1
|
Liu W, Xu J, Chen L, Zhang D, Zhang J, Lu L, Zhang X, Huang X, Zhang G. Discovery of a novel BCL-2 inhibitor GW806742X for the treatment of TNBC. Biochem Pharmacol 2025:116925. [PMID: 40199403 DOI: 10.1016/j.bcp.2025.116925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/24/2025] [Accepted: 04/02/2025] [Indexed: 04/10/2025]
Abstract
Triple-negative breast cancer(TNBC) lacks estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor (HER2), and traditional treatments cannot accurately target TNBC. Anthracycline- and paclitaxel-based chemotherapeutic agents are still the mainstay of treatment for TNBC, but these chemotherapeutic agents have major toxic side effects and are prone to drug resistance during the treatment of TNBC. In this study, we investigated the efficacy and potential mechanisms of action of GW806742X in the treatment of TNBC. We screened a library of 600 FDA-approved small molecule compounds to identify GW806742X, a small molecule that inhibits the viability of triple-negative breast cancer cells. In vitro, GW806742X was found to be cytotoxic to TNBC cells in a dose-dependent manner and to inhibit the growth of MDA-MB-468 tumors in vivo. Mechanistically, we used PharmMapper to predict the possible targets of GW806742X and demonstrated that the small molecule drug could directly bind to BCL-2 by molecular docking simulations and ITC experiments. Western blot analysis demonstrated that GW806742X could reduce BCL-2 protein levels and possibly promote BCL-2 degradation through the lysosomal pathway. Moreover, GW806742X disrupts NF-κB signaling In conclusion, this study demonstrates that GW806742X can be a potential therapeutic agent for triple-negative breast cancer by targeting BCL-2.
Collapse
Affiliation(s)
- Wenjun Liu
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; School of Life Science, Soochow University, China
| | - Jia Xu
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; School of Life Science, Soochow University, China
| | - Li Chen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Dongze Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Juan Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Linlin Lu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Xiaoming Zhang
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, China.
| | - Xue Huang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.
| | - Guangbo Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Rajagopal PS, Reid S, Fan R, Venton L, Weidner A, Roberson ML, Vadaparampil S, Wang X, Yoder S, Rosa M, Sanders M, Gonzalez-Ericsson P, Hirbo J, Whisenant JG, Pietenpol J, Ye F, Pal T, Lehmann BD. Population-specific patterns in assessing molecular subtypes of young black females with triple-negative breast cancer. NPJ Breast Cancer 2025; 11:28. [PMID: 40069179 PMCID: PMC11897140 DOI: 10.1038/s41523-025-00731-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 02/04/2025] [Indexed: 03/15/2025] Open
Abstract
We determined triple-negative breast cancer (TNBC) subtypes, genetic ancestry, and immune features in a cohort of self-reported Black females with TNBC diagnosed at or below age 50. Among 104 tumors, 34.6% were basal-like 1 (BL1), 17.3% basal-like 2 (BL2), 9.6% luminal androgen receptor (LAR), 26.9% mesenchymal (M), and 11.5% unsubtyped (UNS). Subtypes resembled those seen in Europeans or East Asians, with less LAR (9.6% vs. 14.6-24.4%) and more UNS (11.5% vs. 0-7.5%). "High" proportion of West African ancestry was associated with more LAR (14.9% vs. 4.9%) and less M (25.5% vs. 34.2%). M demonstrated reduced immune activity and was marginally associated with worse overall survival in a multivariate model including stage, West African ancestry, BMI, and TILs, meriting future research. Our study is the largest to date of TNBC subtypes in young Black females. These results reinforce TNBC subtypes' application across populations and potential use as a prognostic biomarker.
Collapse
Affiliation(s)
| | - Sonya Reid
- Vanderbilt University Medical Center; Department of Medicine, Nashville, TN, USA
| | - Run Fan
- Vanderbilt University Medical Center; Department of Biostatistics and Bioinformatics, Nashville, TN, USA
| | - Lindsay Venton
- Vanderbilt University Medical Center; Department of Medicine, Nashville, TN, USA
| | - Anne Weidner
- Vanderbilt University Medical Center; Department of Medicine, Nashville, TN, USA
| | - Mya L Roberson
- University of North Carolina; Department of Health Policy and Management, Chapel Hill, NC, USA
| | | | | | | | | | - Melinda Sanders
- Vanderbilt University Medical Center; Department of Medicine, Nashville, TN, USA
| | | | - Jibril Hirbo
- Vanderbilt University Medical Center; Department of Medicine, Nashville, TN, USA
| | - Jennifer G Whisenant
- Vanderbilt University Medical Center; Department of Medicine, Nashville, TN, USA
| | - Jennifer Pietenpol
- Vanderbilt University Medical Center; Department of Biochemistry, Nashville, TN, USA
| | - Fei Ye
- Vanderbilt University Medical Center; Department of Biostatistics and Bioinformatics, Nashville, TN, USA
| | - Tuya Pal
- Vanderbilt University Medical Center; Department of Medicine, Nashville, TN, USA.
| | - Brian D Lehmann
- Vanderbilt University Medical Center; Department of Medicine, Nashville, TN, USA
| |
Collapse
|
3
|
Punie K, Kurian AW, Ntalla I, Sjekloca N, Estrin A, Dabrowski EC, Lai C, Hurvitz S. Unmet need for previously untreated metastatic triple-negative breast cancer: a real-world study of patients diagnosed from 2011 to 2022 in the United States. Oncologist 2025; 30:oyaf034. [PMID: 40163689 PMCID: PMC11957248 DOI: 10.1093/oncolo/oyaf034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/10/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND This real-world study describes the treatment landscape evolution after targeted therapy approval and associated survival outcomes for previously untreated metastatic triple-negative breast cancer (mTNBC) in the United States. PATIENTS AND METHODS This retrospective analysis used de-identified electronic health record-derived data of patients diagnosed with mTNBC (January 2011-July 2022; index date was first-line [1L] treatment start date). Patient characteristics, treatment patterns, real-world overall survival (rwOS), and time to next treatment or death (TTNTD) were determined. Outcomes before (2011-2017, early cohort) and after (2018-2022, late cohort) targeted therapy approval were evaluated. RESULTS Among 2004 eligible patients, 21% were classified as Black, 13% had Eastern Cooperative Oncology Group performance status ≥2, and 63% were diagnosed with recurrent disease; median age was 60 years. First-line chemotherapy-only (single- and multiple-agent chemotherapy) use decreased with the introduction of targeted therapies from 96% before 2018 to 65% between 2019 and 2022. From 2019, 33% of patients received programmed death-(ligand) 1 inhibitor-based regimen; ~2% received poly (ADP-ribose) polymerase inhibitors. Median 1L treatment duration was 2.6 months and this did not change over time. Of all 1L patients, 34% died before second-line (2L) and 51% subsequently received 2L treatment. Median (95% CI) 1L rwOS and TTNTD were 11.3 (10.7-12.0) months and 4.3 (4.1-4.6) months, respectively. Median 1L 5-year survival [95% CI] showed statistically significant but small improvement from the early (10.9 [10.3-11.6] months) to late cohort (11.9 [10.7-13.1] months; HR [95% CI], 0.87 [0.78-0.96]). CONCLUSION This analysis demonstrated that, despite changes in care over time, survival improvements were not clinically meaningful; thus, a substantial unmet need for more efficacious treatments in previously untreated patients with mTNBC remains.
Collapse
Affiliation(s)
- Kevin Punie
- Department of Medical Oncology, Oncology Centre Antwerp, Ziekenhuis aan de Stroom, Antwerp, 2610, Belgium
| | - Allison W Kurian
- Departments of Medicine and of Epidemiology and Population Health, Stanford University, Stanford, CA, 94305, United States
| | - Ioanna Ntalla
- Gilead Sciences Europe, LTD, Uxbridge, UB11 1AF, United Kingdom
| | | | | | | | - Catherine Lai
- Gilead Sciences, Inc., Foster City, CA 94404, United States
| | - Sara Hurvitz
- Clinical Research Division, Fred Hutchinson Cancer Center; Department of Medicine/Division of Hematology Oncology, University of Washington, Seattle, WA 98195, United States
| |
Collapse
|
4
|
Ligorio F, Vingiani A, Torelli T, Sposetti C, Drufuca L, Iannelli F, Zanenga L, Depretto C, Folli S, Scaperrotta G, Capri G, Bianchi GV, Ferraris C, Martelli G, Maugeri I, Provenzano L, Nichetti F, Agnelli L, Lobefaro R, Fucà G, Fotia G, Mariani L, Morelli D, Ladisa V, De Santis MC, Lozza L, Trecate G, Belfiore A, Brich S, Bertolotti A, Lorenzini D, Ficchì A, Martinetti A, Sottotetti E, Arata A, Corsetto P, Sorrentino L, Rediti M, Salvadori G, Minucci S, Foiani M, Apolone G, Pagani M, Pruneri G, de Braud F, Vernieri C. Early downmodulation of tumor glycolysis predicts response to fasting-mimicking diet in triple-negative breast cancer patients. Cell Metab 2025; 37:330-344.e7. [PMID: 39694040 DOI: 10.1016/j.cmet.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/04/2024] [Accepted: 11/08/2024] [Indexed: 12/20/2024]
Abstract
In preclinical experiments, cyclic fasting-mimicking diets (FMDs) showed broad anticancer effects in combination with chemotherapy. Among different tumor types, triple-negative breast cancer (TNBC) is exquisitely sensitive to FMD. However, the antitumor activity and efficacy of cyclic FMD in TNBC patients remain unclear. Here, we show that a severely calorie-restricted, triweekly, 5-day FMD regimen results in excellent pathologic complete response (pCR) rates (primary endpoint) and long-term clinical outcomes (secondary endpoints) when combined with preoperative chemotherapy in 30 patients with early-stage TNBC enrolled in the phase 2 trial BREAKFAST. Bulk and single-cell RNA sequencing analysis revealed that highly glycolytic cancer cells, myeloid cells, and pericytes from tumors achieving pCR undergo a significant, early downmodulation of pathways related to glycolysis and pyruvate metabolism. Our findings pave the wave for conducting larger clinical trials to investigate the efficacy of cyclic FMD in early-stage TNBC patients and to validate early changes of intratumor glycolysis as a predictor of clinical benefit from nutrient restriction. This study was registered at Clinicaltrials.gov (NCT04248998).
Collapse
Affiliation(s)
- Francesca Ligorio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; IFOM ETS, the AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Andrea Vingiani
- Oncology and Hematology-Oncology Department, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy; Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Tommaso Torelli
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Caterina Sposetti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; Oncology and Hematology-Oncology Department, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy
| | - Lorenzo Drufuca
- IFOM ETS, the AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Fabio Iannelli
- Haematopathogy Division, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Lucrezia Zanenga
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Catherine Depretto
- Department of Radiology and Radiotherapy, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Secondo Folli
- Surgical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Gianfranco Scaperrotta
- Department of Radiology and Radiotherapy, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Giuseppe Capri
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Giulia V Bianchi
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Cristina Ferraris
- Surgical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Gabriele Martelli
- Surgical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Ilaria Maugeri
- Surgical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Leonardo Provenzano
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; Oncology and Hematology-Oncology Department, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy
| | - Federico Nichetti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Luca Agnelli
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Riccardo Lobefaro
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Giovanni Fucà
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Giuseppe Fotia
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Luigi Mariani
- Unit of Clinical Epidemiology and Trial Organization, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Daniele Morelli
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Vito Ladisa
- Hospital Pharmacy, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Maria Carmen De Santis
- Department of Radiology and Radiotherapy, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Laura Lozza
- Department of Radiology and Radiotherapy, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Giovanna Trecate
- Department of Radiology and Radiotherapy, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Antonino Belfiore
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Silvia Brich
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Alessia Bertolotti
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Daniele Lorenzini
- Oncology and Hematology-Oncology Department, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy; Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Angela Ficchì
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Antonia Martinetti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Elisa Sottotetti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Alessio Arata
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Paola Corsetto
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Luca Sorrentino
- Surgical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Mattia Rediti
- IFOM ETS, the AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Giulia Salvadori
- IFOM ETS, the AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Saverio Minucci
- Oncology and Hematology-Oncology Department, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy; Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Marco Foiani
- IFOM ETS, the AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy; Oncology and Hematology-Oncology Department, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy
| | - Giovanni Apolone
- Scientific Directorate, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Massimiliano Pagani
- IFOM ETS, the AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy; Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Giancarlo Pruneri
- Oncology and Hematology-Oncology Department, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy; Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Filippo de Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; Oncology and Hematology-Oncology Department, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy
| | - Claudio Vernieri
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; IFOM ETS, the AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy.
| |
Collapse
|
5
|
Chen Z, Liu Y, Lyu M, Chan CH, Sun M, Yang X, Qiao S, Chen Z, Yu S, Ren M, Lu A, Zhang G, Li F, Yu Y. Classifications of triple-negative breast cancer: insights and current therapeutic approaches. Cell Biosci 2025; 15:13. [PMID: 39893480 PMCID: PMC11787746 DOI: 10.1186/s13578-025-01359-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/28/2025] [Indexed: 02/04/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive and challenging type of cancer, characterized by the absence of specific receptors targeted by current therapies, which limits effective targeted treatment options. TNBC has a high risk of recurrence and distant metastasis, resulting in lower survival rates. Additionally, TNBC exhibits significant heterogeneity at histopathological, proteomic, transcriptomic, and genomic levels, further complicating the development of effective treatments. While some TNBC subtypes may initially respond to chemotherapy, resistance frequently develops, increasing the risk of aggressive recurrence. Therefore, precisely classifying and characterizing the distinct features of TNBC subtypes is crucial for identifying the most suitable molecular-based therapies for individual patients. In this review, we provide a comprehensive overview of these subtypes, highlighting their unique profiles as defined by various classification systems. We also address the limitations of conventional therapeutic approaches and explore innovative biological strategies, all aimed at advancing the development of targeted and effective therapeutic strategies for TNBC.
Collapse
Affiliation(s)
- Ziqi Chen
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, SAR, China
| | - Yumeng Liu
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, SAR, China
| | - Minchuan Lyu
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, SAR, China
| | - Chi Ho Chan
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Meiheng Sun
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, SAR, China
| | - Xin Yang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Shuangying Qiao
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, SAR, China
| | - Zheng Chen
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, SAR, China
| | - Sifan Yu
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Meishen Ren
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Aiping Lu
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Ge Zhang
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Fangfei Li
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Yuanyuan Yu
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China.
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, SAR, China.
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China.
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China.
| |
Collapse
|
6
|
Błaszczak E, Miziak P, Odrzywolski A, Baran M, Gumbarewicz E, Stepulak A. Triple-Negative Breast Cancer Progression and Drug Resistance in the Context of Epithelial-Mesenchymal Transition. Cancers (Basel) 2025; 17:228. [PMID: 39858010 PMCID: PMC11764116 DOI: 10.3390/cancers17020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most difficult subtypes of breast cancer to treat due to its distinct clinical and molecular characteristics. Patients with TNBC face a high recurrence rate, an increased risk of metastasis, and lower overall survival compared to other breast cancer subtypes. Despite advancements in targeted therapies, traditional chemotherapy (primarily using platinum compounds and taxanes) continues to be the standard treatment for TNBC, often with limited long-term efficacy. TNBC tumors are heterogeneous, displaying a diverse mutation profile and considerable chromosomal instability, which complicates therapeutic interventions. The development of chemoresistance in TNBC is frequently associated with the process of epithelial-mesenchymal transition (EMT), during which epithelial tumor cells acquire a mesenchymal-like phenotype. This shift enhances metastatic potential, while simultaneously reducing the effectiveness of standard chemotherapeutics. It has also been suggested that EMT plays a central role in the development of cancer stem cells. Hence, there is growing interest in exploring small-molecule inhibitors that target the EMT process as a future strategy for overcoming resistance and improving outcomes for patients with TNBC. This review focuses on the progression and drug resistance of TNBC with an emphasis on the role of EMT in these processes. We present TNBC-specific and EMT-related molecular features, key EMT protein markers, and various signaling pathways involved. We also discuss other important mechanisms and factors related to chemoresistance in TNBC within the context of EMT, highlighting treatment advancements to improve patients' outcomes.
Collapse
Affiliation(s)
- Ewa Błaszczak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland
| | | | | | | | | | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland
| |
Collapse
|
7
|
Bhutta ZA, Choi KC. Phytochemicals as Novel Therapeutics for Triple-Negative Breast Cancer: A Comprehensive Review of Current Knowledge. Phytother Res 2025; 39:364-396. [PMID: 39533509 DOI: 10.1002/ptr.8376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/10/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Triple-negative breast cancer is a characteristic subtype of breast cancer that lacks the estrogen receptor, human epidermal growth factor receptor 2, and progesterone receptor. Because of its highly diverse subtypes, increased metastasis capability, and poor prognosis, the risk of mortality for people with triple-negative breast cancers is high as compared with other cancers. Chemotherapy is currently playing a major role in treating triple-negative breast cancer patients; however, poor prognosis due to drug resistance is causing serious concern. Recent studies on several phytochemicals derived from various plants being used in Traditional Chinese Medicine, Traditional Korean Medicine, Ayurveda (Traditional Indian Medicine), and so on, have demonstrated to be a promising agent as a viable therapy against triple-negative breast cancer. Phytochemicals categorized as alkaloids, polyphenols, terpenoids, phytosterols, and organosulfur compounds have been demonstrated to reduce cancer cell proliferation and metastasis by activating various molecular pathways, thereby reducing the spread of triple-negative breast cancer. This review analyzes the molecular mechanisms by which various phytochemicals fight triple-negative breast cancer and offers a perspective on the difficulties and potential prospects for treating triple-negative breast cancer with various phytochemicals.
Collapse
Affiliation(s)
- Zeeshan Ahmad Bhutta
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
8
|
Peng X, Zheng J, Liu T, Zhou Z, Song C, Zhang D, Zhang X, Huang Y. DNA Methylation-Based Diagnosis and Treatment of Breast Cancer. Curr Cancer Drug Targets 2025; 25:26-37. [PMID: 38441008 DOI: 10.2174/0115680096278978240204162353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/01/2024] [Accepted: 01/12/2024] [Indexed: 03/06/2024]
Abstract
DNA methylation is a key epigenetic modifier involved in tumor formation, invasion, and metastasis. The development of breast cancer is a complex process, and many studies have now confirmed the involvement of DNA methylation in breast cancer. Moreover, the number of genes identified as aberrantly methylated in breast cancer is rapidly increasing, and the accumulation of epigenetic alterations becomes a chronic factor in the development of breast cancer. The combined effects of external environmental factors and the internal tumor microenvironment promote epigenetic alterations that drive tumorigenesis. This article focuses on the relevance of DNA methylation to breast cancer, describing the role of detecting DNA methylation in the early diagnosis, prediction, progression, metastasis, treatment, and prognosis of breast cancer, as well as recent advances. The reversibility of DNA methylation is utilized to target specific methylation aberrant promoters as well as related enzymes, from early prevention to late targeted therapy, to understand the journey of DNA methylation in breast cancer with a more comprehensive perspective. Meanwhile, methylation inhibitors in combination with other therapies have a wide range of prospects, providing hope to drug-resistant breast cancer patients.
Collapse
Affiliation(s)
- Xintong Peng
- School of Clinical Medicine, Affiliated Weifang Medical University, Weifang, China
| | - Jingfan Zheng
- School of Clinical Medicine, Affiliated Weifang Medical University, Weifang, China
| | - Tianzi Liu
- School of Clinical Medicine, Affiliated Weifang Medical University, Weifang, China
| | - Ziwen Zhou
- School of Clinical Medicine, Affiliated Weifang Medical University, Weifang, China
| | - Chen Song
- School of Clinical Medicine, Affiliated Weifang Medical University, Weifang, China
| | - Danyan Zhang
- School of Clinical Medicine, Affiliated Weifang Medical University, Weifang, China
| | - Xinlong Zhang
- School of Clinical Medicine, Affiliated Weifang Medical University, Weifang, China
| | - Yan Huang
- Department of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
9
|
Qi Y, Xu B, He J, Jiang B, Yan L, Zhou H, Chen S. Unveiling the Mechanisms and Therapeutic Effects of Xiaoyao Sanjie Decoction in Triple-Negative Breast Cancer: A Network Pharmacology and Experimental Validation Approach. Drug Des Devel Ther 2024; 18:6263-6281. [PMID: 39741917 PMCID: PMC11687282 DOI: 10.2147/dddt.s492047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/16/2024] [Indexed: 01/03/2025] Open
Abstract
Purpose Triple-negative breast cancer (TNBC) is a disease associated with high incidence and high mortality, which is a major problem threatening women's health. Xiaoyao Sanjie Decoction (XYSJD) exhibits remarkable therapeutic efficacy on TNBC; however, the underlying mechanism is unclear. This study verified the efficacy of XYSJD and its active component in the treatment of TNBC and explored its potential mechanism. Methods Ultra-high performance liquid chromatography-hybrid quadrupole orbitrap mass spectrometry (UHPLC-Q Exactive HFX-MS) was applied to explore the main chemical constituents of XYSJD. The key targets and potential mechanisms of XYSJD in the treatment of TNBC were predicted through network pharmacology, bioinformatics analysis and molecular docking. The effects of XYSJD against TNBC cells were evaluated by CCK-8 assay, EdU assay, wound healing assay, transwell assay, Hoechst-PI staining and flow cytometry. The mechanism of action was validated by Western blot analysis. Finally, the effect and mechanism of XYSJD and Que on TNBC were further verified by the tumor formation model. Results UHPLC-Q Exactive HFX-MS identified a total of 9 compounds in XYSJD. Network pharmacological methods identified 206 targets for anti-TNBC. Bioinformatics analysis suggests that the EZH2/AKT1 signaling pathway might play an important role in the effects of XYSJD against TNBC. Gene Ontology enrichment analysis showed that the biological process of XYSJD in TNBC treatment mainly involved apoptosis. XYSJD and Que were observed to have a good anticancer effect in vivo and in vitro. In addition, quercetin could induce the apoptosis of TNBC cells by decreased the expression levels of EZH2/AKT1 signaling pathway. Furthermore, AKT1 overexpression, treatment with the AKT activator (SC79) and EZH2 overexpression could reverse apoptosis induced by quercetin in TNBC cells. Conclusion This study revealed the anti-TNBC efficacy of XYSJD. Quercetin, the effective component of XYSJD, promoted apoptosis of TNBC cells via blockade of the EZH2/AKT1 signaling pathway. These findings aim to provide a more reliable basis for the clinical application of XYSJD in the treatment of TNBC.
Collapse
Affiliation(s)
- Yu Qi
- Traditional Chinese Medicine Classics Laboratory, Hubei University of Chinese Medicine, Wuhan, People’s Republic of China
| | - Bo Xu
- Postdoctoral Mobile Workstation, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Jinrong He
- Key Laboratory for Molecular Diagnosis of Hubei Province, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Bo Jiang
- Traditional Chinese Medicine Classics Laboratory, Hubei University of Chinese Medicine, Wuhan, People’s Republic of China
| | - Le Yan
- Traditional Chinese Medicine Classics Laboratory, Hubei University of Chinese Medicine, Wuhan, People’s Republic of China
| | - Haiyan Zhou
- Foreign Languages College, Hubei University of Science and Technology, Xianning, People’s Republic of China
| | - Saili Chen
- Clinical Medical College, Hubei University of Science and Technology, Xianning, People’s Republic of China
- National Demonstration Center for Experimental (General Practice) Education (Hubei University of Science and Technology), Xianning, People’s Republic of China
- Xianning Heji Hospital of Integrated Chinese and Western Medicine, Xianning, People’s Republic of China
- Xianning Traditional Chinese Medicine Chronic Disease Conditioning and Cancer Rehabilitation Joint Innovation Center, Xianning, People’s Republic of China
| |
Collapse
|
10
|
Nemours S, Solé C, Goicoechea I, Armesto M, Arestin M, Urruticoechea A, Rezola M, López IÁ, Schaapveld R, Schultz I, Zhang L, Lawrie CH. Use of Gain-of-Function Screening to Identify miRNAs Involved in Paclitaxel Resistance in Triple-Negative Breast Cancer. Int J Mol Sci 2024; 25:13630. [PMID: 39769392 PMCID: PMC11728027 DOI: 10.3390/ijms252413630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/30/2025] Open
Abstract
Paclitaxel is a widely used chemotherapeutic agent for the treatment of breast cancer (BC), including as a front-line treatment for triple-negative breast cancer (TNBC) patients. However, resistance to paclitaxel remains one of the major causes of death associated with treatment failure. Multiple studies have demonstrated that miRNAs play a role in paclitaxel resistance and are associated with both disease progression and metastasis. In the present study, we used a miRNA-encoding lentiviral library as a gain-of-function screen for paclitaxel resistance in the MDA-MB-231 TNBC cell line. We identified that miR-181b, miR-29a, miR-30c, miR-196 and miR-1295 conferred a resistant phenotype to cells. The expression of miR-29a also induced resistance to eribulin and vinorelbine, while miR-181b and miR-30c induced resistance to vinorelbine. We measured the levels of these miRNAs in breast cancer patients and observed higher levels of miR-29a in treatment-refractory patients. Taken together, we suggest that miR-29a and miR-181b may be good candidates for miRNA inhibition to overcome resistance to chemotherapy.
Collapse
Affiliation(s)
- Stéphane Nemours
- Molecular Oncology Group, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain; (S.N.); (C.S.); (M.A.); (M.A.)
| | - Carla Solé
- Molecular Oncology Group, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain; (S.N.); (C.S.); (M.A.); (M.A.)
| | - Ibai Goicoechea
- Department of Personalized Medicine, NASERTIC, Government of Navarra, 31011 Pamplona, Spain
| | - María Armesto
- Molecular Oncology Group, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain; (S.N.); (C.S.); (M.A.); (M.A.)
| | - María Arestin
- Molecular Oncology Group, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain; (S.N.); (C.S.); (M.A.); (M.A.)
| | - Ander Urruticoechea
- Breast Cancer Group, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain; (A.U.); (I.Á.L.)
- Gipuzkoa Cancer Unit, OSI Donostialdea—Onkologikoa Foundation, Paseo Dr Begiristain 121, 20014 San Sebastian, Spain
| | - Marta Rezola
- Department of Pathology, Hospital Universitario Donostia Osakidetza, 20014 Donostia, Spain;
| | - Isabel Álvarez López
- Breast Cancer Group, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain; (A.U.); (I.Á.L.)
- Gipuzkoa Cancer Unit, OSI Donostialdea—Onkologikoa Foundation, Paseo Dr Begiristain 121, 20014 San Sebastian, Spain
| | - Roel Schaapveld
- InteRNA Technologies, 3584 Utrecht, The Netherlands; (R.S.); (I.S.)
| | - Iman Schultz
- InteRNA Technologies, 3584 Utrecht, The Netherlands; (R.S.); (I.S.)
| | - Lei Zhang
- Sino-Swiss Institute of Advanced Technology (SSIAT), Shanghai University, Shanghai 201800, China;
| | - Charles H. Lawrie
- Molecular Oncology Group, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain; (S.N.); (C.S.); (M.A.); (M.A.)
- Sino-Swiss Institute of Advanced Technology (SSIAT), Shanghai University, Shanghai 201800, China;
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
- Radcliffe Department of Medicine, University of Oxford, Oxford OX1 2JD, UK
| |
Collapse
|
11
|
Filippi L, Urso L, Ferrari C, Guglielmo P, Evangelista L. The impact of PET imaging on triple negative breast cancer: an updated evidence-based perspective. Eur J Nucl Med Mol Imaging 2024; 52:263-279. [PMID: 39110196 PMCID: PMC11599309 DOI: 10.1007/s00259-024-06866-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/21/2024] [Indexed: 11/27/2024]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is a subtype of breast cancer characterized by the absence of estrogen, progesterone, and HER2 receptors. It predominantly affects younger women and is associated with a poor prognosis. This systematic review aims to evaluate the current role of positron emission tomography (PET) in the management of TNBC patients and to identify future research directions. METHODS We systematically searched the PubMed, Scopus, and Web of Science databases up to February 2024. A team of five researchers conducted data extraction and analysis. The quality of the selected studies was assessed using a specific evaluation form. RESULTS Twenty-eight studies involving 2870 TNBC patients were included in the review. Key clinical applications of PET in TNBC included predicting pathological complete response (pCR) in patients undergoing neoadjuvant chemotherapy (NAC), assessing the prognostic value of baseline PET, and initial disease staging. Two studies utilized PSMA-ligand agents, while the majority used [18F]FDG-based PET. Significant associations were found between baseline [18F]FDG uptake and molecular biomarkers such as PDL-1, androgen receptor, and Ki67. Baseline [18F]FDG PET led to the upstaging of patients from stage IIB to stage IV, influencing treatment decisions and survival outcomes. In the NAC setting, serial PET scans measuring changes in [18F]FDG uptake, indicated by maximum standardized uptake value (SUVmax), predicted pCR with varying cut-off values correlated with different response rates. Semiquantitative parameters such as metabolic tumor volume (MTV) and PET lung index were prognostic for metastatic disease. CONCLUSIONS In TNBC patients, [18F]FDG PET is essential for initial disease staging in both localized and metastatic settings. It is also useful for assessing treatment response to NAC. The ability of PET to correlate metabolic activity with molecular markers and predict treatment outcomes highlights its potential in TNBC management. Further prospective studies are needed to refine these clinical indications and establish its definitive role.
Collapse
Affiliation(s)
- Luca Filippi
- Nuclear Medicine Unit, Department of Onco-hematology, Fondazione PTV Policlinico Tor Vergata University Hospital, Rome, Italy
| | - Luca Urso
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy.
| | - Cristina Ferrari
- Nuclear Medicine Unit, Interdisciplinary Department of Medicine (DIM), University of Bari "Aldo Moro", Bari, Italy
| | | | - Laura Evangelista
- Nuclear Medicine Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| |
Collapse
|
12
|
Wang X, Li X, Dong T, Yu W, Jia Z, Hou Y, Yang J, Liu Y. Global biomarker trends in triple-negative breast cancer research: a bibliometric analysis. Int J Surg 2024; 110:7962-7983. [PMID: 38857504 PMCID: PMC11634138 DOI: 10.1097/js9.0000000000001799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/26/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is defined as breast cancer that is negative for estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER-2) in cancer tissue. The lack of specific biomarkers makes the diagnosis and prognosis of TNBC challenging. METHOD A comprehensive literature review and bibliometric analysis was performed using CiteSpace, VOSviewer and Scimago Graphica. RESULTS TNBC biomarker research has been growing rapidly in recent years, reflecting the enormous academic interest in TNBC biomarker research. A total of 127 journals published relevant studies and 1749 authors were involved in the field, with developed countries such as the United States, France, and the United Kingdom contributing greatly to the field. Collaborative network analysis found that the research in this field has not yet formed good communication and interaction, and the partnership should be strengthened in the future in order to promote the in-depth development of TNBC biomarker research. A comprehensive analysis of keywords and co-cited literature, etc. found that TNBC biomarker research mainly focuses on immune checkpoint markers, microenvironment-related markers, circulating tumor DNA, metabolic markers, genomics markers and so on. These research hotspots will help to better understand the molecular characteristics and biological processes of TNBC, and provide more accurate biomarkers for its diagnosis, treatment and prognosis. CONCLUSIONS The bibliometric analysis highlighted global trends and key directions in TNBC biomarker research. Future developments in TNBC biomarker research are likely to be in the direction of multi-omics integration, meticulous study of the microenvironment, targeted therapeutic biomarkers, application of liquid biopsy, application of machine learning and artificial intelligence, and individualized therapeutic strategies. Young scholars should learn and collaborate across disciplines, pay attention to new technologies and methods, improve their data analysis skills, and continue to follow up on the latest research trends in order to meet the challenges and opportunities in the field of TNBC biomarkers.
Collapse
Affiliation(s)
- Xingxin Wang
- College of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuhao Li
- College of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tiantian Dong
- Traditional Chinese Medicine External Treatment Center, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenyan Yu
- College of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhixia Jia
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yi Hou
- College of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiguo Yang
- College of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuanxiang Liu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
13
|
Murphy JM, Jeong K, Ahn EYE, Lim STS. FAK inhibition suppresses breast cancer progression via DNA methylation-mediated DAB2 gene reactivation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.23.624992. [PMID: 39651254 PMCID: PMC11623509 DOI: 10.1101/2024.11.23.624992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Epigenetic silencing of tumor suppressor genes is one of the main drivers of tumor progression. Without these tumor suppressors to reduce proliferation, tumor cells proliferate unchecked. Focal adhesion kinase (FAK) is a tyrosine kinase which is often upregulated in various tumors and promotes cell proliferation and migration. Recent studies have demonstrated that pharmacological or genetic FAK inhibition can reduce suppressive DNA methylation in vascular cells. Mechanistically, this is through nuclear FAK-mediated ubiquitination and proteasomal degradation of DNA methyltransferase 3A (DNMT3A). Treatment of breast cancer cell lines with FAK inhibitor (FAK-I) was able to reduce both FAK activity and DNMT3A protein expression. Further, global DNA methylation was reduced in breast cancer cell lines treated with FAK-I. This decrease in DNA methylation was correlated with decreased cell proliferation. We further showed that FAK-I reduced DNMT3A expression in breast cancer cells and that treatment with the proteasome inhibitor MG132 prevented loss of DNTM3A protein stability. To identify how FAK-I and DNMT3A loss could reduce breast cancer cell growth we compared RNA sequencing data from breast cancer cells treated with or without FAK-I or in shRNA DNMT3A knockdown. We have identified a potential tumor suppressor, DAB2, as being regulated by the nuclear FAK-DNMT3A axis. DAB2 is often downregulated in cancers and has been shown to play a vital role in switching TGFβ signaling from proliferative to apoptotic by altering TGFβRI binding partners. Immunoblotting and immunostaining indeed revealed that FAK-I and shDNMT3A could induce DAB2 protein expression. Further, FAK-I treatment showed efficacy in reducing tumor growth in vivo using the murine 4T1 tumor model. Immunostaining of 4T1 tumors showed FAK-I decreased DNMT3A, DNA methylation (5-methylcytosine, 5-mC), and increased DAB2 expression. Taken together, these data suggest that nuclear FAK-mediated regulation of DNMT3A can alter the epigenetic landscape and induce tumor suppressor gene expression.
Collapse
|
14
|
Li M, Lulla AR, Wang Y, Tsavaschidis S, Wang F, Karakas C, Nguyen TD, Bui TN, Pina MA, Chen MK, Mastoraki S, Multani AS, Fowlkes NW, Sahin A, Marshall CG, Hunt KK, Keyomarsi K. Low-Molecular Weight Cyclin E Confers a Vulnerability to PKMYT1 Inhibition in Triple-Negative Breast Cancer. Cancer Res 2024; 84:3864-3880. [PMID: 39186665 PMCID: PMC11567801 DOI: 10.1158/0008-5472.can-23-4130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/11/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Cyclin E is a regulatory subunit of CDK2 that mediates S phase entry and progression. The cleavage of full-length cyclin E (FL-cycE) to low-molecular weight isoforms (LMW-E) dramatically alters substrate specificity, promoting G1-S cell cycle transition and accelerating mitotic exit. Approximately 70% of triple-negative breast cancers (TNBC) express LMW-E, which correlates with poor prognosis. PKMYT1 also plays an important role in mitosis by inhibiting CDK1 to block premature mitotic entry, suggesting it could be a therapeutic target in TNBC expressing LMW-E. In this study, analysis of tumor samples of patients with TNBC revealed that coexpression of LMW-E and PKMYT1-catalyzed CDK1 phosphorylation predicted poor response to neoadjuvant chemotherapy. Compared with FL-cycE, LMW-E specifically upregulates PKMYT1 expression and protein stability, thereby increasing CDK1 phosphorylation. Inhibiting PKMYT1 with the selective inhibitor RP-6306 (lunresertib) elicited LMW-E-dependent antitumor effects, accelerating premature mitotic entry, inhibiting replication fork restart, and enhancing DNA damage, chromosomal breakage, apoptosis, and replication stress. Importantly, TNBC cell line xenografts expressing LMW-E showed greater sensitivity to RP-6306 than tumors with empty vector or FL-cycE. Furthermore, RP-6306 exerted tumor suppressive effects in LMW-E transgenic murine mammary tumors and patient-derived xenografts of LMW-E-high TNBC but not in the LMW-E null models examined in parallel. Lastly, transcriptomic and immune profiling demonstrated that RP-6306 treatment induced interferon responses and T-cell infiltration in the LMW-E-high tumor microenvironment, enhancing the antitumor immune response. These findings highlight the LMW-E/PKMYT1/CDK1 regulatory axis as a promising therapeutic target in TNBC, providing the rationale for further clinical development of PKMYT1 inhibitors in this aggressive breast cancer subtype. Significance: PKMYT1 upregulation and CDK1 phosphorylation in triple-negative breast cancer expressing low-molecular weight cyclin E leads to suboptimal responses to chemotherapy but sensitizes tumors to PKMYT1 inhibitors, proposing a personalized treatment strategy.
Collapse
Affiliation(s)
- Mi Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Amriti R. Lulla
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yan Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Fuchenchu Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cansu Karakas
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tuyen D.T. Nguyen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tuyen N. Bui
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marc A. Pina
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mei-Kuang Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sofia Mastoraki
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Asha S. Multani
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Natalie W. Fowlkes
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Aysegul Sahin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Kelly K. Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
15
|
Padzińska-Pruszyńska I, Kucharzewska P, Matejuk A, Górczak M, Kubiak M, Taciak B, Król M. Macrophages: Key Players in the Battle against Triple-Negative Breast Cancer. Int J Mol Sci 2024; 25:10781. [PMID: 39409110 PMCID: PMC11476577 DOI: 10.3390/ijms251910781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a challenging subtype of breast cancer characterized by the absence of estrogen and progesterone receptors and HER2 expression, leading to limited treatment options and a poorer prognosis. TNBC is particularly prevalent in premenopausal African-descent women and is associated with aggressive tumor behavior and higher metastatic potential. Tumor-associated macrophages (TAMs) are abundantly present within the TNBC microenvironment and play pivotal roles in promoting tumor growth, progression, and metastasis through various mechanisms, including immune suppression and enhancement of angiogenesis. This review provides an in-depth overview of TNBC, focusing on its epidemiology, its molecular characteristics, and the critical influence of TAMs. It discusses the pathological and molecular aspects that define TNBC's aggressive nature and reviews current and emerging therapeutic strategies aimed at targeting these dynamics. Special attention is given to the role of TAMs, exploring their potential as therapeutic targets due to their significant impact on tumor behavior and patient outcomes. This review aims to highlight the complexities of the TNBC landscape and to present the innovative approaches that are currently being pursued to improve therapeutic efficacy and patient survival.
Collapse
Affiliation(s)
- Irena Padzińska-Pruszyńska
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.P.-P.); (P.K.); (M.G.); (M.K.); (B.T.)
| | - Paulina Kucharzewska
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.P.-P.); (P.K.); (M.G.); (M.K.); (B.T.)
| | - Agata Matejuk
- Department of Immunology, Collegium Medicum, University of Zielona Góra, 65-417 Zielona Góra, Poland;
| | - Małgorzata Górczak
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.P.-P.); (P.K.); (M.G.); (M.K.); (B.T.)
| | - Małgorzata Kubiak
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.P.-P.); (P.K.); (M.G.); (M.K.); (B.T.)
| | - Bartłomiej Taciak
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.P.-P.); (P.K.); (M.G.); (M.K.); (B.T.)
| | - Magdalena Król
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.P.-P.); (P.K.); (M.G.); (M.K.); (B.T.)
| |
Collapse
|
16
|
Angel CZ, Beattie S, Hanif EAM, Ryan MP, Guerra Liberal FDC, Zhang SD, Monteith S, Buckley NE, Parker E, Haynes S, McIntyre AJ, Haddock P, Sharifova M, Branco CM, Mullan PB. A SRC-slug-TGFβ2 signaling axis drives poor outcomes in triple-negative breast cancers. Cell Commun Signal 2024; 22:454. [PMID: 39327614 PMCID: PMC11426005 DOI: 10.1186/s12964-024-01793-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/16/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Treatment options for the Triple-Negative Breast Cancer (TNBC) subtype remain limited and the outcome for patients with advanced TNBC is very poor. The standard of care is chemotherapy, but approximately 50% of tumors develop resistance. METHODS We performed gene expression profiling of 58 TNBC tumor samples by microarray, comparing chemosensitive with chemoresistant tumors, which revealed that one of the top upregulated genes was TGFβ2. A connectivity mapping bioinformatics analysis predicted that the SRC inhibitor Dasatinib was a potential pharmacological inhibitor of chemoresistant TNBCs. Claudin-low TNBC cell lines were selected to represent poor-outcome, chemoresistant TNBC, for in vitro experiments and in vivo models. RESULTS In vitro, we identified a signaling axis linking SRC, AKT and ERK2, which in turn upregulated the stability of the transcription factors, Slug and Snail. Slug was shown to repress TGFβ2-antisense 1 to promote TGFβ2 signaling, upregulating cell survival via apoptosis and DNA-damage responses. Additionally, an orthotopic allograft in vivo model demonstrated that the SRC inhibitor Dasatinib reduced tumor growth as a single agent, and enhanced responses to the TNBC mainstay drug, Epirubicin. CONCLUSION Targeting the SRC-Slug-TGFβ2 axis may therefore lead to better treatment options and improve patient outcomes in this highly aggressive subpopulation of TNBCs.
Collapse
Affiliation(s)
- Charlotte Zoe Angel
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland
| | - Shannon Beattie
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland
| | | | - Micheal P Ryan
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland
| | | | - Shu-Dong Zhang
- C-TRIC Building, Altnagelvin Area Hospital, Ulster University, Derry, Northern Ireland
| | - Scott Monteith
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland
| | - Niamh E Buckley
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland
| | - Emma Parker
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland
| | - Shannon Haynes
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland
| | - Alexander J McIntyre
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland
| | - Paula Haddock
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland
| | - Madina Sharifova
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland
| | - Cristina M Branco
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland
| | - Paul B Mullan
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland.
| |
Collapse
|
17
|
Hu Y, Wang C, Liang H, Li J, Yang Q. The treatment landscape of triple-negative breast cancer. Med Oncol 2024; 41:236. [PMID: 39210220 DOI: 10.1007/s12032-024-02456-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
Triple-negative breast cancer (TNBC) tumors are biologically aggressive breast cancer. On the molecular level, TNBC is a highly heterogeneous disease; more biotechnologies are gradually being used to advance the understanding of TNBC subtypes and help establish more targeted therapies. Multiple TNBC target-related agents are already approved by the Food and Drug Administration for clinical use, including PI3K/AKT/mTOR inhibitors, PRAP inhibitors, and antibody-drug conjugates. Some innovative approaches, like peptide strategies, also promise to treat TNBC. Currently, the interplay between TNBC tumors and their tumor microenvironment provides a promising prospect for improving the efficacy of immunotherapy. In this review, we summarize the prevalent TNBC subtype methodologies, discuss the evolving therapeutic strategies, and propose new therapeutic possibilities based on existing foundational theories, with the attempt to serve as a reference to further advance tailoring treatment of TNBC.
Collapse
Affiliation(s)
- Yi Hu
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Chen Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Huishi Liang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Jie Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China.
| | - Qiong Yang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China.
| |
Collapse
|
18
|
Mehrtabar E, Khalaji A, Pandeh M, Farhoudian A, Shafiee N, Shafiee A, Ojaghlou F, Mahdavi P, Soleymani-Goloujeh M. Impact of microRNA variants on PI3K/AKT signaling in triple-negative breast cancer: comprehensive review. Med Oncol 2024; 41:222. [PMID: 39120634 DOI: 10.1007/s12032-024-02469-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Breast cancer (BC) is a significant cause of cancer-related mortality, and triple-negative breast cancer (TNBC) is a particularly aggressive subtype associated with high mortality rates, especially among younger females. TNBC poses a considerable clinical challenge due to its aggressive tumor behavior and limited therapeutic options. Aberrations within the PI3K/AKT pathway are prevalent in TNBC and correlate with increased therapeutic intervention resistance and poor outcomes. MicroRNAs (miRs) have emerged as crucial PI3K/AKT pathway regulators influencing various cellular processes involved in TNBC pathogenesis. The levels of miRs, including miR-193, miR-4649-5p, and miR-449a, undergo notable changes in TNBC tumor tissues, emphasizing their significance in cancer biology. This review explored the intricate interplay between miR variants and PI3K/AKT signaling in TNBC. The review focused on the molecular mechanisms underlying miR-mediated dysregulation of this pathway and highlighted specific miRs and their targets. In addition, we explore the clinical implications of miR dysregulation in TNBC, particularly its correlation with TNBC prognosis and therapeutic resistance. Elucidating the roles of miRs in modulating the PI3K/AKT signaling pathway will enhance our understanding of TNBC biology and unveil potential therapeutic targets. This comprehensive review aims to discuss current knowledge and open promising avenues for future research, ultimately facilitating the development of precise and effective treatments for patients with TNBC.
Collapse
Affiliation(s)
- Ehsan Mehrtabar
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
| | - Amirreza Khalaji
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojtaba Pandeh
- School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Aram Farhoudian
- School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Nadia Shafiee
- Children's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Atefe Shafiee
- Board-Certified Cardiologist, Rajaie Cardiovascular Medical and Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ojaghlou
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parinaz Mahdavi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Mehdi Soleymani-Goloujeh
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
19
|
Jama M, Tabana Y, Barakat KH. Targeting cytotoxic lymphocyte antigen 4 (CTLA-4) in breast cancer. Eur J Med Res 2024; 29:353. [PMID: 38956700 PMCID: PMC11218087 DOI: 10.1186/s40001-024-01901-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/23/2024] [Indexed: 07/04/2024] Open
Abstract
Breast cancer (BC) has a high mortality rate and is one of the most common malignancies in the world. Initially, BC was considered non-immunogenic, but a paradigm shift occurred with the discovery of tumor-infiltrating lymphocytes (TILs) and regulatory T cells (Tregs) in the BC tumor microenvironment. CTLA-4 (Cytotoxic T-lymphocyte-associated protein 4) immunotherapy has emerged as a treatment option for BC, but it has limitations, including suboptimal antitumor effects and toxicity. Research has demonstrated that anti-CTLA-4 combination therapies, such as Treg depletion, cancer vaccines, and modulation of the gut microbiome, are significantly more effective than CTLA-4 monoclonal antibody (mAB) monotherapy. Second-generation CTLA-4 antibodies are currently being developed to mitigate immune-related adverse events (irAEs) and augment antitumor efficacy. This review examines anti-CTLA-4 mAB in BC, both as monotherapy and in combination with other treatments, and sheds light on ongoing clinical trials, novel CTLA-4 therapeutic strategies, and potential utility of biomarkers in BC.
Collapse
Affiliation(s)
- Maryam Jama
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Yasser Tabana
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Khaled H Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada.
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
20
|
Shukla N, Shah K, Rathore D, Soni K, Shah J, Vora H, Dave H. Androgen receptor: Structure, signaling, function and potential drug discovery biomarker in different breast cancer subtypes. Life Sci 2024; 348:122697. [PMID: 38710280 DOI: 10.1016/j.lfs.2024.122697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
The Androgen Receptor (AR) is emerging as an important factor in the pathogenesis of breast cancer (BC), which is the most common malignancy worldwide. >70 % of AR expression in primary and metastatic breast tumors has been observed which suggests that AR may be a new marker and a potential therapeutic target among AR-positive BC patients. Biological insight into AR-positive breast cancer reveals that AR may cross-talk with several vital signaling pathways, including key molecules and receptors. Downstream signaling of AR might also affect many clinically important pathways that are emerging as clinical targets in BC. AR exhibits different behaviors depending on the breast cancer molecular subtype. Preliminary clinical research using AR-targeted drugs, which have already been FDA-approved for prostate cancer (PC), has given promising results for AR-positive breast cancer patients. However, since AR positivity's prognostic and predictive value remains uncertain, it is difficult to identify and stratify patients who would benefit from AR-targeted therapies alone. Thus, the need of the hour is to target the androgen receptor as a monotherapy or in combination with other conventional therapies which has proven to be an effective clinical strategy for the treatment of prostate cancer patients, and these therapeutic strategies are increasingly being investigated in breast cancer. Therefore, in this manuscript, we review the role of AR in various cellular processes that promote tumorigenesis and aggressiveness, in different subtypes of breast cancer, as well as discuss ongoing efforts to target AR for the more effective treatment and prevention of breast cancer.
Collapse
Affiliation(s)
- Nirali Shukla
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Kanisha Shah
- Division of Biological & Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Deepshikha Rathore
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Kinal Soni
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Jigna Shah
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Hemangini Vora
- The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat 380016, India
| | - Heena Dave
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
21
|
Zhang HP, Jiang RY, Zhu JY, Sun KN, Huang Y, Zhou HH, Zheng YB, Wang XJ. PI3K/AKT/mTOR signaling pathway: an important driver and therapeutic target in triple-negative breast cancer. Breast Cancer 2024; 31:539-551. [PMID: 38630392 PMCID: PMC11194209 DOI: 10.1007/s12282-024-01567-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/10/2024] [Indexed: 06/24/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly heterogeneous tumor lacking estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. It has higher aggressiveness and metastasis than other subtypes, with limited effective therapeutic strategies, leading to a poor prognosis. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) signaling pathway is prevalently over-activated in human cancers and contributes to breast cancer (BC) growth, survival, proliferation, and angiogenesis, which could be an interesting therapeutic target. This review summarizes the PI3K/AKT/mTOR signaling pathway activation mechanism in TNBC and discusses the relationship between its activation and various TNBC subtypes. We also report the latest clinical studies on kinase inhibitors related to this pathway for treating TNBC. Our review discusses the issues that need to be addressed in the clinical application of these inhibitors.
Collapse
Affiliation(s)
- Huan-Ping Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310000, Zhejiang, China
- Wenzhou Medical University, No. 270, Xueyuan West Road, Lucheng District, Wenzhou, 325027, Zhejiang, China
| | - Rui-Yuan Jiang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310000, Zhejiang, China
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
| | - Jia-Yu Zhu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310000, Zhejiang, China
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
| | - Ke-Na Sun
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310000, Zhejiang, China
- Wenzhou Medical University, No. 270, Xueyuan West Road, Lucheng District, Wenzhou, 325027, Zhejiang, China
| | - Yuan Huang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310000, Zhejiang, China
| | - Huan-Huan Zhou
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310000, Zhejiang, China
| | - Ya-Bing Zheng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310000, Zhejiang, China.
| | - Xiao-Jia Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
22
|
Mantilla W, Gonzalez M, Rojas S, Borras-Osorio M, Molano-Gonzalez N, Moran D, Guerra JH, Romero O, Munevar I. Significance of Pathologic Response in Patients With Early and Locally Advanced Breast Cancer Treated With Neoadjuvant Chemotherapy in a Middle-Income Country. A Real-World Historical Cohort. JCO Glob Oncol 2024; 10:e2300187. [PMID: 38991183 DOI: 10.1200/go.23.00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 07/13/2024] Open
Abstract
PURPOSE Breast cancer (BC) is the most frequent neoplasm in women in Colombia and is associated with a higher mortality rate than in other countries and regions. Neoadjuvant chemotherapy (NACT) has become a standard treatment in locally advanced BC and provides an opportunity to improve clinical outcomes in BC. This study aims to describe characteristics, treatment patterns, and outcomes after NACT in a cohort of Colombian patients with BC. METHODS We performed a retrospective cohort study. We included adult patients with BC treated with NACT. Clinical charts were retrospectively reviewed. Descriptive statistics and time to event for overall survival analyses were performed. Recursive partitioning was performed for survival curves to assess the complex relationship between survival times and other variables. RESULTS Three hundred and fourteen patients were included for analysis. The pathologic complete response after neoadjuvant chemotherapy (ypCR) rate was 34.4%, with a higher ypCR in triple-negative BC (TNBC; 46.9%) and human epidermal growth factor receptor 2-positive BC (72.7%). Those who did not achieve ypCR had a higher percentage of death and relapse. The median follow-up was 4.9 years, with an 88.2% 5-year overall survival (OS). CONCLUSION A total of 62.6% of the total patients identified were not treated with NACT, indicating a low utilization. Our global ypCR rate was higher when compared with similar studies in Colombia, likely because of differences in the NACT treatment regimens. ypCR was only associated with OS in the TNBC subgroup, emphasizing the importance of pursuing ypCR in these patients. We consider the use of NACT a valuable opportunity to implement innovative treatment approaches that improve outcomes in Colombian patients with BC.
Collapse
Affiliation(s)
- William Mantilla
- Breast Cancer Unit, Luis Carlos Sarmiento Angulo Cancer Treatment and Research Center CTIC, Bogota, Colombia
- Fundación Cardioinfantil-Instituto de Cardiologia, Bogota, Colombia
| | | | - Sebastián Rojas
- Internal Medicine Department, Hospital Universitario Mayor Mederi, Bogota, Colombia
| | - Mariana Borras-Osorio
- Fundación Cardioinfantil-Instituto de Cardiologia, Bogota, Colombia
- ICAROS Research Group, Bogota, Colombia
| | - Nicolas Molano-Gonzalez
- Clinical Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Diego Moran
- ICAROS Research Group, Bogota, Colombia
- Clínica de Oncologia Astorga, Medellin, Colombia
| | - Joaquín Hernando Guerra
- ICAROS Research Group, Bogota, Colombia
- Hematology and Oncology Department, Los Cobos Medical Center, Bogota, Colombia
- Hemato-Oncologos Asociados, Bogota, Colombia
| | - Oscar Romero
- Fundación Universitaria de Ciencias de la Salud, Bogota, Colombia
| | - Isabel Munevar
- Fundación Cardioinfantil-Instituto de Cardiologia, Bogota, Colombia
- ICAROS Research Group, Bogota, Colombia
- Hemato-Oncologos Asociados, Bogota, Colombia
- Hematology and Oncology Department, Hospital Militar Central, Bogota, Colombia
| |
Collapse
|
23
|
Poulet S, Dai M, Wang N, Yan G, Boudreault J, Daliah G, Guillevin A, Nguyen H, Galal S, Ali S, Lebrun JJ. Genome-wide in vivo CRISPR screen identifies TGFβ3 as actionable biomarker of palbociclib resistance in triple negative breast cancer. Mol Cancer 2024; 23:118. [PMID: 38831405 PMCID: PMC11145857 DOI: 10.1186/s12943-024-02029-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
Triple negative breast cancer (TNBC) remains exceptionally challenging to treat. While CDK4/6 inhibitors have revolutionized HR + breast cancer therapy, there is limited understanding of their efficacy in TNBC and meaningful predictors of response and resistance to these drugs remain scarce. We conducted an in vivo genome-wide CRISPR screen using palbociclib as a selection pressure in TNBC. Hits were prioritized using microarray data from a large panel of breast cancer cell lines to identify top palbociclib sensitizers. Our study defines TGFβ3 as an actionable determinant of palbociclib sensitivity that potentiates its anti-tumor effects. Mechanistically, we show that chronic palbociclib exposure depletes p21 levels, contributing to acquired resistance, and that TGFβ3 treatment can overcome this. This study defines TGFβ3 as an actionable biomarker that can be used to improve patient stratification for palbociclib treatment and exploits the synergistic interaction between CDK4/6 and TGFβ3 to propose a new combinatorial treatment for TNBC.
Collapse
Affiliation(s)
- Sophie Poulet
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada
| | - Meiou Dai
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada
| | - Ni Wang
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada
| | - Gang Yan
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada
| | - Julien Boudreault
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada
| | - Girija Daliah
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada
| | - Alan Guillevin
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada
| | - Huong Nguyen
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada
| | - Soaad Galal
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada
| | - Suhad Ali
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada
| | - Jean-Jacques Lebrun
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
24
|
Syrnioti A, Petousis S, Newman LA, Margioula-Siarkou C, Papamitsou T, Dinas K, Koletsa T. Triple Negative Breast Cancer: Molecular Subtype-Specific Immune Landscapes with Therapeutic Implications. Cancers (Basel) 2024; 16:2094. [PMID: 38893213 PMCID: PMC11171372 DOI: 10.3390/cancers16112094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Triple Negative Breast Cancer (TNBC) is characterized by distinct molecular subtypes with unique biological and clinical features. This systematic review aimed to identify articles examining the differences in the tumor immune microenvironment (TIME) across different TNBC molecular subtypes. Six studies meeting inclusion criteria were analyzed, utilizing gene expression profiling and bioinformatic analyses to classify TNBC samples into molecular subtypes, as well as immunohistochemistry and cell deconvolution methods to characterize the TIME. Results revealed significant heterogeneity in immune cell composition among TNBC subtypes, with the immunomodulatory (IM) subtype demonstrating robust immune infiltration, composed mainly of adaptive immune cells along with an increased density of CTLA-4+ and PD-1+ TILs, high PD-L1 tumor cell expression, and upregulation of FOXP3+ Tregs. A more immunosuppressive TIME with a predominance of innate immune cells and lower levels of tumor-infiltrating lymphocytes (TILs) was observed in luminal androgen receptor (LAR) tumors. In mesenchymal stem-like (MSL) tumors, the TIME was mainly composed of innate immune cells, with a high number of M2 tumor-associated macrophages (TAMs), while the BL and M tumors displayed poor adaptive and innate immune responses, indicating an "immune-cold" phenotype. Differential activation of signaling pathways, genomic diversity, and metabolic reprogramming were identified as contributors to TIME heterogeneity. Understanding this interplay is crucial for tailoring therapeutic strategies, especially regarding immunotherapy.
Collapse
Affiliation(s)
- Antonia Syrnioti
- Department of Pathology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Stamatios Petousis
- 2nd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.P.); (K.D.)
| | - Lisa A. Newman
- Department of Breast Surgery, New York Presbyterian-Weill Cornell Medicine, New York, NY 10065, USA;
| | - Chrysoula Margioula-Siarkou
- MSc Program in Gynaecologic Oncology and Breast Oncology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Theodora Papamitsou
- Laboratory of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Konstantinos Dinas
- 2nd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.P.); (K.D.)
| | - Triantafyllia Koletsa
- Department of Pathology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
25
|
Lee M, Yoo TK, Chae BJ, Lee A, Cha YJ, Lee J, Ahn SG, Kang J. Luminal androgen receptor subtype and tumor-infiltrating lymphocytes groups based on triple-negative breast cancer molecular subclassification. Sci Rep 2024; 14:11278. [PMID: 38760384 PMCID: PMC11101432 DOI: 10.1038/s41598-024-61640-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/08/2024] [Indexed: 05/19/2024] Open
Abstract
In our previous study, we developed a triple-negative breast cancer (TNBC) subtype classification that correlated with the TNBC molecular subclassification. In this study, we aimed to evaluate the predictor variables of this subtype classification on the whole slide and to validate the model's performance by using an external test set. We explored the characteristics of this subtype classification and investigated genomic alterations, including genomic scar signature scores. First, TNBC was classified into the luminal androgen receptor (LAR) and non-luminal androgen receptor (non-LAR) subtypes based on the AR Allred score (≥ 6 and < 6, respectively). Then, the non-LAR subtype was further classified into the lymphocyte-predominant (LP), lymphocyte-intermediate (LI), and lymphocyte-depleted (LD) groups based on stromal tumor-infiltrating lymphocytes (TILs) (< 20%, > 20% but < 60%, and ≥ 60%, respectively). This classification showed fair agreement with the molecular classification in the test set. The LAR subtype was characterized by a high rate of PIK3CA mutation, CD274 (encodes PD-L1) and PDCD1LG2 (encodes PD-L2) deletion, and a low homologous recombination deficiency (HRD) score. The non-LAR LD TIL group was characterized by a high frequency of NOTCH2 and MYC amplification and a high HRD score.
Collapse
Affiliation(s)
- Miseon Lee
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tae-Kyung Yoo
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Byung Joo Chae
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ahwon Lee
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoon Jin Cha
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jieun Lee
- Cancer Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung Gwe Ahn
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jun Kang
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
26
|
Čeprnja T, Tomić S, Perić Balja M, Marušić Z, Blažićević V, Spagnoli GC, Juretić A, Čapkun V, Vuger AT, Pogorelić Z, Mrklić I. Prognostic Value of "Basal-like" Morphology, Tumor-Infiltrating Lymphocytes and Multi-MAGE-A Expression in Triple-Negative Breast Cancer. Int J Mol Sci 2024; 25:4513. [PMID: 38674098 PMCID: PMC11050590 DOI: 10.3390/ijms25084513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
"Basal-like" (BL) morphology and the expression of cancer testis antigens (CTA) in breast cancer still have unclear prognostic significance. The aim of our research was to explore correlations of the morphological characteristics and tumor microenvironment in triple-negative breast carcinomas (TNBCs) with multi-MAGE-A CTA expression and to determine their prognostic significance. Clinical records of breast cancer patients who underwent surgery between January 2017 and December 2018 in four major Croatian clinical centers were analyzed. A total of 97 non-metastatic TNBCs with available tissue samples and treatment information were identified. Cancer tissue sections were additionally stained with programmed death-ligand 1 (PD-L1) Ventana (SP142) and multi-MAGE-A (mAb 57B). BL morphology was detected in 47 (49%) TNBCs and was associated with a higher Ki-67 proliferation index and histologic grade. Expression of multi-MAGE-A was observed in 77 (79%) TNBCs and was significantly associated with BL morphology. Lymphocyte-predominant breast cancer (LPBC) status was detected in 11 cases (11.3%) and significantly correlated with the Ki-67 proliferation index, increased number of intratumoral lymphocytes (itTIL), and PD-L1 expression. No impact of BL morphology, multi-MAGE-A expression, histologic type, or LPBC status on disease-free survival was observed. Our data suggest that tumor morphology could help identify patients with potential benefits from CTA-targeting immunotherapy.
Collapse
Affiliation(s)
- Toni Čeprnja
- Department of Pathology, Forensic Medicine and Cytology, University Hospital of Split, 21000 Split, Croatia; (T.Č.); (S.T.); (I.M.)
| | - Snježana Tomić
- Department of Pathology, Forensic Medicine and Cytology, University Hospital of Split, 21000 Split, Croatia; (T.Č.); (S.T.); (I.M.)
- Department of Pathology, School of Medicine, University of Split, 21000 Split, Croatia
| | - Melita Perić Balja
- Department of Pathology, University Hospital Center “Sestre Milosrdnice”, 10000 Zagreb, Croatia
| | - Zlatko Marušić
- Department of Pathology, Zagreb University Hospital Center, 10000 Zagreb, Croatia
| | | | | | - Antonio Juretić
- Department of Oncology, University Hospital Dubrava, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Vesna Čapkun
- Department of Nuclear Medicine, University Hospital of Split, 21000 Split, Croatia
| | - Ana Tečić Vuger
- Department of Oncology, University Hospital “Sestre Milosrdnice”, 10000 Zagreb, Croatia;
| | - Zenon Pogorelić
- Department of Pediatric Surgery, University Hospital of Split, 21000 Split, Croatia
- Department of Surgery, School of Medicine, University of Split, 21000 Split, Croatia
| | - Ivana Mrklić
- Department of Pathology, Forensic Medicine and Cytology, University Hospital of Split, 21000 Split, Croatia; (T.Č.); (S.T.); (I.M.)
- Department of Pathology, School of Medicine, University of Split, 21000 Split, Croatia
| |
Collapse
|
27
|
Pedersen CB, Campos B, Rene L, Wegener HS, Krishnan NM, Panda B, Vitting‐Seerup K, Rossing M, Bagger FO, Olsen LR. Building flexible and robust analysis frameworks for molecular subtyping of cancers. Mol Oncol 2024; 18:606-619. [PMID: 38158740 PMCID: PMC10920087 DOI: 10.1002/1878-0261.13580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/19/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024] Open
Abstract
Molecular subtyping is essential to infer tumor aggressiveness and predict prognosis. In practice, tumor profiling requires in-depth knowledge of bioinformatics tools involved in the processing and analysis of the generated data. Additionally, data incompatibility (e.g., microarray versus RNA sequencing data) and technical and uncharacterized biological variance between training and test data can pose challenges in classifying individual samples. In this article, we provide a roadmap for implementing bioinformatics frameworks for molecular profiling of human cancers in a clinical diagnostic setting. We describe a framework for integrating several methods for quality control, normalization, batch correction, classification and reporting, and develop a use case of the framework in breast cancer.
Collapse
Affiliation(s)
- Christina Bligaard Pedersen
- Department of Health TechnologyTechnical University of DenmarkKongens LyngbyDenmark
- Center for Genomic MedicineRigshospitalet – Copenhagen University HospitalDenmark
| | - Benito Campos
- Department of Health TechnologyTechnical University of DenmarkKongens LyngbyDenmark
| | - Lasse Rene
- Department of Health TechnologyTechnical University of DenmarkKongens LyngbyDenmark
| | | | | | - Binay Panda
- Department of Health TechnologyTechnical University of DenmarkKongens LyngbyDenmark
- School of BiotechnologyJawaharlal Nehru UniversityNew DelhiIndia
- Special Centre for Systems MedicineJawaharlal Nehru UniversityNew DelhiIndia
| | | | - Maria Rossing
- Center for Genomic MedicineRigshospitalet – Copenhagen University HospitalDenmark
| | | | - Lars Rønn Olsen
- Department of Health TechnologyTechnical University of DenmarkKongens LyngbyDenmark
| |
Collapse
|
28
|
Basho RK, Zhao L, White JB, Huo L, Bassett RL, Mittendorf EA, Thompson A, Litton JK, Ueno N, Arun B, Lim B, Valero V, Tripathy D, Zhang J, Adrada BE, Santiago L, Ravenberg E, Seth S, Yam C, Moulder SL, Damodaran S. Comprehensive Analysis Identifies Variability in PI3K Pathway Alterations in Triple-Negative Breast Cancer Subtypes. JCO Precis Oncol 2024; 8:e2300124. [PMID: 38484209 PMCID: PMC10954064 DOI: 10.1200/po.23.00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/10/2023] [Accepted: 11/16/2023] [Indexed: 03/19/2024] Open
Abstract
PURPOSE The PI3K pathway is frequently altered in triple-negative breast cancer (TNBC). Limited cell line and human data suggest that TNBC tumors characterized as mesenchymal (M) and luminal androgen receptor (LAR) subtypes have increased incidence of alterations in the PI3K pathway. The impact of PI3K pathway alterations across TNBC subtypes is poorly understood. METHODS Pretreatment tumor was evaluated from operable TNBC patients enrolled on a clinical trial of neoadjuvant therapy (NAT; A Robust TNBC Evaluation fraMework to Improve Survival [ClinicalTrials.gov identifier: NCT02276443]). Tumors were characterized into seven TNBC subtypes per Pietenpol criteria (basal-like 1, basal-like 2, immunomodulatory, M, mesenchymal stem-like, LAR, and unstable). Using whole-exome sequencing, RNA sequencing, and immunohistochemistry for PTEN, alterations were identified in 32 genes known to activate the PI3K pathway. Alterations in each subtype were associated with pathologic response to NAT. RESULTS In evaluated patients (N = 177), there was a significant difference in the incidence of PI3K pathway alterations across TNBC subtypes (P < .01). The highest incidence of alterations was seen in LAR (81%), BL2 (79%), and M (62%) subtypes. The odds ratio for pathologic complete response (pCR) in the presence of PIK3CA mutation, PTEN mutation, and/or PTEN loss was highest in the LAR subtype and lowest in the M subtype, but these findings did not reach statistical significance. Presence of PIK3CA mutation was associated with pCR in the LAR subtype (P = .02). CONCLUSION PI3K pathway alteration can affect response to NAT in TNBC, and targeted agents may improve outcomes, particularly in patients with M and LAR TNBC.
Collapse
Affiliation(s)
| | - Li Zhao
- University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jason B. White
- University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lei Huo
- University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | | | - Naoto Ueno
- University of Texas MD Anderson Cancer Center, Houston, TX
- University of Hawaii Cancer Center, Honolulu, HI
| | - Banu Arun
- University of Texas MD Anderson Cancer Center, Houston, TX
| | - Bora Lim
- Baylor College of Medicine, Houston, TX
| | - Vicente Valero
- University of Texas MD Anderson Cancer Center, Houston, TX
| | - Debu Tripathy
- University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jianhua Zhang
- University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | - Sahil Seth
- University of Texas MD Anderson Cancer Center, Houston, TX
| | - Clinton Yam
- University of Texas MD Anderson Cancer Center, Houston, TX
| | - Stacy L. Moulder
- University of Texas MD Anderson Cancer Center, Houston, TX
- Eli Lilly and Company, Indianapolis, IN
| | | |
Collapse
|
29
|
Crespo B, Illera JC, Silvan G, Lopez-Plaza P, Herrera de la Muela M, de la Puente Yagüe M, Diaz del Arco C, Illera MJ, Caceres S. Androgen and Estrogen β Receptor Expression Enhances Efficacy of Antihormonal Treatments in Triple-Negative Breast Cancer Cell Lines. Int J Mol Sci 2024; 25:1471. [PMID: 38338747 PMCID: PMC10855276 DOI: 10.3390/ijms25031471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/10/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
The triple-negative breast cancer (TNBC) subtype is characterized by the lack of expression of ERα (estrogen receptor α), PR (progesterone receptor) and no overexpression of HER-2. However, TNBC can express the androgen receptor (AR) or estrogen receptor β (ERβ). Also, TNBC secretes steroid hormones and is influenced by hormonal fluctuations, so the steroid inhibition could exert a beneficial effect in TNBC treatment. The aim of this study was to evaluate the effect of dutasteride, anastrozole and ASP9521 in in vitro processes using human TNBC cell lines. For this, immunofluorescence, sensitivity, proliferation and wound healing assays were performed, and hormone concentrations were studied. Results revealed that all TNBC cell lines expressed AR and ERβ; the ones that expressed them most intensely were more sensitive to antihormonal treatments. All treatments reduced cell viability, highlighting MDA-MB-453 and SUM-159. Indeed, a decrease in androgen levels was observed in these cell lines, which could relate to a reduction in cell viability. In addition, MCF-7 and SUM-159 increased cell migration under treatments, increasing estrogen levels, which could favor cell migration. Thus, antihormonal treatments could be beneficial for TNBC therapies. This study clarifies the importance of steroid hormones in AR and ERβ-positive cell lines of TNBC.
Collapse
Affiliation(s)
- Belen Crespo
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (G.S.); (P.L.-P.); (M.J.I.); (S.C.)
| | - Juan Carlos Illera
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (G.S.); (P.L.-P.); (M.J.I.); (S.C.)
| | - Gema Silvan
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (G.S.); (P.L.-P.); (M.J.I.); (S.C.)
| | - Paula Lopez-Plaza
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (G.S.); (P.L.-P.); (M.J.I.); (S.C.)
| | - María Herrera de la Muela
- Obstetrics and Gynecology Department, Hospital Clinico San Carlos, Instituto de Salud de la Mujer, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IsISSC), 28040 Madrid, Spain;
| | - Miriam de la Puente Yagüe
- Department of Public and Maternal Child Health University, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | | | - Maria Jose Illera
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (G.S.); (P.L.-P.); (M.J.I.); (S.C.)
| | - Sara Caceres
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (G.S.); (P.L.-P.); (M.J.I.); (S.C.)
| |
Collapse
|
30
|
Limsakul P, Choochuen P, Jungrungrueang T, Charupanit K. Prognostic Markers in Tyrosine Kinases Specific to Basal-like 2 Subtype of Triple-Negative Breast Cancer. Int J Mol Sci 2024; 25:1405. [PMID: 38338684 PMCID: PMC10855431 DOI: 10.3390/ijms25031405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Triple-negative breast cancer (TNBC), a heterogeneous and therapeutically challenging subtype, comprises over 50% of patients categorized into basal-like 1 (BL1) and basal-like 2 (BL2) intrinsic molecular subtypes. Despite their shared basal-like classification, BL2 is associated with a poor response to neoadjuvant chemotherapy and reduced relapse-free survival compared to BL1. Here, the study focused on identifying subtype-specific markers for BL2 through transcriptomic analysis of TNBC patients using RNA-seq and clinical integration. Six receptor tyrosine kinase (TK) genes, including EGFR, EPHA4, EPHB2, PDGFRA, PDGFRB, and ROR1, were identified as potential differentiators for BL2. Correlations between TK mRNA expression and TNBC prognosis, particularly EGFR, PDGFRA, and PDGFRB, revealed potential synergistic interactions in pathways related to cell survival and proliferation. Our findings also suggest promising dual markers for predicting disease prognosis. Furthermore, RT-qPCR validation demonstrated that identified BL2-specific TKs were expressed at a higher level in BL2 than in BL1 cell lines, providing insights into unique characteristics. This study advances the understanding of TNBC heterogeneity within the basal-like subtypes, which could lead to novel clinical treatment approaches and the development of targeted therapies.
Collapse
Affiliation(s)
- Praopim Limsakul
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand;
- Center of Excellence for Trace Analysis and Biosensor (TAB-CoE), Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Pongsakorn Choochuen
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (P.C.); (T.J.)
| | - Thawirasm Jungrungrueang
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (P.C.); (T.J.)
| | - Krit Charupanit
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (P.C.); (T.J.)
| |
Collapse
|
31
|
Ilie SM, Briot N, Constatin G, Ilie A, Beltjens F, Ladoire S, Desmoulins I, Hennequin A, Bertaut A, Coutant C, Causeret S, Ghozali N, Coudert B, Arnould L. Pathologic and immunohistochemical prognostic markers in residual triple-negative breast cancer after neoadjuvant chemotherapy. Front Oncol 2024; 13:1309890. [PMID: 38273853 PMCID: PMC10809386 DOI: 10.3389/fonc.2023.1309890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/04/2023] [Indexed: 01/27/2024] Open
Abstract
Background The persistence of residual tumour after neoadjuvant chemotherapy (NAC) in localised triple-negative breast cancer (TNBC) is known to have a negative prognostic value. However, different degrees of expression of some immunohistochemical markers may correlate with different prognoses. Methods The expression of biomarkers with a known prognostic value, i.e., cytokeratin 5/6 (CK5/6), androgen receptor (AR), epidermal growth factor receptor (EGFR) proliferation-related nuclear antigen Ki-67, human epidermal growth factor receptor 2 (HER2), protein 53 (p53), forkhead box protein 3 (FOXP3), and cluster differentiation 8 (CD8), was analysed by immunohistochemistry in 111 samples after NAC in non-metastatic TNBC patients addressed to Georges-François Leclerc Cancer Centre Dijon, France. Clinical and pathological variables were retrospectively collected. Cox regression was used to identify immunohistochemical (IHC) and clinicopathological predictors of event-free survival (EFS) (relapse or death). Results Median age was 50.4 years (range 25.6-88.3), 55.9% (n = 62) were non-menopausal, 70 (63.1%) had stage IIA-IIB disease. NAC was mostly sequential anthracycline-taxanes (72.1%), and surgical intervention was principally conservative (51.3%). We found 65.7% ypT1, 47.2% lymph node involvement (ypN+), and 29.4% lymphovascular invasion (LVI). Most residual tumours were EGFR >110 (H-score) (60.5%, n = 66), AR ≥4% (53.2%, n = 58), p53-positive mutated (52.7%, n = 58), CD8 ≥26 (58.1%, n = 61), FOXP3 ≥7 (51.4%, n = 54), more than half in the stroma, and 52.3% (n = 58) HER2 score 0. After a median follow-up of 80.8 months, 48.6% had relapsed. Median EFS was 62.3 months (95% CI, 37.2-not reached (NR)). Factors independently associated with poor EFS were AR-low (p = 0.002), ypN+ (p < 0.001), and LVI (p = 0.001). Factors associated with lower overall survival (OS) were EGFR-low (p = 0.041), Ki-67 high (p = 0.024), and ypN+ (p < 0.001). Conclusion Post-NAC residual disease in TNBC showed biomarkers specific to a basal-like subtype and markers of lymphocyte infiltration mostly present in the stroma. Prognostic markers for EFS were AR, LVI, and ypN and warrant further validation in a prognostic model.
Collapse
Affiliation(s)
- Silvia Mihaela Ilie
- Department of Medical Oncology, Georges Francois Leclerc Cancer Centre, Dijon, France
| | - Nathalie Briot
- Department of Biostatistics Georges Francois Leclerc Cancer Centre, Dijon, France
| | - Guillaume Constatin
- Department of Biostatistics Georges Francois Leclerc Cancer Centre, Dijon, France
| | - Alis Ilie
- Cancer Biology Research Platform, Centre Georges Francois Leclerc, Dijon, France
| | - Francoise Beltjens
- Department of Bio-pathology, Georges Francois Leclerc Cancer Centre, Dijon, France
| | - Sylvain Ladoire
- Department of Medical Oncology, Georges Francois Leclerc Cancer Centre, Dijon, France
- Cancer Biology Research Platform, Centre Georges Francois Leclerc, Dijon, France
| | - Isabelle Desmoulins
- Department of Medical Oncology, Georges Francois Leclerc Cancer Centre, Dijon, France
| | - Audrey Hennequin
- Department of Medical Oncology, Georges Francois Leclerc Cancer Centre, Dijon, France
| | - Aurelie Bertaut
- Department of Biostatistics Georges Francois Leclerc Cancer Centre, Dijon, France
| | - Charles Coutant
- Surgery Department Georges Francois Leclerc Cancer Centre, Dijon, France
| | - Sylvain Causeret
- Surgery Department Georges Francois Leclerc Cancer Centre, Dijon, France
| | - Niama Ghozali
- Department of Medical Oncology, University Hospital Mohammed VI, Tangier, Morocco
| | - Bruno Coudert
- Department of Medical Oncology, Georges Francois Leclerc Cancer Centre, Dijon, France
| | - Laurent Arnould
- Department of Bio-pathology, Georges Francois Leclerc Cancer Centre, Dijon, France
| |
Collapse
|
32
|
Ebrahimnejad P, Mohammadi Z, Babaei A, Ahmadi M, Amirkhanloo S, Asare-Addo K, Nokhodchid A. Novel Strategies Using Sagacious Targeting for Site-Specific Drug Delivery in Breast Cancer Treatment: Clinical Potential and Applications. Crit Rev Ther Drug Carrier Syst 2024; 41:35-84. [PMID: 37824418 DOI: 10.1615/critrevtherdrugcarriersyst.v41.i1.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
For more than a decade, researchers have been working to achieve new strategies and smart targeting drug delivery techniques and technologies to treat breast cancer (BC). Nanotechnology presents a hopeful strategy for targeted drug delivery into the building of new therapeutics using the properties of nanomaterials. Nanoparticles are of high regard in the field of diagnosis and the treatment of cancer. The use of these nanoparticles as an encouraging approach in the treatment of various cancers has drawn the interest of researchers in recent years. In order to achieve the maximum therapeutic effectiveness in the treatment of BC, combination therapy has also been adopted, leading to minimal side effects and thus an enhancement in the quality of life for patients. This review article compares, discusses and criticizes the approaches to treat BC using novel design strategies and smart targeting of site-specific drug delivery systems.
Collapse
Affiliation(s)
- Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Mohammadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirhossein Babaei
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Melika Ahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shervin Amirkhanloo
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield, UK
| | - Ali Nokhodchid
- Lupin Pharmaceutical Research Center, Coral Springs, Florida, USA; Pharmaceutics Research Lab, Arundel Building, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
33
|
Keskinkılıc M, Gökmen-Polar Y, Badve SS. Triple Negative Breast Cancers: An Obsolete Entity? Clin Breast Cancer 2024; 24:1-6. [PMID: 38016912 DOI: 10.1016/j.clbc.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/30/2023]
Abstract
Triple negative breast cancer is defined on the basis of what it is not. It has served as a useful umbrella entity for management of patients with breast cancer for the last couple of decades. However, during this period a number of novel therapies have become available. These therapies have been documented to be useful in subsets of TNBCs that can be identified on the basis of distinct biologic alterations. Herein we revisit the categorization and usage of the TNBC as an entity to assess its utility in view of the currently available therapies.
Collapse
Affiliation(s)
- Merve Keskinkılıc
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA
| | - Yesim Gökmen-Polar
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA
| | - Sunil S Badve
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA.
| |
Collapse
|
34
|
Alvarez-Frutos L, Barriuso D, Duran M, Infante M, Kroemer G, Palacios-Ramirez R, Senovilla L. Multiomics insights on the onset, progression, and metastatic evolution of breast cancer. Front Oncol 2023; 13:1292046. [PMID: 38169859 PMCID: PMC10758476 DOI: 10.3389/fonc.2023.1292046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
Breast cancer is the most common malignant neoplasm in women. Despite progress to date, 700,000 women worldwide died of this disease in 2020. Apparently, the prognostic markers currently used in the clinic are not sufficient to determine the most appropriate treatment. For this reason, great efforts have been made in recent years to identify new molecular biomarkers that will allow more precise and personalized therapeutic decisions in both primary and recurrent breast cancers. These molecular biomarkers include genetic and post-transcriptional alterations, changes in protein expression, as well as metabolic, immunological or microbial changes identified by multiple omics technologies (e.g., genomics, epigenomics, transcriptomics, proteomics, glycomics, metabolomics, lipidomics, immunomics and microbiomics). This review summarizes studies based on omics analysis that have identified new biomarkers for diagnosis, patient stratification, differentiation between stages of tumor development (initiation, progression, and metastasis/recurrence), and their relevance for treatment selection. Furthermore, this review highlights the importance of clinical trials based on multiomics studies and the need to advance in this direction in order to establish personalized therapies and prolong disease-free survival of these patients in the future.
Collapse
Affiliation(s)
- Lucia Alvarez-Frutos
- Laboratory of Cell Stress and Immunosurveillance, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid – Centro Superior de Investigaciones Cientificas (CSIC), Valladolid, Spain
| | - Daniel Barriuso
- Laboratory of Cell Stress and Immunosurveillance, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid – Centro Superior de Investigaciones Cientificas (CSIC), Valladolid, Spain
| | - Mercedes Duran
- Laboratory of Molecular Genetics of Hereditary Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid – Centro Superior de Investigaciones Cientificas (CSIC), Valladolid, Spain
| | - Mar Infante
- Laboratory of Molecular Genetics of Hereditary Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid – Centro Superior de Investigaciones Cientificas (CSIC), Valladolid, Spain
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, Paris, France
| | - Roberto Palacios-Ramirez
- Laboratory of Cell Stress and Immunosurveillance, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid – Centro Superior de Investigaciones Cientificas (CSIC), Valladolid, Spain
| | - Laura Senovilla
- Laboratory of Cell Stress and Immunosurveillance, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid – Centro Superior de Investigaciones Cientificas (CSIC), Valladolid, Spain
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| |
Collapse
|
35
|
Pan Y, Zhao Q, He H, Qi Y, Bai Y, Zhao J, Yang Y. TRPML1 as a potential therapeutic target for triple-negative breast cancer: a review. Front Oncol 2023; 13:1326023. [PMID: 38156109 PMCID: PMC10753766 DOI: 10.3389/fonc.2023.1326023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/01/2023] [Indexed: 12/30/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most refractory subtype of breast cancer, and effective treatments are urgently needed owing to its poor prognosis. Surgery, radiotherapy, and chemotherapy, alone or in combination, are the leading choices for TNBC therapy. Although promising approaches and procedures have emerged, several challenges, such as off-target effects, drug resistance, and severe side effects, remain to be addressed. Recently, transient receptor potential channel mucolipin 1 (TRPML1) has attracted the attention of researchers because its expression has been implicated in numerous diseases, including cancer. TRPML1 regulates biological events and signaling pathways, including autophagic flux, exocytosis, ionic homeostasis, and lysosomal biogenesis, all contributing to tumorigenesis and cancer progression. TRPML1 also functions as a building block for cancer cell growth, mitogenic signaling, priming tissues for metastasis, and activation of transcriptional programs, processes involved in several malignant tumors. This review provides an overview of breast cancer epidemiology and diagnostic techniques and then discusses the existing therapeutics. Additionally, we elaborate on the development of, and associated challenges to, TNBC diagnostics and treatment and the feasibility of TRPML1 as a therapeutic target for TNBC.
Collapse
Affiliation(s)
- Ying Pan
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Qiancheng Zhao
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Haitao He
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Yubo Qi
- First Hospital of Jilin University, Changchun, Jilin, China
| | - Yujie Bai
- First Hospital of Jilin University, Changchun, Jilin, China
| | - Jia Zhao
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Yiming Yang
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
36
|
Sharifi MN, O'Regan RM, Wisinski KB. Is the Androgen Receptor a Viable Target in Triple Negative Breast Cancer in 5 Years? Clin Breast Cancer 2023; 23:813-824. [PMID: 37419745 DOI: 10.1016/j.clbc.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/09/2023] [Accepted: 06/17/2023] [Indexed: 07/09/2023]
Abstract
Triple negative breast cancer (TNBC) is characterized by high rates of disease recurrence after definitive therapy, and median survival of less than 18 months in the metastatic setting. Systemic therapy options for TNBC consist primarily of cytotoxic chemotherapy-containing regimens, and while recently FDA-approved chemo-immunotherapy combinations and antibody-drug conjugates such as Sacituzumab govitecan have improved clinical outcomes, there remains an unmet need for more effective and less toxic therapies. A subset of TNBC expresses the androgen receptor (AR), a nuclear hormone steroid receptor that activates an androgen-responsive transcriptional program, and gene expression profiling has revealed a TNBC molecular subtype with AR expression and luminal and androgen responsive features. Both preclinical and clinical data suggest biologic similarities between luminal AR (LAR) TNBC and ER+ luminal breast cancer, including lower proliferative activity, relative chemoresistance, and high rates of oncogenic activating mutations in the phosphatidylinositol-3-kinase (PI3K) pathway. Preclinical LAR-TNBC models are sensitive to androgen signaling inhibitors (ASIs), and particularly given the availability of FDA-approved ASIs with robust efficacy in prostate cancer, there has been great interest in targeting this pathway in AR+ TNBC. Here, we review the underlying biology and completed and ongoing androgen-targeted therapy studies in early stage and metastatic AR+ TNBC.
Collapse
Affiliation(s)
- Marina N Sharifi
- UW Carbone Cancer Center, University of Wisconsin, Madison, Madison, WI.
| | - Ruth M O'Regan
- Department of Medicine, University of Rochester, Rochester, NY
| | - Kari B Wisinski
- UW Carbone Cancer Center, University of Wisconsin, Madison, Madison, WI
| |
Collapse
|
37
|
Anilkumar KV, Rema LP, John MC, Vanesa John T, George A. miRNAs in the prognosis of triple-negative breast cancer: A review. Life Sci 2023; 333:122183. [PMID: 37858714 DOI: 10.1016/j.lfs.2023.122183] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
Triple-Negative Breast Cancer (TNBC) is a highly aggressive and invasive type of breast cancer (BC) with high mortality rate wherein effective target medicaments are lacking. It is a very heterogeneous group with several subtypes that account for 10-20% of cancer among women globally, being negative for three most important receptors (estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2)), with an early and high recurrence resulting in poor survival rate. Therefore, a more thorough knowledge on carcinogenesis of TNBC is required for the development of personalized treatment options. miRNAs can either promote or suppress tumorigenesis and have been linked to a number of features of cancer progression, including proliferation, metastasis, apoptosis, and epithelial-mesenchymal transition (EMT). Recent miRNA research shows that there is great potential for the development of novel biomarkers as they have emerged as drivers of tumorigenesis and provide opportunities to target various components involved in TNBC, thus helping to solve this difficult-to-treat disease. In this review, we summarize the most relevant miRNAs that play an essential role in TNBC biology. Their role with regard to molecular mechanisms underlying TNBC progression has been discussed, and their potential use as therapeutic or prognostic markers to unravel the intricacy of TNBC based on the pieces of evidence obtained from various works of literature has been briefly addressed.
Collapse
Affiliation(s)
- Kavya V Anilkumar
- PG and Research Department of Zoology, Maharaja's College, Ernakulam, 682011, India; Cell and Molecular Biology Facility, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - L P Rema
- PG and Research Department of Zoology, Maharaja's College, Ernakulam, 682011, India
| | - Mithun Chacko John
- Department of Medical Oncology, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala 680005, India
| | - T Vanesa John
- Department of Pathology, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Alex George
- Cell and Molecular Biology Facility, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India.
| |
Collapse
|
38
|
Jinna N, Yuan YC, Rida P. Kinesin Family Member C1 (KIFC1/HSET) Underlies Aggressive Disease in Androgen Receptor-Low and Basal-Like Triple-Negative Breast Cancers. Int J Mol Sci 2023; 24:16072. [PMID: 38003261 PMCID: PMC10671256 DOI: 10.3390/ijms242216072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Quadruple-negative breast cancer (QNBC) lacks traditional actionable targets, including androgen receptor (AR). QNBC disproportionately afflicts and impacts patients of African genetic ancestry. Kinesin family member C1 (KIFC1/HSET), a centrosome clustering protein that prevents cancer cells from undergoing centrosome-amplification-induced apoptosis, has been reported to be upregulated in TNBCs and African-American (AA) TNBCs. Herein, we analyzed KIFC1 RNA levels and their associations with clinical features and outcomes among AR-low and AR-high TNBC tumors in three distinct publicly available gene expression datasets and in the breast cancer gene expression database (bc-GenExMiner). KIFC1 levels were significantly higher in AR-low and basal-like TNBCs than in AR-high and non-basal-like TNBCs, irrespective of the stage, grade, tumor size, and lymph node status. KIFC1 levels were also upregulated in AR-low tumors relative to AR-high tumors among Black and premenopausal women with TNBC. High KIFC1 levels conferred significantly shorter overall survival, disease-free survival, and distant metastasis-free survival among AR-low and basal-like TNBC patients in Kaplan-Meier analyses. In conclusion, KIFC1 levels may be upregulated in AR-low tumors and, specifically, in those of African descent, wherein it may promote poor outcomes. KIFC1 may be an actionable cancer-cell-specific target for the AR-low TNBC subpopulation and could aid in alleviating racial disparities in TNBC outcomes.
Collapse
Affiliation(s)
- Nikita Jinna
- Department of Population Science, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Yate-Ching Yuan
- Department of Integrative Genomics and Bioinformatics, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Padmashree Rida
- Department of Science, Rowland Hall, Salt Lake City, UT 84102, USA;
| |
Collapse
|
39
|
Pal A, Gonzalez-Malerva L, Eaton S, Xu C, Zhang Y, Grief D, Sakala L, Nwekwo L, Zeng J, Christensen G, Gupta C, Streitwieser E, Singharoy A, Park JG, LaBaer J. Multidimensional quantitative phenotypic and molecular analysis reveals neomorphic behaviors of p53 missense mutants. NPJ Breast Cancer 2023; 9:78. [PMID: 37773066 PMCID: PMC10541912 DOI: 10.1038/s41523-023-00582-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/13/2023] [Indexed: 09/30/2023] Open
Abstract
Mutations in the TP53 tumor suppressor gene occur in >80% of the triple-negative or basal-like breast cancer. To test whether neomorphic functions of specific TP53 missense mutations contribute to phenotypic heterogeneity, we characterized phenotypes of non-transformed MCF10A-derived cell lines expressing the ten most common missense mutant p53 proteins and observed a wide spectrum of phenotypic changes in cell survival, resistance to apoptosis and anoikis, cell migration, invasion and 3D mammosphere architecture. The p53 mutants R248W, R273C, R248Q, and Y220C are the most aggressive while G245S and Y234C are the least, which correlates with survival rates of basal-like breast cancer patients. Interestingly, a crucial amino acid difference at one position-R273C vs. R273H-has drastic changes on cellular phenotype. RNA-Seq and ChIP-Seq analyses show distinct DNA binding properties of different p53 mutants, yielding heterogeneous transcriptomics profiles, and MD simulation provided structural basis of differential DNA binding of different p53 mutants. Integrative statistical and machine-learning-based pathway analysis on gene expression profiles with phenotype vectors across the mutant cell lines identifies quantitative association of multiple pathways including the Hippo/YAP/TAZ pathway with phenotypic aggressiveness. Further, comparative analyses of large transcriptomics datasets on breast cancer cell lines and tumors suggest that dysregulation of the Hippo/YAP/TAZ pathway plays a key role in driving the cellular phenotypes towards basal-like in the presence of more aggressive p53 mutants. Overall, our study describes distinct gain-of-function impacts on protein functions, transcriptional profiles, and cellular behaviors of different p53 missense mutants, which contribute to clinical phenotypic heterogeneity of triple-negative breast tumors.
Collapse
Affiliation(s)
- Anasuya Pal
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Laura Gonzalez-Malerva
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Seron Eaton
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Chenxi Xu
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Yining Zhang
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Dustin Grief
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- The School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Lydia Sakala
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Lilian Nwekwo
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Jia Zeng
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Grant Christensen
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Chitrak Gupta
- The Biodesign Center for Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Ellen Streitwieser
- The Biodesign Center for Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Abhishek Singharoy
- The Biodesign Center for Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Jin G Park
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.
| | - Joshua LaBaer
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
40
|
Mathias C, Kozak VN, Magno JM, Baal SCS, dos Santos VHA, Ribeiro EMDSF, Gradia DF, Castro MAA, Carvalho de Oliveira J. PD-1/PD-L1 Inhibitors Response in Triple-Negative Breast Cancer: Can Long Noncoding RNAs Be Associated? Cancers (Basel) 2023; 15:4682. [PMID: 37835376 PMCID: PMC10572024 DOI: 10.3390/cancers15194682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 10/15/2023] Open
Abstract
As immune checkpoint inhibitors (ICI) emerge as a paradigm-shifting treatment option for patients with advanced or metastatic cancer, there is a growing demand for biomarkers that can distinguish which patients are likely to benefit. In the case of triple-negative breast cancer (TNBC), characterized by a lack of therapeutic targets, pembrolizumab approval for high-risk early-stage disease occurred regardless of PD-L1 status, which keeps the condition in a biomarker limbus. In this review, we highlight the participation of long non-coding RNAs (lncRNAs) in the regulation of the PD-1/PD-L1 pathway, as well as in the definition of prognostic immune-related signatures in many types of tumors, aiming to shed light on molecules that deserve further investigation for a potential role as biomarkers. We also conducted a bioinformatic analysis to investigate lncRNAs already investigated in PD-1/PDL-1 pathways in other cancer types, considering the TNBC molecular context. In this sense, from the generated data, we evidence here two lncRNAs, UCA1 and HCP5, which have not yet been identified in the context of the tumoral immune response in breast cancer. These candidates can be further explored to verify their use as biomarkers for ICI response. In this article, we present an updated review regarding the use of lncRNA as biomarkers of response to ICI, highlighting the versatility of using these molecules.
Collapse
Affiliation(s)
- Carolina Mathias
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-980, Brazil; (C.M.)
| | - Vanessa Nascimento Kozak
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-980, Brazil; (C.M.)
| | - Jessica Maria Magno
- Post-Graduation Program in Bioinformatics, Bioinformatics and Systems Biology Laboratory, Federal University of Paraná, Curitiba 81520-260, Brazil (V.H.A.d.S.)
| | - Suelen Cristina Soares Baal
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-980, Brazil; (C.M.)
| | - Victor Henrique Apolonio dos Santos
- Post-Graduation Program in Bioinformatics, Bioinformatics and Systems Biology Laboratory, Federal University of Paraná, Curitiba 81520-260, Brazil (V.H.A.d.S.)
| | | | - Daniela Fiori Gradia
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-980, Brazil; (C.M.)
| | - Mauro Antonio Alves Castro
- Post-Graduation Program in Bioinformatics, Bioinformatics and Systems Biology Laboratory, Federal University of Paraná, Curitiba 81520-260, Brazil (V.H.A.d.S.)
| | - Jaqueline Carvalho de Oliveira
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-980, Brazil; (C.M.)
| |
Collapse
|
41
|
Zhang Z, Zhang R, Li D. Molecular Biology Mechanisms and Emerging Therapeutics of Triple-Negative Breast Cancer. Biologics 2023; 17:113-128. [PMID: 37767463 PMCID: PMC10520847 DOI: 10.2147/btt.s426392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that is conventionally characterized by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2), accounting for approximately 15-20% of all breast cancers. Compared to other molecular phenotypes, TNBC is typically associated with high malignancy and poor prognosis. Cytotoxic agents have been the mainstay of treatment for the past few decades due to the lack of definitive targets and limited therapeutic interventions. However, recent developments have demonstrated that TNBC has peculiar molecular classifications and biomarkers, which provide the possibility of evolving treatment from basic cytotoxic chemotherapy to an expanding domain of targeted therapies. This review presents a framework for understanding the current clinical experience surrounding molecular biology mechanisms in TNBC (Figure 1). Including immunotherapy, polymerase (PARP) and PI3K/AKT pathway inhibitors, antibody-drug conjugates, and androgen receptor (AR) blockade. Additionally, the role of miRNA therapeutics targeting TNBC and potential strategies targeting cancer stem cells (CSCs) are discussed and highlighted. As more and more treatments arise on the horizon, we believe that patients with TNBC will have a new sense of hope.
Collapse
Affiliation(s)
- Zhiying Zhang
- Inner Mongolia Medical University, Department of Thyroid Breast Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, 010050, People’s Republic of China
| | - Rui Zhang
- Inner Mongolia Medical University, Department of Thyroid Breast Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, 010050, People’s Republic of China
| | - Donghai Li
- Inner Mongolia Medical University, Department of Thyroid Breast Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, 010050, People’s Republic of China
| |
Collapse
|
42
|
Zajac KK, Malla S, Babu RJ, Raman D, Tiwari AK. Ethnic disparities in the immune microenvironment of triple negative breast cancer and its role in therapeutic outcomes. Cancer Rep (Hoboken) 2023; 6 Suppl 1:e1779. [PMID: 36632988 PMCID: PMC10440847 DOI: 10.1002/cnr2.1779] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
In 2020, newly diagnosed breast cancer (BC) cases surpassed that of lung cancer among women, making it the most common female cancer globally. In spite of recent increases in incidence rates, mortality due to BC has declined since 1989. These declines have been attributed to advancements in treatment modalities as well as increased mammography surveillance. Despite these advances, African American (AA) women are 40% more likely to die from BC than Caucasian women. Multifactorial etiology has been implicated in the disparity of BC mortality rates among AA women. As an example, AA women have a disproportionate incidence of triple negative breast cancer (TNBC), which has a poor prognosis and marginal treatment options. Increasingly, the tumor microenvironment (TME) has gained relevance as it relates to primary tumor progression, metastasis and treatment possibilities. The treatment outcomes or pathological complete response (pCR) in TNBC among AA women are affected by differences in TME. The TME of AA women exhibit several variances in acellular and cellular components associated with pro-tumorigenic effects. For example, increased levels of the adipocyte-related hormone, resistin, the pro-inflammatory cytokine, IL-6, and the CC chemokine, CCL2, within the TME of AA women gives rise to an increased density of M2 macrophages, also known as tumor-associated macrophages. Elevated levels of vascular endothelial growth factor in the TME of AA women increase the vascular density or vascularity, which facilitate aggressive tumor growth and metastasis. Furthermore, a pro-tumorigenic TME is supported by increased levels of the CXC chemokine, CXCL12 that results in the recruitment of regulatory T lymphocytes (Tregs ). Due to these and other differences in the TME of AA women, precision oncology can target specific aspects of the TME that may contribute to a poorer prognosis. In addition to the discrepancies in the TME, AA women face socio-economic barriers that limit their ability to access state-of-the-art, novel therapies against metastatic TNBC. In this review, we will provide a brief overview of the tumor immune microenvironment, immune-based treatment options for TNBC and their potential to decrease health disparities due to ethnicity.
Collapse
Affiliation(s)
- Kelsee K. Zajac
- Department of Pharmacology and Experimental TherapeuticsThe University of ToledoToledoOhioUSA
| | - Saloni Malla
- Department of Pharmacology and Experimental TherapeuticsThe University of ToledoToledoOhioUSA
| | - Ramapuram Jayachandra Babu
- Department of Drug Discovery and Development, Harrison School of PharmacyAuburn UniversityAuburnAlabamaUSA
| | - Dayanidhi Raman
- Department of Cell and Cancer BiologyUniversity of Toledo Health Science CampusToledoOhioUSA
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental TherapeuticsThe University of ToledoToledoOhioUSA
- Department of Cell and Cancer BiologyUniversity of Toledo Health Science CampusToledoOhioUSA
| |
Collapse
|
43
|
Januškevičienė I, Petrikaitė V. Interaction of phenotypic sublines isolated from triple-negative breast cancer cell line MDA-MB-231 modulates their sensitivity to paclitaxel and doxorubicin in 2D and 3D assays. Am J Cancer Res 2023; 13:3368-3383. [PMID: 37693129 PMCID: PMC10492099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/23/2023] [Indexed: 09/12/2023] Open
Abstract
Breast cancer is a rapidly evolving, multifactorial disease that accumulates numerous genetic and epigenetic alterations. These result in molecular and phenotypic heterogeneity within the tumor, the complexity of which is further amplified through specific interactions between cancer cells. We aimed to analyze cell phenotypic sublines and the influence of their interaction on drug resistance, spheroid formation, and migration. Seven sublines were derived from the MDA-MB-231 breast cancer cell line using a multiple-cell suspension dilution. The growth rate, CD133 receptor expression, migration ability, and chemosensitivity of these sublines to anticancer drugs doxorubicin (DOX) and paclitaxel (PTX) were determined. Three sublines (F5, D8, H2) have been chosen to study their interaction in 2D and 3D assays. In the 2D model, the resistance of all sublines composition to DOX decreased, but in the 3D model, the resistance of all sublines except H2, increased to both PTX and DOX. In the 3D model, the combined sublines F5 and D8 had higher resistance to DOX and statistically significantly lower resistance for PTX compared to the control. The interaction between cancer stem-like cells (F5) and increased migration cells (D8) increased resistance to PTX in cell monolayer and increased resistance against both DOX and PTX in the spheroids. The interaction of DOX-resistant (H2) cells with other cell subpopulations (D8, F5, HF) decreased the resistance to DOX in cell monolayer and both DOX and PTX in spheroids.
Collapse
Affiliation(s)
- Indrė Januškevičienė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences Sukilėlių pr., LT-50162, Kaunas, Lithuania
| | - Vilma Petrikaitė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences Sukilėlių pr., LT-50162, Kaunas, Lithuania
| |
Collapse
|
44
|
Bhardwaj PV, Wang Y, Brunk E, Spanheimer PM, Abdou YG. Advances in the Management of Early-Stage Triple-Negative Breast Cancer. Int J Mol Sci 2023; 24:12478. [PMID: 37569851 PMCID: PMC10419523 DOI: 10.3390/ijms241512478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with both inter- and intratumor heterogeneity, thought to result in a more aggressive course and worse outcomes. Neoadjuvant therapy (NAT) has become the preferred treatment modality of early-stage TNBC as it allows for the downstaging of tumors in the breast and axilla, monitoring early treatment response, and most importantly, provides important prognostic information that is essential to determining post-surgical therapies to improve outcomes. It focuses on combinations of systemic drugs to optimize pathologic complete response (pCR). Excellent response to NAT has allowed surgical de-escalation in ideal candidates. Further, treatment algorithms guide the systemic management of patients based on their pCR status following surgery. The expanding knowledge of molecular pathways, genomic sequencing, and the immunological profile of TNBC has led to the use of immune checkpoint inhibitors and targeted agents, including PARP inhibitors, further revolutionizing the therapeutic landscape of this clinical entity. However, subgroups most likely to benefit from these novel approaches in TNBC remain elusive and are being extensively studied. In this review, we describe current practices and promising therapeutic options on the horizon for TNBC, surgical advances, and future trends in molecular determinants of response to therapy in early-stage TNBC.
Collapse
Affiliation(s)
- Prarthna V. Bhardwaj
- Division of Hematology-Oncology, University of Massachusetts Chan Medical School—Baystate, Springfield, MA 01199, USA
| | - Yue Wang
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elizabeth Brunk
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genomic Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, UNC Chapel Hill, NC 27599, USA
- Computational Medicine Program, UNC Chapel Hill, NC 27599, USA
| | - Philip M. Spanheimer
- Lineberger Comprehensive Cancer Center, UNC Chapel Hill, NC 27599, USA
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yara G. Abdou
- Lineberger Comprehensive Cancer Center, UNC Chapel Hill, NC 27599, USA
- Division of Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
45
|
El Hejjioui B, Lamrabet S, Amrani Joutei S, Senhaji N, Bouhafa T, Malhouf MA, Bennis S, Bouguenouch L. New Biomarkers and Treatment Advances in Triple-Negative Breast Cancer. Diagnostics (Basel) 2023; 13:diagnostics13111949. [PMID: 37296801 DOI: 10.3390/diagnostics13111949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 06/12/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a specific subtype of breast cancer lacking hormone receptor expression and HER2 gene amplification. TNBC represents a heterogeneous subtype of breast cancer, characterized by poor prognosis, high invasiveness, high metastatic potential, and a tendency to relapse. In this review, the specific molecular subtypes and pathological aspects of triple-negative breast cancer are illustrated, with particular attention to the biomarker characteristics of TNBC, namely: regulators of cell proliferation and migration and angiogenesis, apoptosis-regulating proteins, regulators of DNA damage response, immune checkpoints, and epigenetic modifications. This paper also focuses on omics approaches to exploring TNBC, such as genomics to identify cancer-specific mutations, epigenomics to identify altered epigenetic landscapes in cancer cells, and transcriptomics to explore differential mRNA and protein expression. Moreover, updated neoadjuvant treatments for TNBC are also mentioned, underlining the role of immunotherapy and novel and targeted agents in the treatment of TNBC.
Collapse
Affiliation(s)
- Brahim El Hejjioui
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
- Department of Medical Genetics and Oncogenetics, HASSAN II University Hospital, Fez 30050, Morocco
| | - Salma Lamrabet
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
| | - Sarah Amrani Joutei
- Department of Radiotherapy, HASSAN II University Hospital, Fez 30050, Morocco
| | - Nadia Senhaji
- Faculty of Sciences, Moulay Ismail University, Meknès 50000, Morocco
| | - Touria Bouhafa
- Department of Radiotherapy, HASSAN II University Hospital, Fez 30050, Morocco
| | | | - Sanae Bennis
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
| | - Laila Bouguenouch
- Department of Medical Genetics and Oncogenetics, HASSAN II University Hospital, Fez 30050, Morocco
| |
Collapse
|
46
|
Im SA, Gennari A, Park YH, Kim JH, Jiang ZF, Gupta S, Fadjari TH, Tamura K, Mastura MY, Abesamis-Tiambeng MLT, Lim EH, Lin CH, Sookprasert A, Parinyanitikul N, Tseng LM, Lee SC, Caguioa P, Singh M, Naito Y, Hukom RA, Smruti BK, Wang SS, Kim SB, Lee KH, Ahn HK, Peters S, Kim TW, Yoshino T, Pentheroudakis G, Curigliano G, Harbeck N. Pan-Asian adapted ESMO Clinical Practice Guidelines for the diagnosis, staging and treatment of patients with metastatic breast cancer. ESMO Open 2023; 8:101541. [PMID: 37178669 PMCID: PMC10186487 DOI: 10.1016/j.esmoop.2023.101541] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/27/2023] [Accepted: 04/01/2023] [Indexed: 05/15/2023] Open
Abstract
The most recent version of the European Society for Medical Oncology (ESMO) Clinical Practice Guidelines for the diagnosis, staging and treatment of patients with metastatic breast cancer (MBC) was published in 2021. A special, hybrid guidelines meeting was convened by ESMO and the Korean Society of Medical Oncology (KSMO) in collaboration with nine other Asian national oncology societies in May 2022 in order to adapt the ESMO 2021 guidelines to take into account the differences associated with the treatment of MBC in Asia. These guidelines represent the consensus opinions reached by a panel of Asian experts in the treatment of patients with MBC representing the oncological societies of China (CSCO), India (ISMPO), Indonesia (ISHMO), Japan (JSMO), Korea (KSMO), Malaysia (MOS), the Philippines (PSMO), Singapore (SSO), Taiwan (TOS) and Thailand (TSCO). The voting was based on the best available scientific evidence and was independent of drug access or practice restrictions in the different Asian countries. The latter were discussed when appropriate. The aim of these guidelines is to provide guidance for the harmonisation of the management of patients with MBC across the different regions of Asia, drawing from data provided by global and Asian trials whilst at the same time integrating the differences in genetics, demographics and scientific evidence, together with restricted access to certain therapeutic strategies.
Collapse
Affiliation(s)
- S-A Im
- Department of Internal Medicine, Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, Republic of Korea.
| | - A Gennari
- Department of Translational Medicine, University Piemonte Orientale, Novara, Italy
| | - Y H Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - J H Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Z-F Jiang
- Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - S Gupta
- Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, India
| | - T H Fadjari
- Department of Internal Medicine, Hasan Sadikin General Hospital, Bandung, Indonesia
| | - K Tamura
- Department of Medical Oncology, Shimane University Hospital, Shimane, Japan
| | - M Y Mastura
- Cancer Centre, Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - M L T Abesamis-Tiambeng
- Section of Medical Oncology, Department of Internal Medicine, Cardinal Santos Cancer Center, San Juan, The Philippines
| | - E H Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - C-H Lin
- Department of Medical Oncology, National Taiwan University Hospital, Cancer Center Branch, Taipei, Taiwan
| | - A Sookprasert
- Department of Internal Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - N Parinyanitikul
- Medical Oncology Unit, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital and Chulalongkorn University, Bangkok, Thailand
| | - L-M Tseng
- Taipei-Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - S-C Lee
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), Singapore, Singapore
| | - P Caguioa
- The Cancer Institute of St Luke's Medical Center, National Capital Region, The Philippines; The Cancer Institute of the University of Santo Tomas Hospital, National Capital Region, The Philippines
| | - M Singh
- Department of Radiotherapy, Pantai Cancer Institute, Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia; Department of Oncology, Pantai Cancer Institute, Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Y Naito
- Department of General Internal Medicine, National Cancer Center Hospital East, Kashiwa, Japan
| | - R A Hukom
- Department of Hematology and Medical Oncology, Dharmais Hospital (National Cancer Center), Jakarta, Indonesia
| | - B K Smruti
- Medical Oncology, Lilavati Hospital and Research Centre and Bombay Hospital Institute of Medical Sciences, Mumbai, India
| | - S-S Wang
- Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - S B Kim
- Department of Oncology, Asan Medical Centre, Seoul, Republic of Korea
| | - K-H Lee
- Department of Internal Medicine, Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - H K Ahn
- Division of Medical Oncology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - S Peters
- Oncology Department, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - T W Kim
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - T Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | | | - G Curigliano
- Istituto Europeo di Oncologia, IRCCS, Milan, Italy; Department of Oncology and Haematology, University of Milano, Milan, Italy
| | - N Harbeck
- Breast Center, Department of Obstetrics and Gynaecology and Comprehensive Cancer Center Munich, LMU University Hospital, Munich, Germany
| |
Collapse
|
47
|
Shettigar A, Salunke R, Modi D, Mukherjee N. Targeting molecular cross-talk between tumor cells and tumor associated macrophage as therapeutic strategy in triple negative breast cancer. Int Immunopharmacol 2023; 119:110250. [PMID: 37163922 DOI: 10.1016/j.intimp.2023.110250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/16/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023]
Abstract
Triple-negative Breast cancer (TNBC) is a subtype of breast cancer (BC) that lacks expression for ER/PR/Her2 receptors and is associated with aggressive disease pathogenesis and the worst prognosis among other subtypes of BC. Accumulating evidence-based studies indicate the high immunogenic ability of TNBC tumors and the applicability of immunotherapeutic strategies to overcome therapy resistance and tumor recurrence in TNBC patients. However, not all TNBC patients respond equally well to current immunotherapies that mainly target the adaptive immune system for tumor rejection. Recent studies are contemplating the efficacy of tumor-associated macrophage (TAM) targeted therapies since these subpopulations of cells comprise one of the major components of tumor-infiltrating immune cells (TIIs) in the TNBC tumor microenvironment (TME) and play an essential role in priming the adaptive immune response mediators towards both antitumorigenic and pro-tumorigenic response facilitated by intercellular cross-talk between tumor cells and TAM populations present within TNBC-TME. The present review discusses these molecular mechanisms and their consequence on the progression of TNBC tumors. Also, the therapeutic strategies targeting candidate genes/pathways involved in molecular cross-talk between TAM-TNBC cells and their impact on the development and progression of TNBC tumors are also discussed.
Collapse
Affiliation(s)
- Anusha Shettigar
- Department of Molecular and Cellular Biology, National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Rushigandha Salunke
- Department of Molecular and Cellular Biology, National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Deepak Modi
- Department of Molecular and Cellular Biology, National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Nupur Mukherjee
- Department of Molecular and Cellular Biology, National Institute for Research in Reproductive and Child Health, Mumbai, India.
| |
Collapse
|
48
|
Zahari S, Syafruddin SE, Mohtar MA. Impact of the Cancer Cell Secretome in Driving Breast Cancer Progression. Cancers (Basel) 2023; 15:2653. [PMID: 37174117 PMCID: PMC10177134 DOI: 10.3390/cancers15092653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Breast cancer is a complex and heterogeneous disease resulting from the accumulation of genetic and epigenetic alterations in breast epithelial cells. Despite remarkable progress in diagnosis and treatment, breast cancer continues to be the most prevalent cancer affecting women worldwide. Recent research has uncovered a compelling link between breast cancer onset and the extracellular environment enveloping tumor cells. The complex network of proteins secreted by cancer cells and other cellular components within the tumor microenvironment has emerged as a critical player in driving the disease's metastatic properties. Specifically, the proteins released by the tumor cells termed the secretome, can significantly influence the progression and metastasis of breast cancer. The breast cancer cell secretome promotes tumorigenesis through its ability to modulate growth-associated signaling pathways, reshaping the tumor microenvironment, supporting pre-metastatic niche formation, and facilitating immunosurveillance evasion. Additionally, the secretome has been shown to play a crucial role in drug resistance development, making it an attractive target for cancer therapy. Understanding the intricate role of the cancer cell secretome in breast cancer progression will provide new insights into the underlying mechanisms of this disease and aid in the development of more innovative therapeutic interventions. Hence, this review provides a nuanced analysis of the impact of the cancer cell secretome on breast cancer progression, elucidates the complex reciprocal interaction with the components of the tumor microenvironment and highlights emerging therapeutic opportunities for targeting the constituents of the secretome.
Collapse
Affiliation(s)
| | | | - M. Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (S.Z.); (S.E.S.)
| |
Collapse
|
49
|
Torabian P, Yousefi H, Fallah A, Moradi Z, Naderi T, Delavar MR, Ertas YN, Zarrabi A, Aref AR. Cancer stem cell-mediated drug resistance: A comprehensive gene expression profile analysis in breast cancer. Pathol Res Pract 2023; 246:154482. [PMID: 37196466 DOI: 10.1016/j.prp.2023.154482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/19/2023]
Abstract
Breast cancer is the most frequently diagnosed malignancy in women and a major public health concern. In the current report, differential expression of the breast cancer resistance promoting genes with a focus on breast cancer stem cell related elements as well as the correlation of their mRNAs with various clinicopathologic characteristics, including molecular subtypes, tumor grade/stage, and methylation status, have been investigated using METABRIC and TCGA datasets. To achieve this goal, we downloaded gene expression data of breast cancer patients from TCGA and METABRIC. Then, statistical analyses were used to assess the correlation between the expression levels of stem cell related drug resistant genes and methylation status, tumor grades, various molecular subtypes, and some cancer hallmark gene sets such as immune evasion, metastasis, and angiogenesis. According to the results of this study, a number of stem cell related drug resistant genes are deregulated in breast cancer patients. Furthermore, we observe negative correlations between methylation of resistance genes and mRNA expression. There is a significant difference in the expression of resistance-promoting genes between different molecular subtypes. As mRNA expression and DNA methylation are clearly related, DNA methylation might be a mechanism that regulates these genes in breast cancer cells. As indicated by the differential expression of resistance-promoting genes among various breast cancer molecular subtypes, these genes may function differently in different subtypes of breast cancer. In conclusion, significant deregulation of resistance-promoting factors indicates that these genes may play a significant role in the development of breast cancer.
Collapse
Affiliation(s)
- Pedram Torabian
- Arnie Charbonneau Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Medical Sciences, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, LA 70112, USA
| | - Aysan Fallah
- Department of hematology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Moradi
- Department of hematology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tohid Naderi
- Department of Laboratory Hematology and Blood Bank, School of Allied Medicine, Shahid Beheshti University of medical sciences, Tehran, Iran
| | - Mahsa Rostamian Delavar
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey; Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
50
|
Abuhadra N, Sun R, Bassett RL, Huo L, Chang JT, Teshome M, Clayborn AR, White JB, Ravenberg EE, Adrada BE, Candelaria RP, Yang W, Ding Q, Symmans WF, Arun B, Damodaran S, Koenig KB, Layman RM, Lim B, Litton JK, Thompson A, Ueno NT, Piwnica-Worms H, Hortobagyi GN, Valero V, Tripathy D, Rauch GM, Moulder S, Yam C. Targeting chemotherapy resistance in mesenchymal triple-negative breast cancer: a phase II trial of neoadjuvant angiogenic and mTOR inhibition with chemotherapy. Invest New Drugs 2023:10.1007/s10637-023-01357-4. [PMID: 37043123 DOI: 10.1007/s10637-023-01357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/27/2023] [Indexed: 04/13/2023]
Affiliation(s)
- Nour Abuhadra
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Ryan Sun
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roland L Bassett
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lei Huo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mediget Teshome
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alyson R Clayborn
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Jason B White
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Elizabeth E Ravenberg
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Beatriz E Adrada
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rosalind P Candelaria
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Yang
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qingqing Ding
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - W Fraser Symmans
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Banu Arun
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Senthil Damodaran
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Kimberly B Koenig
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Rachel M Layman
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Bora Lim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Jennifer K Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Alastair Thompson
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naoto T Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Helen Piwnica-Worms
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriel N Hortobagyi
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Vicente Valero
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Gaiane M Rauch
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stacy Moulder
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | - Clinton Yam
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|