1
|
Valle-Simón P, Borobia AM, Pérez-Martínez A. Clinical research with targeted drugs in paediatric oncology. Drug Discov Today 2023; 28:103672. [PMID: 37330039 DOI: 10.1016/j.drudis.2023.103672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/31/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
The development of targeted drugs in paediatric oncology has been notoriously slow, in part due to the peculiarities of this rare and highly heterogeneous population. To provide therapeutic breakthroughs for the highest risk subgroups of childhood cancer, innovative research solutions have been implemented in the last several years by different international collaborative groups and regulators. Here, we discuss and summarise some of these approaches, as well as challenges and unmet needs that are still being addressed. A wide range of topics were covered in this review including molecular diagnosis optimisation, innovative research methodologies, big data approaches, trial enrolment strategies, and improvements in regulation and preclinical research platforms.
Collapse
Affiliation(s)
- Paula Valle-Simón
- Clinical Pharmacology Department, La Paz University Hospital, Idipaz, Paseo de la Castellana 261, 28046 Madrid, Spain.
| | - Alberto M Borobia
- Clinical Pharmacology Department, La Paz University Hospital, School of Medicine, Universidad Autónoma de Madrid (UAM) IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Antonio Pérez-Martínez
- Paediatric Haemato-Oncology Department, La Paz University Hospital, School of Medicine, Universidad Autónoma de Madrid (UAM), IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| |
Collapse
|
2
|
Liu B, Hu Z, Ran J, Xie N, Tian C, Tang Y, Ouyang Q. The circulating tumor DNA (ctDNA) alteration level predicts therapeutic response in metastatic breast cancer: Novel prognostic indexes based on ctDNA. Breast 2022; 65:116-123. [PMID: 35926241 PMCID: PMC9356206 DOI: 10.1016/j.breast.2022.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022] Open
Abstract
Purpose Circulating tumor DNA (ctDNA) has good clinical guiding value for metastatic breast cancer (MBC) patients. This study aimed to apply a novel genetic analysis approach for therapeutic prediction based on ctDNA alterations. Method This nonrandomized, multicenter study recruited 223 MBC patients (NCT05079074). Plasma samples were collected for target-capture deep sequencing of ctDNA at baseline, after the 2nd cycle of treatment, and when progressive disease (PD) was evaluated. Samples were categorized into four levels according to the number of ctDNA alterations: level 1 (no alterations), level 2 (1–2 alterations), level 3 (3–4 alterations) and level 4 (≥5 alterations). According to ctDNA alteration level and variant allele frequency (VAF), a novel ctDNA-level Response Evaluation Criterion in Solid Tumors (ctle-RECIST) was established to assess treatment response and predict progression-free survival (PFS). Results The median PFS in level 1 (6.63 months) patients was significantly longer than that in level 2–4 patients (level 2: 5.70 months; level 3–4: 4.90 months, p < 0.05). After 2 cycles of treatment, based on ctle-RECIST, the median PFS of level-based disease control rate (lev-DCR) patients was significantly longer than that of level-based PD (lev-PD) patients [HR 2.42 (1.52–3.85), p < 0.001]. In addition, we found that ctDNA level assessment could be a good supplement to radiologic assessment. The median PFS in the dual-DCR group tended to be longer than that in the single-DCR group [HR 1.41 (0.93–2.13), p = 0.107]. Conclusion The ctDNA alteration level and ctle-RECIST could be novel biomarkers of prognosis and could complement radiologic assessment in MBC. Based on the number of ctDNA alterations, samples were categorized into four levels: level 1 to level 4. ctDNA alterations differed in different alteration level groups. Higher ctDNA alteration levels (levels 3–4) were associated with a higher probability of liver metastasis. According to ctDNA alteration level and variant allele frequency, a novel ctDNA-level RECIST (ctle-RECIST) was established to assess treatment response. ctle-RECIST can not only independently predict PFS, but also assist radiologic assessment and improve the clinical application value of prediction.
Collapse
Affiliation(s)
- Binliang Liu
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Zheyu Hu
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Jialu Ran
- Department of Biostatistics and Bioinformatics, Rollins School of Public Heath, Emory University, Atlanta, GA 30322, USA
| | - Ning Xie
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Can Tian
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Yu Tang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Quchang Ouyang
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
3
|
Treatment-driven tumour heterogeneity and drug resistance: lessons from solid tumours. Cancer Treat Rev 2022; 104:102340. [DOI: 10.1016/j.ctrv.2022.102340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
|
4
|
Mishra S, Jeon J, Kang JK, Song SH, Kim TY, Ban C, Choi H, Kim Y, Kim M, Park JW. Direct Detection of Low Abundance Genes of Single Point Mutation. NANO LETTERS 2021; 21:9061-9068. [PMID: 34672610 DOI: 10.1021/acs.nanolett.1c02728] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cell-free DNA (cfDNA) analysis, specifically circulating tumor DNA (ctDNA) analysis, provides enormous opportunities for noninvasive early assessment of cancers. To date, PCR-based methods have led this field. However, the limited sensitivity/specificity of PCR-based methods necessitates the search for new methods. Here, we describe a direct approach to detect KRAS G12D mutated genes in clinical ctDNA samples with the utmost LOD and sensitivity/specificity. In this study, MutS protein was immobilized on the tip of an atomic force microscope (AFM), and the protein sensed the mismatched sites of the duplex formed between the capture probe on the surface and mutated DNA. A noteworthy LOD (3 copies, 0.006% allele frequency) was achieved, along with superb sensitivity/specificity (100%/100%). These observations demonstrate that force-based AFM, in combination with the protein found in nature and properly designed capture probes/blockers, represents an exciting new avenue for ctDNA analysis.
Collapse
Affiliation(s)
- Sourav Mishra
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Jinseong Jeon
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Jun-Kyu Kang
- Cancer Genomics Research Laboratory, Cancer Research Institute, Seoul National University, Seoul 03080, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Republic of Korea
| | - Sang-Hyun Song
- Cancer Genomics Research Laboratory, Cancer Research Institute, Seoul National University, Seoul 03080, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Republic of Korea
| | - Tae-You Kim
- Cancer Genomics Research Laboratory, Cancer Research Institute, Seoul National University, Seoul 03080, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Changill Ban
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
- Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hayoung Choi
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yonggoo Kim
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Myungshin Kim
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Joon Won Park
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
- Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
5
|
Attili I, Del Re M, Guerini-Rocco E, Crucitta S, Pisapia P, Pepe F, Barberis M, Troncone G, Danesi R, de Marinis F, Malapelle U, Passaro A. The role of molecular heterogeneity targeting resistance mechanisms to lung cancer therapies. Expert Rev Mol Diagn 2021; 21:757-766. [PMID: 34278933 DOI: 10.1080/14737159.2021.1943365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: The treatment scenario of lung cancer is rapidly evolving through time. In parallel, growing evidence is accumulating on different mechanisms of treatment resistance. Inter- and intra-tumor heterogeneity define the spatial and temporal tumor clonal evolution, that is at the basis of tumor progression and resistance to anticancer treatments.Areas covered: This review summarizes the available evidence on molecular heterogeneity in lung cancer, from diagnosis to the occurrence of treatment resistance. The application of novel molecular diagnostic methods to detect molecular heterogeneity, and the implications of understanding heterogeneity for drug development strategies are discussed, with focus on clinical relevance and impact on patients' survival.Expert opinion: The current knowledge of molecular heterogeneity allows to identify different molecular subgroups of patients within the same conventional tumor type. Deeper understanding of heterogeneity determinants and the possibility to comprehensively investigate tumor molecular patterns will lead to the development of personalized treatment approaches, with the final goal to overcome resistance and prolong survival in lung cancer patients.
Collapse
Affiliation(s)
- Ilaria Attili
- Division of Thoracic Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elena Guerini-Rocco
- Division of Pathology and Laboratory Medicine,IEO, European Institute of Oncology, IRCCS, Milano, Italy.,Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Massimo Barberis
- Division of Pathology and Laboratory Medicine,IEO, European Institute of Oncology, IRCCS, Milano, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Filippo de Marinis
- Division of Thoracic Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Antonio Passaro
- Division of Thoracic Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| |
Collapse
|
6
|
Practices and expectations on the use of circulating tumor DNA in colorectal cancer patients: A bi-national AGEO/AIOM/GERCOR/FFCD/FRENCH survey. Clin Res Hepatol Gastroenterol 2021; 45:101681. [PMID: 33785445 DOI: 10.1016/j.clinre.2021.101681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/22/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Increasing evidence shows that circulating tumor DNA (ctDNA) is a valuable tool in providing molecular, prognostic, predictive and dynamic information in colorectal cancer (CRC) patients. This study aimed to make a picture of knowledge, practice, attitudes and expectations about ctDNA in CRC patients. MATERIAL AND METHODS An online CRC-ctdna survey was distributed from November 2019 to January 2020 to French and Italian cooperative and scientific groups of Hepato-Gastroenterologists (HGE), Medical Oncologists (MO), Radiotherapists (RT) and Digestive Surgeons (DS). RESULTS Overall, 307 physicians completed the survey (57% Italian; 43% French). Most of them were MO (62%) and HGE (24%). Affiliations were University Hospital (48%), Cancer Center (21%), General Hospital (21%) and Private Hospital (10%). Notably, half of respondents declared to have access to ctDNA in their daily practice. Of them, 53% uses ctDNA to assess RAS/BRAF status only, 46% for RAS/BRAF with other mutations and 1% only for other mutations. MO and HGE identified quick RAS profiling (P = 0.031) as the main reason of interest in the use of ctDNA. Physicians from University Hospitals and Cancer Centers prescribed more ctDNA (P < 0.001) and more often in house (P < 0.001). The main future expectations concerning ctDNA were to guide therapeutic strategies in metastatic (78%) and adjuvant (73%) settings, and to better/quicker profile disease at baseline (56%). CONCLUSION Half of participants can order ctDNA in their daily practice. Molecular profiling of metastatic patients remains the main goal of ctDNA use and ctDNA-based therapeutic strategies are an expectation for the future in both adjuvant and metastatic settings.
Collapse
|
7
|
Yu Y, Xie Z, Zhao M, Lian X. Identification of PIK3CA multigene mutation patterns associated with superior prognosis in stomach cancer. BMC Cancer 2021; 21:368. [PMID: 33827485 PMCID: PMC8028071 DOI: 10.1186/s12885-021-08115-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/29/2021] [Indexed: 12/30/2022] Open
Abstract
Background PIK3CA is the second most frequently mutated gene in cancers and is extensively studied for its role in promoting cancer cell resistance to chemotherapy or targeted therapy. However, PIK3CA functions have mostly been investigated at a lower-order genetic level, and therapeutic strategies targeting PIK3CA mutations have limited effects. Here, we explore crucial factors interacting with PIK3CA mutations to facilitate a significant marginal survival effect at the higher-order level and identify therapeutic strategies based on these marginal factors. Methods Mutations in stomach adenocarcinoma (STAD), breast adenocarcinoma (BRCA), and colon adenocarcinoma (COAD) samples from The Cancer Genome Atlas (TCGA) database were top-selected and combined for Cox proportional-hazards model analysis to calculate hazard ratios of mutation combinations according to overall survival data and define criteria to acquire mutation combinations with considerable marginal effects. We next analyzed the PIK3CA + HMCN1 + LRP1B mutation combination with marginal effects in STAD patients by Kaplan-Meier, transcriptomic differential, and KEGG integrated pathway enrichment analyses. Lastly, we adopted a connectivity map (CMap) to find potentially useful drugs specifically targeting LRP1B mutation in STAD patients. Results Factors interacting with PIK3CA mutations in a higher-order manner significantly influenced patient cohort survival curves (hazard ratio (HR) = 2.93, p-value = 2.63 × 10− 6). Moreover, PIK3CA mutations interacting with higher-order combination elements distinctly differentiated survival curves, with or without a marginal factor (HR = 0.26, p-value = 6.18 × 10− 8). Approximately 3238 PIK3CA-specific higher-order mutational combinations producing marginal survival effects were obtained. In STAD patients, PIK3CA + HMCN1 mutation yielded a substantial beneficial survival effect by interacting with LRP1B (HR = 3.78 × 10− 8, p-value = 0.0361) and AHNAK2 (HR = 3.86 × 10− 8, p-value = 0.0493) mutations. We next identified 208 differentially expressed genes (DEGs) induced by PIK3CA + HMCN1 compared with LRP1B mutation and mapped them to specific KEGG modules. Finally, small-molecule drugs such as geldanamycin (connectivity score = − 0.4011) and vemurafenib (connectivity score = − 0.4488) were selected as optimal therapeutic agents for targeting the STAD subtype with LRP1B mutation. Conclusions Overall, PIK3CA-induced marginal survival effects need to be analyzed. We established a framework to systematically identify crucial factors responsible for marginal survival effects, analyzed mechanisms underlying marginal effects, and identified related drugs. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08115-w.
Collapse
Affiliation(s)
- Yu Yu
- Department of Cell Biology, Basic Medical School, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China.
| | - Zhuoming Xie
- Beijing Syngentech Co., Ltd, Zhongguancun Life Science Park, Changping District, Beijing, 102206, People's Republic of China
| | - Mingxin Zhao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, People's Republic of China
| | - Xiaohua Lian
- Department of Cell Biology, Basic Medical School, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China.
| |
Collapse
|
8
|
Noguchi T, Iwahashi N, Sakai K, Matsuda K, Matsukawa H, Toujima S, Nishio K, Ino K. Comprehensive Gene Mutation Profiling of Circulating Tumor DNA in Ovarian Cancer: Its Pathological and Prognostic Impact. Cancers (Basel) 2020; 12:cancers12113382. [PMID: 33207545 PMCID: PMC7697720 DOI: 10.3390/cancers12113382] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Recent advances in cancer genomic medicine enabled gene-profiling of individual tumors using tumor tissue DNA. However, surgical tumor biopsy is invasive and sometimes difficult to perform in advanced/recurrent cancers. Liquid biopsy using circulating tumor DNA (ctDNA), which can analyze in real time and repeatedly, has attracted attention as a non-invasive technique, although it has been rarely used in ovarian cancer. The aim of the present study was to demonstrate the comprehensive gene mutation profiles of ctDNA in ovarian cancer patients with different histological subtypes and its association with clinicopathological and prognostic outcomes. Of 51 patients, 48 showed one or more non-synonymous somatic mutations, including TP53, APC, KRAS, EGFR, MET, and PIK3CA. Patients with higher ctDNA concentration or with any pathogenic mutations showed worse progression-free survival (PFS). These results suggest that ctDNA-based gene profiling may serve as a prognostic indicator and might help in establishing personalized therapeutic strategies for ovarian cancer. Abstract Liquid biopsies from circulating tumor DNA (ctDNA) have been employed recently as a non-invasive diagnostic tool for detecting cancer-specific gene mutations. Here, we show the comprehensive gene mutation profiles of ctDNA in 51 patients with different histological subtypes of stage I–IV ovarian cancer, and their association with clinical outcomes. The ctDNA extracted from pre-treatment patients’ plasma were analyzed using Cancer Personalized Profiling by Deep Sequencing targeting 197 genes. Of 51 patients, 48 (94%) showed one or more non-synonymous somatic mutations, including TP53 (37.3%), APC (17.6%), KRAS (15.7%), EGFR (13.7%), MET (11.8%), PIK3CA (11.8%), NPAP1 (11.8%), and ALK (9.8%). The most frequently mutated genes were as follows: TP53 in high-grade serous carcinoma (66.7%), APC in clear cell carcinoma (30.8%), PIK3CA in endometrioid carcinoma (40%), and KRAS in mucinous carcinoma (66.7%). Higher cell-free (cf)DNA concentration significantly correlated with worse progression-free survival (PFS) in all patients as well as stage III–IV patients (p = 0.01 and 0.005, respectively). Further, patients with any pathogenic mutations showed significantly worse PFS (p = 0.048). Blood tumor mutational burden detected from ctDNA did not significantly correlate with the histological subtypes or survival. Collectively, clinico-genomic profiles of individual ovarian cancer patients could be identified using ctDNA and may serve as a useful prognostic indicator. These findings suggest that ctDNA-based gene profiling might help in establishing personalized therapeutic strategies.
Collapse
Affiliation(s)
- Tomoko Noguchi
- Department of Obstetrics and Gynecology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-0012, Japan; (N.I.); (K.M.); (H.M.); (S.T.); (K.I.)
- Correspondence: ; Tel.: +81-73-441-0631; Fax: +81-73-445-1161
| | - Naoyuki Iwahashi
- Department of Obstetrics and Gynecology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-0012, Japan; (N.I.); (K.M.); (H.M.); (S.T.); (K.I.)
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511, Japan; (K.S.); (K.N.)
| | - Kaho Matsuda
- Department of Obstetrics and Gynecology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-0012, Japan; (N.I.); (K.M.); (H.M.); (S.T.); (K.I.)
| | - Hitomi Matsukawa
- Department of Obstetrics and Gynecology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-0012, Japan; (N.I.); (K.M.); (H.M.); (S.T.); (K.I.)
| | - Saori Toujima
- Department of Obstetrics and Gynecology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-0012, Japan; (N.I.); (K.M.); (H.M.); (S.T.); (K.I.)
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511, Japan; (K.S.); (K.N.)
| | - Kazuhiko Ino
- Department of Obstetrics and Gynecology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-0012, Japan; (N.I.); (K.M.); (H.M.); (S.T.); (K.I.)
| |
Collapse
|
9
|
Xiao Y, Wang X, Zhang H, Ulintz PJ, Li H, Guan Y. FastClone is a probabilistic tool for deconvoluting tumor heterogeneity in bulk-sequencing samples. Nat Commun 2020; 11:4469. [PMID: 32901013 PMCID: PMC7478963 DOI: 10.1038/s41467-020-18169-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Dissecting tumor heterogeneity is a key to understanding the complex mechanisms underlying drug resistance in cancers. The rich literature of pioneering studies on tumor heterogeneity analysis spurred a recent community-wide benchmark study that compares diverse modeling algorithms. Here we present FastClone, a top-performing algorithm in accuracy in this benchmark. FastClone improves over existing methods by allowing the deconvolution of subclones that have independent copy number variation events within the same chromosome regions. We characterize the behavior of FastClone in identifying subclones using stage III colon cancer primary tumor samples as well as simulated data. It achieves approximately 100-fold acceleration in computation for both simulated and patient data. The efficacy of FastClone will allow its application to large-scale data and clinical data, and facilitate personalized medicine in cancers.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Computational Medicine and Bioinformatics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Xueqing Wang
- Department of Computational Medicine and Bioinformatics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Hongjiu Zhang
- Department of Computational Medicine and Bioinformatics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.,Microsoft Inc., Redmond, WA, USA
| | - Peter J Ulintz
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Hongyang Li
- Department of Computational Medicine and Bioinformatics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA. .,Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Iwahashi N, Sakai K, Noguchi T, Yahata T, Matsukawa H, Toujima S, Nishio K, Ino K. Liquid biopsy-based comprehensive gene mutation profiling for gynecological cancer using CAncer Personalized Profiling by deep Sequencing. Sci Rep 2019; 9:10426. [PMID: 31320709 PMCID: PMC6639322 DOI: 10.1038/s41598-019-47030-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/09/2019] [Indexed: 12/18/2022] Open
Abstract
Liquid biopsies of circulating tumor DNA (ctDNA) have recently been used as a non-invasive diagnostic tool for detecting tumor-specific mutations. We present a study of ctDNA liquid biopsies in gynecological cancer using an ultrasensitive next-generation sequencing-based method for ctDNA detection named CAncer Personalized Profiling by deep Sequencing (CAPP-Seq). We performed CAPP-Seq with plasma-ctDNA obtained from 16 patients with gynecological cancer. In all cases, at least one non-synonymous somatic mutation was detected in the ctDNA. In the pre-treatment ctDNA, 4 of 16, 4/16, 5/16, 2/16, 2/16, and 2/16 patients had TP53, KRAS, APC, PIK3CA, BRCA1, and EGFR mutations, respectively. MET gene copy-number gains were detected in the ctDNA of 2 of 16 patients, and FISH analysis of the paired tumor samples confirmed these results. In 2 neoadjuvant chemotherapy-treated ovarian cancer patients, the changes in gene mutation patterns were associated with the treatment response. These findings suggest that CAPP-Seq-based liquid biopsies can be used for the genetic characterization of independent gynecological cancers with high frequency, and might be clinically useful for non-invasive tumor genotyping and therapeutic response monitoring.
Collapse
Affiliation(s)
- Naoyuki Iwahashi
- Department of Obstetrics and Gynecology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-0012, Japan.
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Tomoko Noguchi
- Department of Obstetrics and Gynecology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-0012, Japan
| | - Tamaki Yahata
- Department of Obstetrics and Gynecology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-0012, Japan
| | - Hitomi Matsukawa
- Department of Obstetrics and Gynecology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-0012, Japan
| | - Saori Toujima
- Department of Obstetrics and Gynecology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-0012, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Kazuhiko Ino
- Department of Obstetrics and Gynecology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-0012, Japan
| |
Collapse
|
11
|
The landscape of novel and complementary targets for immunotherapy: an analysis of gene expression in the tumor microenvironment. Oncotarget 2019; 10:4532-4545. [PMID: 31360302 PMCID: PMC6642048 DOI: 10.18632/oncotarget.27027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Immunotherapies targeting immune checkpoint proteins CTLA-4, PD-1, and PD-L1 have saved lives, but these therapies have only been effective in some patients. Patients positive for expression of immune checkpoint proteins in the tumor microenvironment show better response to immune checkpoint inhibitors. Consequently, knowledge of which genes are consistently expressed in lymphocytes within the tumor microenvironment can convey potentially effective and complementary new immunotherapy targets.
Results: We identified 54 genes that have higher co-expression with the pan T-cell marker CD3E than CTLA4 or PDCD1. In a dataset of 26 patients who received anti-PD-1 therapy, we observed that co-expression between CD3E and PDCD1 was higher among responders than non-responders, supporting our correlation-based approach.
Conclusions: The genes highlighted in these analyses, which include CD6, TIGIT, CD96, and SLAMF6, warrant further investigation of their therapeutic potential.
Methods: We analyzed and ranked genes that were co-expressed with the pan T-cell marker CD3E in 9,601 human tumors, spanning 31 cancer types. To further identify targets that may be complementary to existing PD-1 therapy, we examined and ranked genes with high CD3E co-expression and relatively low PDCD1 co-expression.
Collapse
|
12
|
Eigeliene N, Saarenheimo J, Jekunen A. Potential of Liquid Biopsies for Breast Cancer Screening, Diagnosis, and Response to Treatment. Oncology 2019; 96:115-124. [PMID: 30654364 DOI: 10.1159/000495615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/19/2018] [Indexed: 11/19/2022]
Abstract
Cancer therapy decisions are often made according to the histopathological-molecular profile of tumor tissue obtained from surgery or biopsy. It has been shown that tumor profiles change with time and treatment, and that tumor tissue is heterogeneous. Thus, other approaches that are easily accessible and less invasive than surgery or biopsy to monitor responses to treatment and predict relapses are urgently needed. In the last few years, the term "liquid biopsies" has been introduced to represent multifunctional circulating biomarkers in the peripheral blood and other physiological fluids of patients with cancer. Liquid biopsies are a noninvasive alternative to tissue biopsies, but they have not been implemented in routine clinical practice for breast cancer. In addition, liquid biopsies seem to be a promising approach for personalized medicine, which enables the prediction, monitoring, and rational selection of appropriate therapy for individual patients. In this review, we outline recent progress and current challenges with liquid biopsies in clinical practice for breast cancer diagnosis, treatment choices, and responses to therapy from a clinician's perspective.
Collapse
Affiliation(s)
- Natalja Eigeliene
- Department of Oncology, Vaasa Central Hospital, Vaasa, Finland, .,Department of Oncology and Radiotherapy, University of Turku, Turku, Finland,
| | - Jatta Saarenheimo
- Department of Pathology, Vaasa Central Hospital, Vaasa, Finland.,Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Antti Jekunen
- Department of Oncology, Vaasa Central Hospital, Vaasa, Finland.,Department of Oncology and Radiotherapy, University of Turku, Turku, Finland
| |
Collapse
|
13
|
Nakabayashi M, Kawashima A, Yasuhara R, Hayakawa Y, Miyamoto S, Iizuka C, Sekizawa A. Massively parallel sequencing of cell-free DNA in plasma for detecting gynaecological tumour-associated copy number alteration. Sci Rep 2018; 8:11205. [PMID: 30046040 PMCID: PMC6060170 DOI: 10.1038/s41598-018-29381-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/11/2018] [Indexed: 12/18/2022] Open
Abstract
The discovery of circulating tumour DNA molecules created a paradigm shift in tumour biomarkers as predictors of recurrence. Non-invasive prenatal testing (NIPT) to detect circulating cell-free foetal DNA in maternal plasma is increasingly recognised as a valuable substitute to perceive foetal copy number variation (CNV). This study aimed to determine whether the copy number detection in plasma samples using NIPT platform could be used as a prognostic biomarker in patients with gynaecological cancer. We conducted a prospective study using samples containing preoperative plasma from 100 women with gynaecological cancers. Samples were randomly rearranged and blindly sequenced using a low-coverage whole-genome sequencing plasma DNA, NIPT platform. The NIPT pipeline identified copy number alterations (CNAs) were counted in plasma as a gain or loss if they exceeded 10 Mb from the expected diploid coverage. Progression-free survival (PFS) and overall survival (OS) were analysed according to the presence of CNA in plasma using Kaplan-Meier analyses. The NIPT pipeline detected 19/100 cases of all gynaecological cancers, including 6/36 ovarian cancers, 3/11 cervical cancers, and 10/53 endometrial cancers. Patients with CNA in plasma had a significantly poorer prognosis in all stages concerning PFS and OS. Therefore, low-coverage sequencing NIPT platform could serve as a predictive marker of patient outcome.
Collapse
Affiliation(s)
- Makoto Nakabayashi
- Department of Obstetrics and Gynecology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Akihiro Kawashima
- Department of Obstetrics and Gynecology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan.
| | - Rika Yasuhara
- Division of Pathology, Department of Oral Diagnostic Sciences, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8666, Japan
| | - Yosuke Hayakawa
- Information System Department GeneTech, Inc. 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Shingo Miyamoto
- Department of Obstetrics and Gynecology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Chiaki Iizuka
- Department of Obstetrics and Gynecology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Akihiko Sekizawa
- Department of Obstetrics and Gynecology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| |
Collapse
|
14
|
Wilkins JF, Cannataro VL, Shuch B, Townsend JP. Analysis of mutation, selection, and epistasis: an informed approach to cancer clinical trials. Oncotarget 2018; 9:22243-22253. [PMID: 29854275 PMCID: PMC5976461 DOI: 10.18632/oncotarget.25155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/02/2018] [Indexed: 12/30/2022] Open
Abstract
Currently, drug development efforts and clinical trials to test them are often prioritized by targeting genes with high frequencies of somatic variants among tumors. However, differences in oncogenic mutation rate-not necessarily the effect the variant has on tumor growth-contribute enormously to somatic variant frequency. We argue that decoupling the contributions of mutation and cancer lineage selection to the frequency of somatic variants among tumors is critical to understanding-and predicting-the therapeutic potential of different interventions. To provide an indicator of that strength of selection and therapeutic potential, the frequency at which we observe a given variant across patients must be modulated by our expectation given the mutation rate and target size to provide an indicator of that strength of selection and therapeutic potential. Additionally, antagonistic and synergistic epistasis among mutations also impacts the potential therapeutic benefit of targeted drug development. Quantitative approaches should be fostered that use the known genetic architectures of cancer types, decouple mutation rate, and provide rigorous guidance regarding investment in targeted drug development. By integrating evolutionary principles and detailed mechanistic knowledge into those approaches, we can maximize our ability to identify those targeted therapies most likely to yield substantial clinical benefit.
Collapse
Affiliation(s)
| | | | - Brian Shuch
- Department of Urology, Yale School of Medicine, New Haven, CT, USA
- Department of Radiology, Yale School of Medicine, New Haven, CT, USA
| | - Jeffrey P. Townsend
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| |
Collapse
|
15
|
Salomon-Perzyński A, Salomon-Perzyńska M, Michalski B, Skrzypulec-Plinta V. High-grade serous ovarian cancer: the clone wars. Arch Gynecol Obstet 2017; 295:569-576. [PMID: 28154920 PMCID: PMC5315707 DOI: 10.1007/s00404-017-4292-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/04/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND The last 5 years' studies using next-generation sequencing provided evidences that many types of solid tumors present spatial and temporal genetic heterogeneity and are composed of multiple populations of genetically distinct subclones that evolve over time following a pattern of branched evolution. The evolutionary nature of cancer has been proposed as the major contributor to drug resistance and treatment failure. In this review, we present the current state of knowledge about the clonal evolution of high-grade serous ovarian cancer and discuss the challenge that clonal evolution poses for efforts to achieve an optimal cancer control. METHODS A systemic search of peer-reviewed articles published between August 2007 and October 2016 was performed using PUBMED and Google Scholar database. RESULTS AND CONCLUSIONS Recent studies using next-generation sequencing have allowed us to look inside the evolutionary nature of high-grade serous ovarian cancer, which in the light of current evidence can explain the relapsing course of the disease frequently observed in the clinical practice. Since only minimal improvement in the survival of patients treated with standard therapy has been observed in the last decade, novel molecular targeted therapies are of great interest in high-grade serous ovarian cancer. However, both spatial and temporal intratumoral genetic heterogeneity is a major challenge for personalized medicine, and greater knowledge of the molecular rules that drive tumor evolution through space and time is required to achieve a long-term clinical benefit from personalized therapy.
Collapse
Affiliation(s)
- Aleksander Salomon-Perzyński
- Department of Internal Medicine and Oncological Chemotherapy, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Magdalena Salomon-Perzyńska
- Department of Gynaecology Oncological, School of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland.
| | - Bogdan Michalski
- Department of Gynaecology Oncological, School of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | | |
Collapse
|
16
|
El-Awady R, Saleh E, Hashim A, Soliman N, Dallah A, Elrasheed A, Elakraa G. The Role of Eukaryotic and Prokaryotic ABC Transporter Family in Failure of Chemotherapy. Front Pharmacol 2017; 7:535. [PMID: 28119610 PMCID: PMC5223437 DOI: 10.3389/fphar.2016.00535] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 12/23/2016] [Indexed: 12/13/2022] Open
Abstract
Over the years chemotherapy failure has been a vital research topic as researchers have been striving to discover reasons behind it. The extensive studies carried out on chemotherapeutic agents confirm that resistance to chemotherapy is a major reason for treatment failure. “Resistance to chemotherapy,” however, is a comprehensive phrase that refers to a variety of different mechanisms in which ATP-binding cassette (ABC) mediated efflux dominates. The ABC is one of the largest gene superfamily of transporters among both eukaryotes and prokaryotes; it represents a variety of genes that code for proteins, which perform countless functions, including drug efflux – a natural process that protects cells from foreign chemicals. Up to date, chemotherapy failure due to ABC drug efflux is an active research topic that continuously provides further evidence on multiple drug resistance (MDR), aiding scientists in tackling and overcoming this issue. This review focuses on drug resistance by ABC efflux transporters in human, viral, parasitic, fungal and bacterial cells and highlights the importance of the MDR permeability glycoprotein being the mutual ABC transporter among all studied organisms. Current developments and future directions to overcome this problem are also discussed.
Collapse
Affiliation(s)
- Raafat El-Awady
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| | - Ekram Saleh
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of SharjahSharjah, United Arab Emirates; National Cancer Institute - Cancer Biology Department, Cairo UniversityCairo, Egypt
| | - Amna Hashim
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| | - Nehal Soliman
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| | - Alaa Dallah
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| | - Azza Elrasheed
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| | - Ghada Elakraa
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| |
Collapse
|
17
|
Perkins G, Lu H, Garlan F, Taly V. Droplet-Based Digital PCR: Application in Cancer Research. Adv Clin Chem 2016; 79:43-91. [PMID: 28212714 DOI: 10.1016/bs.acc.2016.10.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The efficient characterization of genetic and epigenetic alterations in oncology, virology, or prenatal diagnostics requires highly sensitive and specific high-throughput approaches. Nevertheless, with the use of conventional methods, sensitivity and specificity were largely limited. By partitioning individual target molecules within distinct compartments, digital PCR (dPCR) could overcome these limitations and detect very rare sequences with unprecedented precision and sensitivity. In dPCR, the sample is diluted such that each individual partition will contain no more than one target sequence. Following the assay reaction, the dPCR process provides an absolute value and analyzable quantitative data. The recent coupling of dPCR with microfluidic systems in commercial platforms should lead to an essential tool for the management of patients with cancer, especially adapted to the analysis of precious samples. Applications in cancer research range from the analysis of tumor heterogeneity to that of a range of body fluids. Droplet-based dPCR is indeed particularly appropriate for the emerging field of liquid biopsy analysis. In this review, following an overview of the development in dPCR technology and different strategies based on the use of microcompartments, we will focus particularly on the applications and latest development of microfluidic droplet-based dPCR in oncology.
Collapse
Affiliation(s)
- G Perkins
- Université Sorbonne Paris Cité, INSERM UMR-S1147, CNRS SNC 5014, Centre Universitaire des Saints-Pères, Equipe labélisée LIGUE Contre le Cancer, Paris, France; European Georges Pompidou Hospital, AP-HP - Paris Descartes University, Paris, France
| | - H Lu
- Université Sorbonne Paris Cité, INSERM UMR-S1147, CNRS SNC 5014, Centre Universitaire des Saints-Pères, Equipe labélisée LIGUE Contre le Cancer, Paris, France
| | - F Garlan
- Université Sorbonne Paris Cité, INSERM UMR-S1147, CNRS SNC 5014, Centre Universitaire des Saints-Pères, Equipe labélisée LIGUE Contre le Cancer, Paris, France
| | - V Taly
- Université Sorbonne Paris Cité, INSERM UMR-S1147, CNRS SNC 5014, Centre Universitaire des Saints-Pères, Equipe labélisée LIGUE Contre le Cancer, Paris, France.
| |
Collapse
|
18
|
Protolichesterinic acid enhances doxorubicin-induced apoptosis in HeLa cells in vitro. Life Sci 2016; 158:89-97. [DOI: 10.1016/j.lfs.2016.06.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 06/16/2016] [Accepted: 06/25/2016] [Indexed: 11/23/2022]
|
19
|
Saliou A, Bidard FC, Lantz O, Stern MH, Vincent-Salomon A, Proudhon C, Pierga JY. Circulating tumor DNA for triple-negative breast cancer diagnosis and treatment decisions. Expert Rev Mol Diagn 2015; 16:39-50. [DOI: 10.1586/14737159.2016.1121100] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
20
|
Francis G, Stein S. Circulating Cell-Free Tumour DNA in the Management of Cancer. Int J Mol Sci 2015; 16:14122-42. [PMID: 26101870 PMCID: PMC4490543 DOI: 10.3390/ijms160614122] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 04/23/2015] [Accepted: 05/26/2015] [Indexed: 12/22/2022] Open
Abstract
With the development of new sensitive molecular techniques, circulating cell-free tumour DNA containing mutations can be identified in the plasma of cancer patients. The applications of this technology may result in significant changes to the care and management of cancer patients. Whilst, currently, these "liquid biopsies" are used to supplement the histological diagnosis of cancer and metastatic disease, in the future these assays may replace the need for invasive procedures. Applications include the monitoring of tumour burden, the monitoring of minimal residual disease, monitoring of tumour heterogeneity, monitoring of molecular resistance and early diagnosis of tumours and metastatic disease.
Collapse
Affiliation(s)
- Glenn Francis
- Director Pathology, Genomics for Life, Herston 4006, Australia.
- School of Medicine, Griffith University, Gold Coast 4215, Australia.
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia 4067, Australia.
| | - Sandra Stein
- Laboratory Director, Genomics for Life, Herston 4006, Australia.
| |
Collapse
|
21
|
Myers MB, McKim KL, Meng F, Parsons BL. Low-frequency KRAS mutations are prevalent in lung adenocarcinomas. Per Med 2015; 12:83-98. [PMID: 27795727 PMCID: PMC5084916 DOI: 10.2217/pme.14.69] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIM This study quantified low-frequency KRAS mutations in normal lung and lung adenocarcinomas, to understand their potential significance in the development of acquired resistance to EGFR-targeted therapies. MATERIALS & METHODS Allele-specific Competitive Blocker-PCR was used to quantify KRAS codon 12 GAT (G12D) and GTT (G12V) mutation in 19 normal lung and 21 lung adenocarcinoma samples. RESULTS Lung adenocarcinomas had KRAS codon 12 GAT and GTT geometric mean mutant fractions of 1.94 × 10-4 and 1.16 × 10-3, respectively. For 76.2% of lung adenocarcinomas, the level of KRAS mutation was greater than the upper 95% confidence interval of that in normal lung. CONCLUSION KRAS mutant tumor subpopulations, not detectable by DNA sequencing, may drive resistance to EGFR blockade in lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Meagan B Myers
- Division of Genetic & Molecular Toxicology, US FDA, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Karen L McKim
- Division of Genetic & Molecular Toxicology, US FDA, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Fanxue Meng
- Division of Genetic & Molecular Toxicology, US FDA, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Barbara L Parsons
- Division of Genetic & Molecular Toxicology, US FDA, National Center for Toxicological Research, Jefferson, AR 72079, USA
| |
Collapse
|
22
|
Bessadóttir M, Skúladóttir EÁ, Gowan S, Eccles S, Ögmundsdóttir S, Ogmundsdóttir HM. Effects of anti-proliferative lichen metabolite, protolichesterinic acid on fatty acid synthase, cell signalling and drug response in breast cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:1717-1724. [PMID: 25442282 DOI: 10.1016/j.phymed.2014.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/18/2014] [Accepted: 08/16/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND The lichen compound (+)-protolichesterinic acid (+)-PA, isolated from Iceland moss, has anti-proliferative effects on several cancer cell lines. The chemical structure of (+)-PA is similar to a known fatty acid synthase (FASN) inhibitor C75. AIMS To test whether the anti-proliferative activity of (+)-PA is associated with effects on FASN and HER2 (human epidermal growth factor receptor 2) and major signalling pathways. Synergism between (+)-PA and lapatinib, a HER2 active drug, was also evaluated. MATERIALS AND METHODS Pure compound was isolated by preparative high-performance liquid chromatography (HPLC) and purity of (+)-PA analyzed by analytical HPLC. Cell viability was assessed using Crystal violet staining. FASN and HER2 expression was estimated by immunofluorescence. The Meso Scale Discovery (MSD)(®) assay was used to measure activation of ERK1/2 and AKT. Synergism was estimated by the CalcuSyn software. RESULTS Treatment with (+)-PA increased FASN expression in SK-BR-3 cells, which overexpress FASN and HER2, implying a compensatory response to inhibition of FASN activity. HER2 expression was decreased suggesting secondary downregulation. ERK1/2 and AKT signalling pathways were inhibited, probably due to reduced levels of HER2. No effects were observed in T-47D cells. Synergism between (+)-PA and lapatinib was observed in the SK-BR-3 cells. CONCLUSION Results suggest that the primary effect of (+)-PA is inhibition of FASN activity. Synergistic effects with lapatinib were seen only in SK-BR-3 cells, and not T-47D cells, further supporting the notion that (+)-PA acts by inhibiting FASN with secondary effects on HER2 expression and signalling. (+)-PA could therefore be a suitable agent for further testing, alone or in combination treatment against HER2-overexpressing breast cancer.
Collapse
Affiliation(s)
- Margrét Bessadóttir
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland; Faculty of Pharmaceutical Sciences, University of Iceland, 101 Reykjavik, Iceland
| | | | - Sharon Gowan
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK
| | - Suzanne Eccles
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK
| | | | | |
Collapse
|
23
|
Burrell RA, Swanton C. Tumour heterogeneity and the evolution of polyclonal drug resistance. Mol Oncol 2014; 8:1095-111. [PMID: 25087573 PMCID: PMC5528620 DOI: 10.1016/j.molonc.2014.06.005] [Citation(s) in RCA: 284] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 06/09/2014] [Indexed: 12/15/2022] Open
Abstract
Cancer drug resistance is a major problem, with the majority of patients with metastatic disease ultimately developing multidrug resistance and succumbing to their disease. Our understanding of molecular events underpinning treatment failure has been enhanced by new genomic technologies and pre-clinical studies. Intratumour genetic heterogeneity (ITH) is a prominent contributor to therapeutic failure, and it is becoming increasingly apparent that individual tumours may achieve resistance via multiple routes simultaneously - termed polyclonal resistance. Efforts to target single resistance mechanisms to overcome therapeutic failure may therefore yield only limited success. Clinical studies with sequential analysis of tumour material are needed to enhance our understanding of inter-clonal functional relationships and tumour evolution during therapy, and to improve drug development strategies in cancer medicine.
Collapse
Affiliation(s)
- Rebecca A Burrell
- Translational Cancer Therapeutics Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3L7, UK; UCL Cancer Institute, Paul O'Gorman Building University College London, 72 Huntley Street, London WC1E 6DD, UK.
| | - Charles Swanton
- Translational Cancer Therapeutics Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3L7, UK; UCL Cancer Institute, Paul O'Gorman Building University College London, 72 Huntley Street, London WC1E 6DD, UK.
| |
Collapse
|
24
|
Renovanz M, Kim EL. Intratumoral heterogeneity, its contribution to therapy resistance and methodological caveats to assessment. Front Oncol 2014; 4:142. [PMID: 24959421 PMCID: PMC4050363 DOI: 10.3389/fonc.2014.00142] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 05/27/2014] [Indexed: 12/16/2022] Open
Affiliation(s)
- Mirjam Renovanz
- The Translational Neurooncology Research Group, Department of Neurosurgery, Johannes Gutenberg University Medical Centre , Mainz , Germany
| | - Ella L Kim
- The Translational Neurooncology Research Group, Department of Neurosurgery, Johannes Gutenberg University Medical Centre , Mainz , Germany
| |
Collapse
|
25
|
Hobor S, Van Emburgh BO, Crowley E, Misale S, Di Nicolantonio F, Bardelli A. TGFα and amphiregulin paracrine network promotes resistance to EGFR blockade in colorectal cancer cells. Clin Cancer Res 2014; 20:6429-38. [PMID: 24916700 DOI: 10.1158/1078-0432.ccr-14-0774] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Targeted inhibition of EGFR with the mAbs cetuximab or panitumumab is a valuable treatment for RAS wild-type colorectal cancers. The efficacy of EGFR blockade is limited by the emergence of acquired resistance often attributed to secondary KRAS mutations. Remarkably, tumor biopsies from resistant patients show that only a fraction of the resilient cells carry KRAS mutations. We hypothesized that a paracrine cross-talk driven by the resistant subpopulation may provide in trans protection of surrounding sensitive cells. EXPERIMENTAL DESIGN Conditioned medium assays and three-dimensional cocultures were used to assess paracrine networks between cetuximab-sensitive and -resistant cells. Production of EGFR ligands by cells sensitive to cetuximab and panitumumab was measured. The ability of recombinant EGFR ligands to protect sensitive cells from cetuximab was assessed. Biochemical activation of the EGFR signaling pathway was measured by Western blotting. RESULTS Colorectal cancer cells sensitive to EGFR blockade can successfully grow despite cetuximab treatment when in the company of their resistant derivatives. Media conditioned by resistant cells protect sensitive parental cells from cetuximab. EGFR blockade triggers increased secretion of TGFα and amphiregulin. Increased secretion of ligands by resistant cells can sustain EGFR/ERK signaling in sensitive cells. CONCLUSIONS Colorectal cancer cells that develop resistance to cetuximab and panitumumab secrete TGFα and amphiregulin, which protect the surrounding cells from EGFR blockade. This paracrine protective mechanism might be therapeutically exploitable.
Collapse
Affiliation(s)
| | | | - Emily Crowley
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo, Torino. FIRC Institute of Molecular Oncology (IFOM), Milano
| | - Sandra Misale
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo, Torino. University of Torino, Department of Oncology, Candiolo, Torino, Italy
| | - Federica Di Nicolantonio
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo, Torino. University of Torino, Department of Oncology, Candiolo, Torino, Italy
| | - Alberto Bardelli
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo, Torino. University of Torino, Department of Oncology, Candiolo, Torino, Italy.
| |
Collapse
|
26
|
El Aissi R, Liu J, Besse S, Canitrot D, Chavignon O, Chezal JM, Miot-Noirault E, Moreau E. Synthesis and Biological Evaluation of New Quinoxaline Derivatives of ICF01012 as Melanoma-Targeting Probes. ACS Med Chem Lett 2014; 5:468-73. [PMID: 24900863 DOI: 10.1021/ml400468x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/20/2014] [Indexed: 02/08/2023] Open
Abstract
The aim of this study was the synthesis and pharmacokinetic selection of a best melanin-targeting ligand for addressing anticancer agents to pigmented melanoma. Seven quinoxaline carboxamide derivatives were synthesized and radiolabeled with iodine-125. Biodistribution studies of compounds [ (125) I]1a-g performed in melanoma-bearing mice tumor showed significant tumor uptake (range 2.43-5.68%ID/g) within 1 h after i.v. injection. Fast clearance of the radioactivity from the nontarget organs mainly via the urinary system gave high tumor-to-blood and tumor-to-muscle ratios. Given its favorable clearance and high tumor-melanoma uptake at 72 h, amide 1d was the most promising melanoma-targeting ligand in this series. Compound 1d will be used as building block for the design of new melanoma-selective drug delivery systems.
Collapse
Affiliation(s)
- Radhia El Aissi
- INSERM−Université d’Auvergne, UMR 990, IMTV, BP 184, F-63005 Clermont-Ferrand Cedex, France
- Clermont Université, Université d’Auvergne,
Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63005 Clermont-Ferrand Cedex, France
| | - Jianrong Liu
- INSERM−Université d’Auvergne, UMR 990, IMTV, BP 184, F-63005 Clermont-Ferrand Cedex, France
- Clermont Université, Université d’Auvergne,
Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63005 Clermont-Ferrand Cedex, France
| | - Sophie Besse
- INSERM−Université d’Auvergne, UMR 990, IMTV, BP 184, F-63005 Clermont-Ferrand Cedex, France
- Clermont Université, Université d’Auvergne,
Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63005 Clermont-Ferrand Cedex, France
| | - Damien Canitrot
- INSERM−Université d’Auvergne, UMR 990, IMTV, BP 184, F-63005 Clermont-Ferrand Cedex, France
- Clermont Université, Université d’Auvergne,
Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63005 Clermont-Ferrand Cedex, France
| | - Olivier Chavignon
- INSERM−Université d’Auvergne, UMR 990, IMTV, BP 184, F-63005 Clermont-Ferrand Cedex, France
- Clermont Université, Université d’Auvergne,
Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63005 Clermont-Ferrand Cedex, France
| | - Jean-Michel Chezal
- INSERM−Université d’Auvergne, UMR 990, IMTV, BP 184, F-63005 Clermont-Ferrand Cedex, France
- Clermont Université, Université d’Auvergne,
Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63005 Clermont-Ferrand Cedex, France
| | - Elisabeth Miot-Noirault
- INSERM−Université d’Auvergne, UMR 990, IMTV, BP 184, F-63005 Clermont-Ferrand Cedex, France
- Clermont Université, Université d’Auvergne,
Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63005 Clermont-Ferrand Cedex, France
| | - Emmanuel Moreau
- INSERM−Université d’Auvergne, UMR 990, IMTV, BP 184, F-63005 Clermont-Ferrand Cedex, France
- Clermont Université, Université d’Auvergne,
Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63005 Clermont-Ferrand Cedex, France
| |
Collapse
|
27
|
Burgess AW, Henis YI, Hynes NE, Jovin T, Levitzki A, Pinkas-Kramarski R, Yarden Y. EGF receptor family: twisting targets for improved cancer therapies. Growth Factors 2014; 32:74-81. [PMID: 24641597 DOI: 10.3109/08977194.2014.896355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The epidermal growth factor receptor (EGFR) undergoes a conformational change in response to ligand binding. The ligand-induced changes in cell surface aggregation and mobility have a profound effect on the function of all the family members. Ligand also activates the EGFR intracellular kinase, stimulating proliferation and cell survival. The EGFR family are often activated, overexpressed or mutated in cancer cells and therapeutic drugs (including antibodies) can slow the progress of some cancers. This article provides a brief, annotated summary of the presentations and discussion which occurred at the Epidermal Growth Factor Receptor - Future Directions Conference held in Jerusalem in November 2013.
Collapse
Affiliation(s)
- Antony W Burgess
- The Walter & Eliza Hall Institute of Medical Research, Burgess Lab Structural Biology , Parkville , Australia
| | | | | | | | | | | | | |
Collapse
|
28
|
Jubb AM, Koeppen H, Reis-Filho JS. Pathology in drug discovery and development. J Pathol 2014; 232:99-102. [PMID: 24122335 DOI: 10.1002/path.4290] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 09/30/2013] [Accepted: 10/01/2013] [Indexed: 12/19/2022]
Abstract
The rapid pace of drug discovery and drug development in oncology, immunology and ophthalmology brings new challenges; the efficient and effective development of new targeted drugs will require more detailed molecular classifications of histologically homogeneous diseases that show heterogeneous clinical outcomes. To this end, single companion diagnostics for specific drugs will be replaced by multiplex diagnostics for entire therapeutic areas, preserving tissue and enabling rapid molecular taxonomy. The field will move away from the development of new molecular entities as single agents, to which resistance is common. Instead, a detailed understanding of the pathological mechanisms of resistance, in patients and in preclinical models, will be key to the validation of scientifically rational and clinically effective drug combinations. To remain at the heart of disease diagnosis and appropriate management, pathologists must evolve into translational biologists and biomarker scientists. Herein, we provide examples of where this metamorphosis has already taken place, in lung cancer and melanoma, where the transformation has yet to begin, in the use of immunotherapies for ophthalmology and oncology, and where there is fertile soil for a revolution in treatment, in efforts to classify glioblastoma and personalize treatment. The challenges of disease heterogeneity, the regulatory environment and adequate tissue are ever present, but these too are being overcome in dedicated academic centres. In summary, the tools necessary to overcome the 'whens' and 'ifs' of the molecular revolution are in the hands of pathologists today; it is a matter of standardization, training and leadership to bring these into routine practice and translate science into patient benefit. This Annual Review Issue of the Journal of Pathology highlights the central role for pathology in modern drug discovery and development.
Collapse
Affiliation(s)
- Adrian M Jubb
- Department of Product Development - Oncology, Genentech Inc., South San Francisco, CA, USA
| | | | | |
Collapse
|