients with FHIT hypermethylation had a lower survival rate than those without, HR = 1.73, 95% CI = 1.10-2.71, p = 0.02. The results of this meta-analysis suggest that FHIT hypermethylation is associated with an increased risk and worsen survival in NSCLC patients. FHIT hypermethylation, which induces the inactivation of FHIT gene, plays an important role in the carcinogenesis and clinical outcome and may serve as a potential drug target of NSCLC.
Collapse
|
22
|
Garrido F, Aptsiauri N, Doorduijn EM, Garcia Lora AM, van Hall T. The urgent need to recover MHC class I in cancers for effective immunotherapy. Curr Opin Immunol 2016; 39:44-51. [PMID: 26796069 PMCID: PMC5138279 DOI: 10.1016/j.coi.2015.12.007] [Citation(s) in RCA: 429] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/04/2015] [Accepted: 12/28/2015] [Indexed: 02/08/2023]
Abstract
Tumor immune escape compromises the efficacy of cancer immunotherapy. Loss of MHC class I expression is a frequent event in cancer cells. Three tumor phenotypes determine cancer fate: escape, rejection and dormancy. Recovery of MHC class I expression is required to improve cancer immunotherapy.
Immune escape strategies aimed to avoid T-cell recognition, including the loss of tumor MHC class I expression, are commonly found in malignant cells. Tumor immune escape has proven to have a negative effect on the clinical outcome of cancer immunotherapy, including treatment with antibodies blocking immune checkpoint molecules. Hence, there is an urgent need to develop novel approaches to overcome tumor immune evasion. MHC class I antigen presentation is often affected in human cancers and the capacity to induce upregulation of MHC class I cell surface expression is a critical step in the induction of tumor rejection. This review focuses on characterization of rejection, escape, and dormant profiles of tumors and its microenvironment with a special emphasis on the tumor MHC class I expression. We also discuss possible approaches to recover MHC class I expression on tumor cells harboring reversible/‘soft’ or irreversible/‘hard’ genetic lesions. Such MHC class I recovery approaches might well synergize with complementary forms of immunotherapy.
Collapse
Affiliation(s)
- Federico Garrido
- Departamento de Bioquimica, Biologia Molecular III e Inmunologia, Facultad de Medicina, Universidad de Granada, Granada, Spain; Servicio de Análisis Clínicos, UGC de Laboratorio Clínico, Hospital Universitario Virgen de las Nieves, Granada, Spain; Instituto de Investigacion Biosanitaria de Granada (IBS.Granada), Granada, Spain.
| | - Natalia Aptsiauri
- Servicio de Análisis Clínicos, UGC de Laboratorio Clínico, Hospital Universitario Virgen de las Nieves, Granada, Spain; Instituto de Investigacion Biosanitaria de Granada (IBS.Granada), Granada, Spain
| | - Elien M Doorduijn
- Clinical Oncology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Angel M Garcia Lora
- Servicio de Análisis Clínicos, UGC de Laboratorio Clínico, Hospital Universitario Virgen de las Nieves, Granada, Spain; Instituto de Investigacion Biosanitaria de Granada (IBS.Granada), Granada, Spain
| | - Thorbald van Hall
- Clinical Oncology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
23
|
High Prevalence and Clinical Relevance of Genes Affected by Chromosomal Breaks in Colorectal Cancer. PLoS One 2015; 10:e0138141. [PMID: 26375816 PMCID: PMC4574474 DOI: 10.1371/journal.pone.0138141] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 08/25/2015] [Indexed: 01/24/2023] Open
Abstract
Background Cancer is caused by somatic DNA alterations such as gene point mutations, DNA copy number aberrations (CNA) and structural variants (SVs). Genome-wide analyses of SVs in large sample series with well-documented clinical information are still scarce. Consequently, the impact of SVs on carcinogenesis and patient outcome remains poorly understood. This study aimed to perform a systematic analysis of genes that are affected by CNA-associated chromosomal breaks in colorectal cancer (CRC) and to determine the clinical relevance of recurrent breakpoint genes. Methods Primary CRC samples of patients with metastatic disease from CAIRO and CAIRO2 clinical trials were previously characterized by array-comparative genomic hybridization. These data were now used to determine the prevalence of CNA-associated chromosomal breaks within genes across 352 CRC samples. In addition, mutation status of the commonly affected APC, TP53, KRAS, PIK3CA, FBXW7, SMAD4, BRAF and NRAS genes was determined for 204 CRC samples by targeted massive parallel sequencing. Clinical relevance was assessed upon stratification of patients based on gene mutations and gene breakpoints that were observed in >3% of CRC cases. Results In total, 748 genes were identified that were recurrently affected by chromosomal breaks (FDR <0.1). MACROD2 was affected in 41% of CRC samples and another 169 genes showed breakpoints in >3% of cases, indicating that prevalence of gene breakpoints is comparable to the prevalence of well-known gene point mutations. Patient stratification based on gene breakpoints and point mutations revealed one CRC subtype with very poor prognosis. Conclusions We conclude that CNA-associated chromosomal breaks within genes represent a highly prevalent and clinically relevant subset of SVs in CRC.
Collapse
|
24
|
Yuan X, Li W, Cui Y, Zhan Q, Zhang C, Yang Z, Li X, Li S, Guan Q, Sun X. Specific cellular immune response elicited by the necrotic tumor cell-stimulated macrophages. Int Immunopharmacol 2015; 27:171-6. [PMID: 25981111 DOI: 10.1016/j.intimp.2015.04.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To determine whether the necrotic tumor cell-stimulated macrophages (NTCSM) could elicit specific immune response. METHODS Mice were immunized with the necrotic H22 tumor cell lysate-stimulated macrophages and the specific immune responses against the same tumor challenge were examined. The morphologic characteristics were observed with the transmission electron microscope and scanning electron microscopy. The expression of CD14, CD68, CD80 and CD86 were detected with the flow cytometer. The cytotoxicity and cytokine production of splenocytes were measured with the MTT assay and ELISA assay respectively. RESULTS Our research results reveal that NTCSMs are larger cells which generally generate spherical and elongated protrusions, folding membrane, and vesicles on their surface. Also, abundant lysosomes, secondary lysosomes, phagosomes, rough endoplasmic reticulum, and lipid bodies were found in their cytoplasm. The flow cytometry results show that the necrotic H22 tumor cell lysate could enhance the expression of CD14 and CD86 molecules and the NTCSM was characterized by the expression of CD14+/-CD68+CD80-CD86+. After the mice were vaccinated with NTCSMs, the tumor forming rate, tumor volume and weight of the NTCSM-vaccinated group were significantly lower than those of the sterile saline-injected group and untreated macrophage-vaccinated group (p<0.05). The cytotoxicity to H22 tumor cells of the splenocytes obtained from the NTCSM-immunized group was higher than that of the sterile saline-injected group and untreated macrophage-vaccinated group (p<0.05). Meanwhile, the levels of IL-2 and IFN-γ in the culture supernatant of the NTCSM-immunized group were higher significantly than those of the saline-injected group and untreated macrophage-vaccinated group. The level of IL-4 of the NTCSM-immunized group was significantly lower than those of the other two groups. CONCLUSION Our results indicated that NTCSMs could elicit specific cellular immune responses in vivo.
Collapse
Affiliation(s)
- Xiaolin Yuan
- Affiliated Hospital of Dalian University, Dalian 116001, PR China.
| | - Weina Li
- The Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150001, PR China
| | - Yifen Cui
- Affiliated Hospital of Dalian University, Dalian 116001, PR China
| | - Qing Zhan
- Affiliated Hospital of Dalian University, Dalian 116001, PR China
| | - Chunlei Zhang
- Affiliated Hospital of Dalian University, Dalian 116001, PR China
| | - Zhen Yang
- Affiliated Hospital of Dalian University, Dalian 116001, PR China
| | - Xiaohuan Li
- Affiliated Hospital of Dalian University, Dalian 116001, PR China
| | - Shengfan Li
- Affiliated Hospital of Dalian University, Dalian 116001, PR China
| | - Qinglin Guan
- Affiliated Hospital of Dalian University, Dalian 116001, PR China
| | - Xiuyan Sun
- Affiliated Hospital of Dalian University, Dalian 116001, PR China
| |
Collapse
|
25
|
Garrido F, Romero I, Aptsiauri N, Garcia-Lora AM. Generation of MHC class I diversity in primary tumors and selection of the malignant phenotype. Int J Cancer 2014; 138:271-80. [PMID: 25471439 DOI: 10.1002/ijc.29375] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/26/2014] [Indexed: 12/12/2022]
Abstract
Intratumor heterogeneity among cancer cells is promoted by reversible or irreversible genetic alterations and by different microenvironmental factors. There is considerable experimental evidence of the presence of a variety of malignant cell clones with a wide diversity of major histocompatibility class I (MHC-I) expression during early stages of tumor development. This variety of MHC-I phenotypes may define the evolution of a particular tumor. Loss of MHC-I molecules frequently results in immune escape of MHC-negative or -deficient tumor cells from the host T cell-mediated immune response. We review here the results obtained by our group and other researchers in animal models and humans, showing how MHC-I intratumor heterogeneity may affect local oncogenicity and metastatic progression. In particular, we summarize the data obtained in an experimental mouse cancer model of a methylcholanthrene-induced fibrosarcoma (GR9), in which isolated clones with different MHC-I expression patterns demonstrated distinct local tumor growth rates and metastatic capacities. The observed "explosion of diversity" of MHC-I phenotypes in primary tumor clones and the molecular mechanism ("hard"/irreversible or "soft"/reversible) responsible for a given MHC-I alteration might determine not only the metastatic capacity of the cells but also their response to immunotherapy. We also illustrate the generation of further MHC heterogeneity during metastatic colonization and discuss different strategies to favor tumor rejection by counteracting MHC-I loss. Finally, we highlight the role of MHC-I genes in tumor dormancy and cell cycle control.
Collapse
Affiliation(s)
- Federico Garrido
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico; Hospital Universitario Virgen de las Nieves, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain.,Departamento de Bioquímica, Biología Molecular e Inmunología III, Universidad de Granada, Granada, Spain
| | - Irene Romero
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico; Hospital Universitario Virgen de las Nieves, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
| | - Natalia Aptsiauri
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico; Hospital Universitario Virgen de las Nieves, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
| | - Angel M Garcia-Lora
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico; Hospital Universitario Virgen de las Nieves, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
| |
Collapse
|
26
|
Romero I, Garrido F, Garcia-Lora AM. Metastases in immune-mediated dormancy: a new opportunity for targeting cancer. Cancer Res 2014; 74:6750-7. [PMID: 25411345 DOI: 10.1158/0008-5472.can-14-2406] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of any anticancer treatment is to avoid, control, or eliminate disseminated tumor cells. Clinical and experimental evidence has revealed that metastases can remain in a latency state, that is, metastasis dormancy. Three mechanisms are thought to be involved in cancer dormancy: cellular dormancy, angiogenic dormancy, and immune-mediated dormancy. Here, we review the mechanisms and cells involved in immune-mediated cancer dormancy and discuss current and future immunotherapeutic strategies. Recent results indicate that the immune system can restrain disseminated cancer cells, promoting their permanent dormancy. CD8(+) T lymphocytes play a relevant role in maintaining immune equilibrium with metastatic dormant cells, and MHC class I surface expression on tumor cells may also be involved. Natural killer (NK) cells have an activator function that triggers a cytotoxic T lymphocyte (CTL) response. Furthermore, immune dormancy promotes cancer cell growth arrest and angiogenic control. Immunotherapeutic interventions in metastatic dormancy may help to control or eradicate cancer disease. Treatments that activate or increase the CTL immune response or reverse cancer cell-induced CTL immunosuppression might be useful to restrain or destroy metastatic cells. These objectives may be achieved by recovering or increasing MHC class I surface expression on cancer cells or even by activating NK cells. Immune-mediated metastasis dormancy provides an opportunity for targeting cancer in novel immune treatments.
Collapse
Affiliation(s)
- Irene Romero
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico Hospital Universitario Virgen de las Nieves, Granada, Spain. Instituto de Investigación Biosanitaria ibs., Granada, Spain
| | - Federico Garrido
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico Hospital Universitario Virgen de las Nieves, Granada, Spain. Instituto de Investigación Biosanitaria ibs., Granada, Spain. Departamento de Bioquímica, Biología Molecular e Inmunología III, Universidad de Granada, Granada, Spain
| | - Angel M Garcia-Lora
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico Hospital Universitario Virgen de las Nieves, Granada, Spain. Instituto de Investigación Biosanitaria ibs., Granada, Spain.
| |
Collapse
|
27
|
Class II transactivator-induced MHC class II expression in pancreatic cancer cells leads to tumor rejection and a specific antitumor memory response. Pancreas 2014; 43:1066-72. [PMID: 24987872 DOI: 10.1097/mpa.0000000000000160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The loss of major histocompatibility complex (MHC) classes I and II is a well-known mechanism by which cancer cells are able to escape from immune recognition. In this study, we analyzed the expression of antigen processing and presenting molecules in 2 cell lines derived from mouse models of pancreatic ductal adenocarcinoma (PDA) and the effects of the re-expression of MHC class II on PDA rejection. METHODS The PDA cell lines were analyzed for the expression of MHC class I, II, and antigen-processing molecules by flow cytometry or polymerase chain reaction. We generated stable PDA-MHC class II transactivator (CIITA) cells and injected them into syngeneic mice. The CD4 and CD8 T-cell role was analyzed in vitro and in vivo. RESULTS Murine PDA cell lines were negative for MHC and antigen-processing molecules, but their expression was restored by exogenous interferon-γ. CIITA-tumor cells were rejected in 80% to 100% of injected mice, which also developed long-lasting immune memory. In vitro assays and immunohistochemical analyses revealed the recruitment of T effector cells and CD8 T cells into the tumor area. CONCLUSIONS Overall, these data confirm that immunotherapy is a feasible therapeutic approach to recognize and target an aggressive cancer such as PDA.
Collapse
|
28
|
Romero I, Garrido F, Garcia-Lora AM. A novel preclinical murine model of immune-mediated metastatic dormancy. Oncoimmunology 2014; 3:e29258. [PMID: 25083338 PMCID: PMC4108459 DOI: 10.4161/onci.29258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 05/16/2014] [Indexed: 01/06/2023] Open
Abstract
The mechanisms underlying cancer dormancy are poorly understood. We have developed a preclinical murine model in which immunosurveillance restrains spontaneous metastases in permanent dormancy. The model faithfully recapitulates human metastatic dormancy and may be useful to decipher the immune mechanisms constraining disease progression, thereby facilitating the development of novel immunotherapeutic approaches to control metastatic disease.
Collapse
Affiliation(s)
- Irene Romero
- Servicio de Analisis Clinicos e Inmunologia; UGC Laboratorio Clínico; Instituto de Investigación Biosanitaria ibs.GRANADA; Hospital Universitario Virgen de las Nieves; Granada, Spain
| | - Federico Garrido
- Servicio de Analisis Clinicos e Inmunologia; UGC Laboratorio Clínico; Instituto de Investigación Biosanitaria ibs.GRANADA; Hospital Universitario Virgen de las Nieves; Granada, Spain ; Departamento de Bioquímica; Biología Molecular e Inmunología III; Universidad de Granada; Granada, Spain
| | - Angel M Garcia-Lora
- Servicio de Analisis Clinicos e Inmunologia; UGC Laboratorio Clínico; Instituto de Investigación Biosanitaria ibs.GRANADA; Hospital Universitario Virgen de las Nieves; Granada, Spain
| |
Collapse
|
29
|
Fragile histidine triad (FHIT) suppresses proliferation and promotes apoptosis in cholangiocarcinoma cells by blocking PI3K-Akt pathway. ScientificWorldJournal 2014; 2014:179698. [PMID: 24757411 PMCID: PMC3976809 DOI: 10.1155/2014/179698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 02/17/2014] [Indexed: 01/09/2023] Open
Abstract
Fragile histidine triad (FHIT) is a tumor suppressor protein that regulates cancer cell proliferation and apoptosis. However, its exact mechanism of action is poorly understood. Phosphatidylinositol 3-OH kinase (PI3K)-Akt-survivin is an important signaling pathway that was regulated by FHIT in lung cancer cells. To determine whether FHIT can regulate this pathway in cholangiocarcinoma QBC939 cells, we constructed an FHIT expression plasmid and used it to transfect QBC939 cells. Protein and mRNA expression were measured by western blotting and qRT-PCR, respectively. The viability and apoptosis of QBC939 cells were then assessed using MTT assays and flow cytometry. Our results revealed that the expression of survivin and Bcl-2 was downregulated, and caspase 3 was upregulated, in cells overexpressing FHIT. In addition, FHIT suppressed the phosphorylation of Akt. The changes in cell proliferation and apoptosis were obvious in cells overexpressing FHIT which parallels that of treatment with LY294002, a potent inhibitor of phosphoinositide 3-kinases. Treatment with LY294002 further decreased the expression of survivin and Bcl-2 and increased caspase-3 levels. These results suggest that FHIT can block the PI3K-Akt-survivin pathway by suppressing the phosphorylation of Akt and the expression of survivin and Bcl-2 and upregulating caspase 3.
Collapse
|
30
|
Romero I, Garrido C, Algarra I, Collado A, Garrido F, Garcia-Lora AM. T lymphocytes restrain spontaneous metastases in permanent dormancy. Cancer Res 2014; 74:1958-68. [PMID: 24531750 DOI: 10.1158/0008-5472.can-13-2084] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor dormancy is a clinical phenomenon related to immune equilibrium during cancer immunoediting. The mechanisms involved in dormant metastases are poorly understood due to the lack of preclinical models. Here, we present a nontransgenic mouse model in which spontaneous metastases remain in permanent immunomediated dormancy with no additional antitumor treatment. After the injection of a GR9-B11 mouse fibrosarcoma clone into syngeneic BALB/c mice, all animals remained free of spontaneous metastases at the experimental endpoints (3-8 months) but also as long as 24 months after tumor cell injection. Strikingly, when tumor-bearing mice were immunodepleted of T lymphocytes or asialo GM1-positive cells, the restraint on dormant disseminated metastatic cells was relieved and lung metastases progressed. Immunostimulation was documented at both local and systemic levels, with results supporting the evidence that the immune system was able to restrain spontaneous metastases in permanent dormancy. Notably, the GR9-B11 tumor clone did not express MHC class I molecules on the cell surface, yet all metastases in immunodepleted mice were MHC class I-positive. This model system may be valuable for more in-depth analyses of metastatic dormancy, offering new opportunities for immunotherapeutic management of metastatic disease.
Collapse
Affiliation(s)
- Irene Romero
- Authors' Affiliations: Dept. Analisis Clinicos e Inmunologia, UGC Laboratorio Clínico; Unidad de Investigación, Hospital Universitario Virgen de las Nieves, Granada; Departamento de Bioquímica, Biología Molecular e Inmunología III, Universidad de Granada, Granada; and Departamento de Ciencias de la Salud, Universidad de Jaén, Jaén, Spain
| | | | | | | | | | | |
Collapse
|
31
|
Seliger B, Kiessling R. The two sides of HER2/neu: immune escape versus surveillance. Trends Mol Med 2013; 19:677-84. [PMID: 24035606 DOI: 10.1016/j.molmed.2013.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 08/14/2013] [Accepted: 08/15/2013] [Indexed: 11/28/2022]
Abstract
The oncogene HER2 is one of the prototypes for targeted immunotherapy of cancer using both monoclonal antibodies as well as T cell based immunotherapies. Effective humoral and cellular immune responses against HER2 can be induced, but these responses can be influenced by the effects of this oncogene on the target tumor cells. The processes involved in HER2-mediated adaptive and innate immunity and the molecular mechanisms underlying the escape of HER2-expressing tumor cells from immune surveillance, particularly from cytotoxic T cells, are discussed. Implementing this knowledge in clinical trials to revert immune evasion may help optimize immunotherapies directed against HER2-expressing tumors.
Collapse
Affiliation(s)
- Barbara Seliger
- University Halle-Wittenberg, Institute of Medical Immunology, Magdeburger Str. 2, 06112 Halle (Saale), Germany.
| | | |
Collapse
|
32
|
Zuo H, Chan ASL, Ammer H, Wong YH. Activation of Gαq subunits up-regulates the expression of the tumor suppressor Fhit. Cell Signal 2013; 25:2440-52. [PMID: 23993961 DOI: 10.1016/j.cellsig.2013.08.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 08/24/2013] [Indexed: 12/31/2022]
Abstract
The tumor suppressor Fhit protein is defective or absent in many tumor cells due to methylation, mutation or deletion of the FHIT gene. Despite numerous attempts to unravel the functions of Fhit, the mechanisms by which the function and expression of Fhit are regulated remain poorly understood. We have recently shown that activated Gαq subunits interact directly with Fhit and enhance its inhibitory effect on cell growth. Here we investigated the regulation of Fhit expression by Gq. Our results showed that Fhit was up-regulated specifically by activating Gα subunits of the Gq subfamily but not by those of the other G protein subfamilies. This up-regulation effect was mediated by a PKC/MEK pathway independent of Src-mediated Fhit Tyr(114) phosphorylation. We further demonstrated that elevated Fhit expression was due to the specific regulation of Fhit protein synthesis in the ribosome by activated Gαq, where the regulations of cap-dependent protein synthesis were apparently not required. Moreover, we showed that activated Gαq could increase cell-cell adhesion through Fhit. These findings provide a possible handle to modulate the level of the Fhit tumor suppressor by manipulating the activity of Gq-coupled receptors.
Collapse
Affiliation(s)
- Hao Zuo
- Division of Life Sciences, and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | | | | | | |
Collapse
|
33
|
Garrido G, Rabasa A, Garrido C, López A, Chao L, García-Lora AM, Garrido F, Fernández LE, Sánchez B. Preclinical modeling of EGFR-specific antibody resistance: oncogenic and immune-associated escape mechanisms. Oncogene 2013; 33:3129-39. [PMID: 23975426 DOI: 10.1038/onc.2013.288] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 12/15/2022]
Abstract
To define the molecular basis of secondary resistance to epidermal growth factor receptor (EGFR)-specific antibodies is crucial to increase clinical benefit in patients. The limited access to posttreatment tumor samples constitutes the major barrier to conduct these studies, representing preclinical experimentation as a useful alternative. Anti-EGFR antibody-based therapy has been reported to mediate tumor regression by interrupting oncogenic signals and, more recently, by inducing antitumor immunological responses. However, resistance models have been focused only on tumor escape associated with EGFR blockade, whereas studies describing immune-associated escape mechanisms have not been reported thus far. To address this idea, we modeled resistance induction in D122 metastasis-bearing C57BL/6 mice treated with 7A7 (an anti-murine EGFR antibody). Similarly to patients receiving EGFR-specific antibodies, 7A7 resistance promotion represents an important drawback to successful therapy. Characterization of primary cultures derived from metastasis in 7A7-treated mice revealed a high frequency of tumor variants resistant to in vivo and in vitro antibody treatment. We showed, for the first time, the convergence of alterations in oncogenic and immunological pathways in 7A7-resistant variants. To identify key molecules behind resistance, seven 7A7-resistant variants were screened. HER3 overexpression and PTEN deficiency leading to hyperactivation of protumoral downstream signaling were found in these variants as a consequence of 7A7-mediated EGFR inhibition. Concomitantly, we found a high percentage of resistant variants carrying abnormalities in the constitutive and/or interferon gamma (IFN-γ)-inducible major histocompatibility complex I (MHC-I) expression. A significant decrease in mRNA levels for MHC-I heavy chains, β2-microglogulin and antigen processing machinery genes as well as transcriptional alterations in IFN-γ pathway components were identified as the main mechanisms underlying MHC-I expression defects in 7A7-resistant variants. Notably, these defects have not been previously associated with EGFR-specific antibody resistance, providing novel immunological escape mechanisms. This study has strong implications for the development of new combination strategies to overcome anti-EGFR antibodies refractoriness.
Collapse
Affiliation(s)
- G Garrido
- Tumor Immunology Direction, Molecular Immunology Institute, Center of Molecular Immunology, Havana, Cuba
| | - A Rabasa
- Tumor Immunology Direction, Molecular Immunology Institute, Center of Molecular Immunology, Havana, Cuba
| | - C Garrido
- 1] Department of Analisis Clinicos and Inmunologia, Hospital Universitario VirgenNieves, Granada, Spain [2] Departament of Bioquímica, Biología Molecular III e Inmunologia, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - A López
- System Biology Direction, Molecular Immunology Institute, Center of Molecular Immunology, Havana, Cuba
| | - L Chao
- Tumor Immunology Direction, Molecular Immunology Institute, Center of Molecular Immunology, Havana, Cuba
| | - A M García-Lora
- Department of Analisis Clinicos and Inmunologia, Hospital Universitario VirgenNieves, Granada, Spain
| | - F Garrido
- 1] Department of Analisis Clinicos and Inmunologia, Hospital Universitario VirgenNieves, Granada, Spain [2] Departament of Bioquímica, Biología Molecular III e Inmunologia, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - L E Fernández
- Innovative Direction, Molecular Immunology Institute, Center of Molecular Immunology, Havana, Cuba
| | - B Sánchez
- Tumor Immunology Direction, Molecular Immunology Institute, Center of Molecular Immunology, Havana, Cuba
| |
Collapse
|
34
|
Schwaibold EMC, Zoll B, Burfeind P, Hobbiebrunken E, Wilken B, Funke R, Shoukier M. A 3p interstitial deletion in two monozygotic twin brothers and an 18-year-old man: further characterization and review. Am J Med Genet A 2013; 161A:2634-40. [PMID: 23949945 DOI: 10.1002/ajmg.a.36129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 06/13/2013] [Indexed: 01/02/2023]
Abstract
An increasing number of patients with 3p proximal deletions were reported in the previous decade, but the region responsible for the main features such as intellectual disability (ID) and developmental delay is not yet characterized. Here we report on two monozygotic twin brothers of 2 10/12 years and an 18-year-old man, all three of them displaying severe ID, psychomotoric delay, autistic features, and only mild facial dysmorphisms. Array CGH (aCGH), revealed a 6.55 Mb de novo interstitial deletion of 3p14.1p14.3 in the twin brothers and a 4.76 Mb interstitial deletion of 3p14.1p14.2 in the 18-year-old patient, respectively. We compared the malformation spectrum with previous molecularly well-defined patients in the literature and in the DECIPHER database (Database of Chromosomal Imbalance and Phenotype in Humans using Ensembl Resources; http://decipher.sanger.ac.uk/). In conclusion, the deletion of a region containing 3p14.2 seems to be associated with a relative concise phenotype including ID and developmental delay. Thus, we hypothesize that 3p14.2 is the potential core region in 3p proximal deletions. The knowledge of this potential core region could be helpful in the genetic counselling of patients with 3p proximal deletions, especially concerning their phenotype.
Collapse
|