1
|
Ricci A, Carradori S, Cataldi A, Zara S. Eg5 and Diseases: From the Well-Known Role in Cancer to the Less-Known Activity in Noncancerous Pathological Conditions. Biochem Res Int 2024; 2024:3649912. [PMID: 38939361 PMCID: PMC11211015 DOI: 10.1155/2024/3649912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/06/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024] Open
Abstract
Eg5 is a protein encoded by KIF11 gene and is primarily involved in correct mitotic cell division. It is also involved in nonmitotic processes such as polypeptide synthesis, protein transport, and angiogenesis. The scientific literature sheds light on the ubiquitous functions of KIF11 and its involvement in the onset and progression of different pathologies. This review focuses attention on two main points: (1) the correlation between Eg5 and cancer and (2) the involvement of Eg5 in noncancerous conditions. Regarding the first point, several tumors revealed an overexpression of this kinesin, thus pushing to look for new Eg5 inhibitors for clinical practice. In addition, the evaluation of Eg5 expression represents a crucial step, as its overexpression could predict a poor prognosis for cancer patients. Referring to the second point, in specific pathological conditions, the reduced activity of Eg5 can be one of the causes of pathological onset. This is the case of Alzheimer's disease (AD), in which Aβ and Tau work as Eg5 inhibitors, or in acquired immune deficiency syndrome (AIDS), in which Tat-mediated Eg5 determines the loss of CD4+ T-lymphocytes. Reduced Eg5 activity, due to mutations of KIF11 gene, is also responsible for pathological conditions such as microcephaly with or without chorioretinopathy, lymphedema, or intellectual disability (MCLRI) and familial exudative vitreous retinopathy (FEVR). In conclusion, this review highlights the double impact that overexpression or loss of function of Eg5 could have in the onset and progression of different pathological situations. This emphasizes, on one hand, a possible role of Eg5 as a potential biomarker and new target in cancer and, on the other hand, the promotion of Eg5 expression/activity as a new therapeutic strategy in different noncancerous diseases.
Collapse
Affiliation(s)
- Alessia Ricci
- Department of Pharmacy, University “G. d'Annunzio” Chieti-Pescara, Chieti, 66100, Italy
| | - Simone Carradori
- Department of Pharmacy, University “G. d'Annunzio” Chieti-Pescara, Chieti, 66100, Italy
| | - Amelia Cataldi
- Department of Pharmacy, University “G. d'Annunzio” Chieti-Pescara, Chieti, 66100, Italy
| | - Susi Zara
- Department of Pharmacy, University “G. d'Annunzio” Chieti-Pescara, Chieti, 66100, Italy
| |
Collapse
|
2
|
She ZY, Zhong N, Wei YL. Kinesin-5 Eg5 mediates centrosome separation to control spindle assembly in spermatocytes. Chromosoma 2022; 131:87-105. [PMID: 35437661 DOI: 10.1007/s00412-022-00772-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/12/2022] [Accepted: 04/08/2022] [Indexed: 11/25/2022]
Abstract
Timely and accurate centrosome separation is critical for bipolar spindle organization and faithful chromosome segregation during cell division. Kinesin-5 Eg5 is essential for centrosome separation and spindle organization in somatic cells; however, the detailed functions and mechanisms of Eg5 in spermatocytes remain unclear. In this study, we show that Eg5 proteins are located at spindle microtubules and centrosomes in spermatocytes both in vivo and in vitro. We reveal that the spermatocytes are arrested at metaphase I in seminiferous tubules after Eg5 inhibition. Eg5 ablation results in cell cycle arrest, the formation of monopolar spindle, and chromosome misalignment in cultured GC-2 spd cells. Importantly, we find that the long-term inhibition of Eg5 results in an increased number of centrosomes and chromosomal instability in spermatocytes. Our findings indicate that Eg5 mediates centrosome separation to control spindle assembly and chromosome alignment in spermatocytes, which finally contribute to chromosome stability and faithful cell division of the spermatocytes.
Collapse
Affiliation(s)
- Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China.
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China.
| | - Ning Zhong
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China
| | - Ya-Lan Wei
- Fujian Obstetrics and Gynecology Hospital, Fuzhou, 350011, Fujian, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, Fujian, China
| |
Collapse
|
3
|
Hu ZD, Jiang Y, Sun HM, Wang JW, Zhai LL, Yin ZQ, Yan J. KIF11 Promotes Proliferation of Hepatocellular Carcinoma among Patients with Liver Cancers. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2676745. [PMID: 33490265 PMCID: PMC7801104 DOI: 10.1155/2021/2676745] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 12/03/2020] [Accepted: 12/21/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) lacks effective treatments and has a poor prognosis. Therefore it is needed to develop more effective drug targets. Kinesin family member 11 (KIF11) has been reported to affect the progression of several cancers, and its high expression associates with the prognosis of patients. However, the relevant mechanisms of KIF11 in HCC progression have not been studied. METHOD Through the cancer genome atlas (TCGA) database and immunohistochemical (IHC) staining of patients' specimens, we determined that KIF11 was highly expressed in HCC tissues and associated with prognosis. We established a KIF11 stably depleted hepatoma cell line, through cell-cloning experiments and cell counting kit-8 (CCK-8) assays to detect the effects on proliferation in vitro. The role of KIF11 in promoting cell proliferation was verified in mice. RESULT The expression of KIF11 was negatively correlated with the overall survival (OS) and disease-free survival (DFS) and positively correlated with tumor size of HCC patients. KIF11 depletion inhibits cell proliferation and tumor growth in vitro and in vivo. Conclusion. KIF11 can be used as a positive correlation marker for HCC prognosis and served as a potential therapeutic target.
Collapse
Affiliation(s)
- Zhan-Dong Hu
- Department of Pathology in Tianjin First Central Hospital, Number 24, Convalescent Road, Nankai, Tianjin 300192, China
| | - Ying Jiang
- Department of Clinical Laboratory in Tianjin First Central Hospital, Number 24, Convalescent Road, Nankai, Tianjin 300192, China
| | - Hong-Mei Sun
- Department of Out-Patient in Tianjin First Central Hospital, Number 24, Convalescent Road, Nankai, Tianjin 300192, China
| | - Jing-wen Wang
- Department of Pathology in Tianjin First Central Hospital, Number 24, Convalescent Road, Nankai, Tianjin 300192, China
| | - Li-Li Zhai
- Department of Pathology in Tianjin First Central Hospital, Number 24, Convalescent Road, Nankai, Tianjin 300192, China
| | - Zhi-Qi Yin
- Department of Pathology in Tianjin First Central Hospital, Number 24, Convalescent Road, Nankai, Tianjin 300192, China
| | - Jun Yan
- Department of Pathology in Tianjin First Central Hospital, Number 24, Convalescent Road, Nankai, Tianjin 300192, China
| |
Collapse
|
4
|
Paim AC, Badley AD, Cummins NW. Mechanisms of Human Immunodeficiency Virus-Associated Lymphocyte Regulated Cell Death. AIDS Res Hum Retroviruses 2020; 36:101-115. [PMID: 31659912 PMCID: PMC7044792 DOI: 10.1089/aid.2019.0213] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) causes CD4 T cell depletion through a number of mechanisms, including programmed cell death pathways (both apoptotic and nonapoptotic). In the setting of HIV-1 infection, the enhanced lymphocyte cell death occurs as a consequence of complex interactions between the host immune system and viral factors, which are reviewed herein. On the other hand, the main challenge to HIV-1 eradication is the development of latent infection in a subset of long lived cells, including CD4+ T cells and macrophages, which resist HIV-induced cell death. Understanding the potential mechanisms of how HIV-1 induces lymphocyte cell death is critical to the "kick and kill" cure strategy, which relies on the effective killing of reactivated, HIV-1-infected cells.
Collapse
Affiliation(s)
- Ana C. Paim
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota
| | - Andrew D. Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
5
|
Campestrini J, Silveira DB, Pinto AR. HIV-1 Tat-induced bystander apoptosis in Jurkat cells involves unfolded protein responses. Cell Biochem Funct 2018; 36:377-386. [DOI: 10.1002/cbf.3357] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/15/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Jéssica Campestrini
- Laboratório de Imunologia Aplicada, Departamento de Microbiologia, Imunologia e Parasitologia; Universidade Federal de Santa Catarina; Florianópolis SC Brazil
| | - Douglas Bardini Silveira
- Laboratório de Imunologia Aplicada, Departamento de Microbiologia, Imunologia e Parasitologia; Universidade Federal de Santa Catarina; Florianópolis SC Brazil
| | - Aguinaldo Roberto Pinto
- Laboratório de Imunologia Aplicada, Departamento de Microbiologia, Imunologia e Parasitologia; Universidade Federal de Santa Catarina; Florianópolis SC Brazil
| |
Collapse
|
6
|
Liu M, Ran J, Zhou J. Non-canonical functions of the mitotic kinesin Eg5. Thorac Cancer 2018; 9:904-910. [PMID: 29927078 PMCID: PMC6068462 DOI: 10.1111/1759-7714.12792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/24/2018] [Accepted: 05/24/2018] [Indexed: 01/25/2023] Open
Abstract
Kinesins are widely expressed, microtubule-dependent motors that play vital roles in microtubule-associated cellular activities, such as cell division and intracellular transport. Eg5, also known as kinesin-5 or kinesin spindle protein, is a member of the kinesin family that contributes to the formation and maintenance of the bipolar mitotic spindle during cell division. Small-molecule compounds that inhibit Eg5 activity have been shown to impair spindle assembly, block mitotic progression, and possess anti-cancer activity. Recent studies focusing on the localization and functions of Eg5 in plants have demonstrated that in addition to spindle organization, this motor protein has non-canonical functions, such as chromosome segregation and cytokinesis, that have not been observed in animals. In this review, we discuss the structure, function, and localization of Eg5 in various organisms, highlighting the specific role of this protein in plants. We also propose directions for the future studies of novel Eg5 functions based on the lessons learned from plants.
Collapse
Affiliation(s)
- Min Liu
- College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance BiologyShandong Normal UniversityJinanChina
| | - Jie Ran
- College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance BiologyShandong Normal UniversityJinanChina
| | - Jun Zhou
- College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance BiologyShandong Normal UniversityJinanChina
| |
Collapse
|
7
|
Kim J, Kim YS. Effect of HIV-1 Tat on the formation of the mitotic spindle by interaction with ribosomal protein S3. Sci Rep 2018; 8:8680. [PMID: 29875444 PMCID: PMC5989196 DOI: 10.1038/s41598-018-27008-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 05/21/2018] [Indexed: 01/04/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Tat, an important regulator of viral transcription, interacts with diverse cellular proteins and promotes or inhibits cell proliferation. Here, we show that ribosomal protein S3 (RPS3) plays an important role in mitosis through an interaction with α-tubulin and that Tat binds to and inhibits the localization of RPS3 in the mitotic spindle during mitosis. RPS3 colocalized with α-tubulin around chromosomes in the mitotic spindle. Depletion of RPS3 promoted α-tubulin assembly, while overexpression of RPS3 impaired α-tubulin assembly. Depletion of RPS3 resulted in aberrant mitotic spindle formation, segregation failure, and defective abscission. Moreover, ectopic expression of RPS3 rescued the cell proliferation defect in RPS3-knockdown cells. HIV-1 Tat interacted with RPS3 through its basic domain and increased the level of RPS3 in the nucleus. Expression of Tat caused defects in mitotic spindle formation and chromosome assembly in mitosis. Moreover, the localization of RPS3 in the mitotic spindle was disrupted when HIV-1 Tat was expressed in HeLa and Jurkat cells. These results suggest that Tat inhibits cell proliferation via an interaction with RPS3 and thereby disrupts mitotic spindle formation during HIV-1 infection. These results might provide insight into the mechanism underlying lymphocyte pathogenesis during HIV-1 infection.
Collapse
Affiliation(s)
- Jiyoung Kim
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yusung-gu, Daejeon, 34134, South Korea
| | - Yeon-Soo Kim
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yusung-gu, Daejeon, 34134, South Korea.
| |
Collapse
|
8
|
Qin J, Li D, Zhou Y, Xie S, Du X, Hao Z, Liu R, Liu X, Liu M, Zhou J. Apoptosis-linked gene 2 promotes breast cancer growth and metastasis by regulating the cytoskeleton. Oncotarget 2018; 8:2745-2757. [PMID: 27926525 PMCID: PMC5356838 DOI: 10.18632/oncotarget.13740] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 11/24/2016] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is the most prevalent cancer in women. Although it begins as local disease, breast cancer frequently metastasizes to the lymph nodes and distant organs. Therefore, novel therapeutic targets are needed for the management of this disease. Apoptosis-linked gene 2 (ALG-2) is a calcium-binding protein crucial for diverse physiological processes and has recently been implicated in cancer development. However, it remains unclear whether this protein is involved in the pathogenesis of breast cancer. Here, we demonstrate that the expression of ALG-2 is significantly upregulated in breast cancer tissues and is correlated with clinicopathological characteristics indicative of tumor malignancy. Our data further show that ALG-2 stimulates breast cancer growth and metastasis in mice. ALG-2 also promotes breast cancer cell proliferation, survival, and motility in vitro. Mechanistic data reveal that ALG-2 disrupts the localization of centrosome proteins, resulting in spindle multipolarity and chromosome missegregation. In addition, ALG-2 drives the polarization and migration of breast cancer cells by facilitating the rearrangement of microtubules and microfilaments. These findings reveal a critical role for ALG-2 in the pathogenesis of breast cancer and have important implications for its diagnosis and therapy.
Collapse
Affiliation(s)
- Juan Qin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yunqiang Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Songbo Xie
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Xin Du
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Ziwei Hao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ruming Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinqi Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Min Liu
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.,Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
9
|
Pei YY, Li GC, Ran J, Wei FX. Kinesin family member 11 contributes to the progression and prognosis of human breast cancer. Oncol Lett 2017; 14:6618-6626. [PMID: 29181100 PMCID: PMC5696720 DOI: 10.3892/ol.2017.7053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 06/02/2017] [Indexed: 01/24/2023] Open
Abstract
The present study aimed to clarify the association between kinesin family member 11 (KIF11) and human breast cancer, and the effect of KIF11 on breast cancer cell progression. Western blot analysis, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis, retroviral infection, immunohistochemistry staining, MTT assay, anchorage-independent growth ability assay and tumorigenicity assay were all used in the present study. Western blot and RT-qPCR analysis revealed that the expression of KIF11 was markedly increased in malignant cells compared with that in non-tumorous cells at the mRNA and protein level. Immunohistochemical analysis revealed that KIF11 expression was upregulated in 256/268 (95.8%) paraffin-embedded archival breast cancer biopsies. Statistical analysis demonstrated a significant association between the upregulation of KIF11 expression and the progression of breast cancer. Multivariate analysis revealed that KIF11 upregulation represents an independent prognostic indicator for the survival of patients with breast cancer. Tumorigenicity experiments were further used to evaluate the effect of KIF11 in non-obese diabetic/severe combined immunodeficient mice. Silencing endogenous KIF11 by short hairpin RNAs inhibited the proliferation of breast cancer cells in vitro and in vivo. The present results suggest that KIF11 may serve an important function in the proliferation of breast cancer and may represent a novel and useful prognostic marker for breast cancer.
Collapse
Affiliation(s)
- Yuan-Yuan Pei
- Shenzhen Longgang Maternal and Child Health Hospital Centralab, Shenzhen, Guangdong 518172, P.R. China
| | - Gao-Chi Li
- Shenzhen Longgang Maternal and Child Health Hospital Centralab, Shenzhen, Guangdong 518172, P.R. China
| | - Jian Ran
- Shenzhen Longgang Maternal and Child Health Hospital Centralab, Shenzhen, Guangdong 518172, P.R. China
| | - Feng-Xiang Wei
- Shenzhen Longgang Maternal and Child Health Hospital Centralab, Shenzhen, Guangdong 518172, P.R. China
| |
Collapse
|
10
|
Liu M, Du X, Zhou J. Non-canonical function of Tat in regulating host microtubule dynamics: Implications for the pathogenesis of lentiviral infections. Pharmacol Ther 2017; 182:28-32. [PMID: 28847561 DOI: 10.1016/j.pharmthera.2017.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lentiviruses are a class of genetically unique retroviruses that share similar features, despite their wide variety of host species. Transactivator of transcription (Tat) proteins of lentiviruses are critical for the regulation of viral transcription and replication. Recent studies demonstrate that in addition to mediating transactivation, Tat binds to the microtubule cytoskeleton of the host cell and interferes with microtubule dynamics, ultimately triggering apoptosis. This non-canonical function of Tat appears to be critical for the pathogenesis of lentiviral diseases, such as acquired immunodeficiency syndrome. Here, we compare the structure and activity of Tat proteins from three different types of lentiviruses, focusing on the roles of these proteins in the alteration of host microtubule dynamics and induction of apoptosis. We propose that further investigation of the Tat-microtubule interaction will provide important insight into the process of lentiviral pathogenesis and elucidate new avenues for the development of antiviral therapies.
Collapse
Affiliation(s)
- Min Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xin Du
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Jun Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China.
| |
Collapse
|
11
|
Eg5 Overexpression Is Predictive of Poor Prognosis in Hepatocellular Carcinoma Patients. DISEASE MARKERS 2017; 2017:2176460. [PMID: 28684886 PMCID: PMC5480051 DOI: 10.1155/2017/2176460] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/25/2017] [Accepted: 04/19/2017] [Indexed: 01/01/2023]
Abstract
Eg5 (kinesin spindle protein) plays an essential role in mitosis. Inhibition of Eg5 function results in cell cycle arrest at mitosis, which leads to cell death. To date, Eg5 expression and its prognostic significance have not been studied in hepatocellular carcinoma (HCC). In this study, 26 freshly frozen HCC tissue samples and matched peritumoral tissue samples were evaluated with a one-step qPCR test and immunohistochemical (IHC) analysis was conducted on 156 HCC samples to investigate the relationships among Eg5 expression, clinicopathological factors, and prognosis. Eg5 mRNA and protein expression levels were significantly higher in HCC tissues relative to matched noncancerous tissues (p < 0.05). High Eg5 protein expression was significantly related to liver cirrhosis (p = 0.038) and TNM stage (p = 0.008). Kaplan-Meier survival and Cox regression analyses revealed that Eg5 overexpression (p = 0.001), liver cirrhosis (p = 0.009), and TNM stage (p = 0.025) were independent prognostic factors for overall survival. These findings indicate that Eg5 expression can be used as a biomarker of poor prognosis and as a novel therapeutic target for HCC.
Collapse
|
12
|
Yan B, Liu Y, Bai H, Chen M, Xie S, Li D, Liu M, Zhou J. HDAC6 regulates IL-17 expression in T lymphocytes: implications for HDAC6-targeted therapies. Am J Cancer Res 2017; 7:1002-1009. [PMID: 28382171 PMCID: PMC5381261 DOI: 10.7150/thno.17615] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 01/03/2017] [Indexed: 11/05/2022] Open
Abstract
The pro-inflammatory cytokine interleukin 17 (IL-17) is critically involved in immunity and inflammation. T-helper 17 and γδ T cells are the predominant sources of IL-17 in the immune system. However, the mechanisms by which the expression of IL-17 is regulated in T cells remain elusive. Here, we demonstrate that loss of histone deacetylase 6 (HDAC6) in mice does not affect the generation of CD4+ or CD8+ T cells, but stimulates the development of IL-17-producing γδ T cells. Our data further show that HDAC6 deficiency increases the production of IL-17 by Vγ4+ γδ T cells in the spleen and lymph nodes. Consistent with these observations, small-molecule inhibition of HDAC6 activity in γδ T cells promotes the expression of IL-17 in vitro. These data thus reveal that HDAC6 represses IL-17 production in T cells, providing novel insights into the role of HDAC6 in the immune system. These findings also have important implications for the clinical investigation of HDAC6-targeted therapies.
Collapse
|
13
|
Li X, Zhu Y, Cao Y, Wang Q, Du J, Tian J, Liang Y, Ma W. LIM kinase activity is required for microtubule organising centre positioning in mouse oocyte meiosis. Reprod Fertil Dev 2017; 29:791-804. [DOI: 10.1071/rd15406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/27/2015] [Indexed: 12/23/2022] Open
Abstract
LIM kinase 1 (LIMK1) activity is essential for cell migration and cell cycle progression. Little is known about LIMK1 expression and function in mammalian oocytes. In the present study we assessed LIMK1 protein expression, subcellular distribution and function during mouse oocyte meiosis. Western blot analysis revealed high and stable expression of LIMK1 from the germinal vesicle (GV) to MII stage. In contrast, activated LIMK1 (i.e. LIMK1 phosphorylated at threonine 508 (pLIMK1Thr508)) was only detected after GV breakdown, with levels increasing gradually to peak at MI and MII. Immunofluorescence showed pLIMK1Thr508 was colocalised with the microtubule organising centre (MTOC) components pericentrin and γ-tubulin at the spindle poles. A direct interaction between γ-tubulin and pLIMK1Thr508 was confirmed by co-immunoprecipitation. LIMK inhibition with 1 μM BMS3 damaged MTOC protein localisation to spindle poles, undermined the formation and positioning of functional MTOC and thus disrupted spindle formation and chromosome alignment. These effects were phenocopied by microinjection of LIMK1 antibody into mouse oocytes. In summary, the data demonstrate that LIMK activity is essential for MTOC organisation and distribution and so bipolar spindle formation and maintenance in mouse oocytes.
Collapse
|
14
|
Bullerdiek J, Dotzauer A, Bauer I. The mitotic spindle: linking teratogenic effects of Zika virus with human genetics? Mol Cytogenet 2016; 9:32. [PMID: 27099632 PMCID: PMC4837584 DOI: 10.1186/s13039-016-0240-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 04/01/2016] [Indexed: 11/10/2022] Open
Abstract
Background Recently, an association between Zika virus infection and microcephaly/ocular findings was found to be reasonable e.g. because of the demonstration that the virus was found in the brain of a fetus after presumed maternal infection. Although there is no proof yet for a causal relationship, for an appropriate risk calculation efforts are urgently needed to either establish or disprove this assumption. Presentation of the hypothesis On the basis of inherited syndromes combining microcephaly with ocular findings similar to those associated with Zika infections, we have hypothesized that the impairment of the proper function of the mitotic apparatus is a possible mechanism by which Zika can exert teratogenic effects. Testing the hypothesis A bundle of well-known cytogenetic and molecular-cytogenetic methods (e.g. formation of micronuclei, chromosomal lagging, immunofluorescence of centrosomes) to evaluate proper function, maintenance, and establishment of the mitotic spindle poles can be applied on infected cells. Also, the viral proteins can be tested for their possible interaction with proteins encoded by genes involved in inherited syndromes with microcephaly and ocular findings resembling those in presumed cases of intrauterine ZIKV infection. Implications of the hypothesis Once proved, this hypothesis allows for a targeted approach into mechanisms of possible relevance as e.g. if different strains of the virus are implicated in the teratogenic effects to the same or a different extent.
Collapse
Affiliation(s)
- Joern Bullerdiek
- Centre for Human Genetics, University of Bremen, Leobener Str. ZHG, D-28359 Bremen, Germany ; Institute of Medical Genetics, University Rostock Medical Center, Ernst-Heydemann-Strasse 8, D-18057 Rostock, Germany
| | - Andreas Dotzauer
- Laboratory of Virus Research, University of Bremen, Leobener Straße/UFT, 28359, D-28359 Bremen, Germany
| | - Ingrid Bauer
- Institute of Medical Genetics, University Rostock Medical Center, Ernst-Heydemann-Strasse 8, D-18057 Rostock, Germany
| |
Collapse
|
15
|
Cep70 overexpression stimulates pancreatic cancer by inducing centrosome abnormality and microtubule disorganization. Sci Rep 2016; 6:21263. [PMID: 26893288 PMCID: PMC4759539 DOI: 10.1038/srep21263] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/20/2016] [Indexed: 12/23/2022] Open
Abstract
The centrosome is crucial for mitotic fidelity, and centrosome aberrations are associated with genomic instability and tumorigenesis. The centrosomal protein Cep70 has been reported to play a role in various cellular activities. However, whether this protein is involved in pathological processes remains unknown. In this study, we demonstrate that Cep70 is highly expressed in pancreatic cancer tissues. Cep70 expression correlates with clinicopathological parameters of pancreatic cancer, including histological grade, pathological tumor node metastasis stage, lymph node metastasis, and carbohydrate antigen 19-9 level. Depletion of Cep70 significantly suppresses pancreatic cancer cell proliferation and promotes apoptotic cell death, and exogenous expression of Cep70 can rescue the above effects. Cep70 also stimulates colony formation in soft agar and enhances tumor growth in mice. Our data further show that ectopic expression of Cep70 in pancreatic cancer cells results in the mislocalization of centrosomal proteins, including γ-tubulin and pericentrin, and the formation of intracellular aggregates. In addition, Cep70 overexpression leads to microtubule disorganization and the formation of multipolar spindles during mitosis. Our study thus unravels a critical role for Cep70 in pancreatic cancer and suggests Cep70 as a potential biomarker and therapeutic target for this deadly disease.
Collapse
|
16
|
Mediouni S, Marcondes MCG, Miller C, McLaughlin JP, Valente ST. The cross-talk of HIV-1 Tat and methamphetamine in HIV-associated neurocognitive disorders. Front Microbiol 2015; 6:1164. [PMID: 26557111 PMCID: PMC4615951 DOI: 10.3389/fmicb.2015.01164] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/07/2015] [Indexed: 12/15/2022] Open
Abstract
Antiretroviral therapy has dramatically improved the lives of human immunodeficiency virus 1 (HIV-1) infected individuals. Nonetheless, HIV-associated neurocognitive disorders (HAND), which range from undetectable neurocognitive impairments to severe dementia, still affect approximately 50% of the infected population, hampering their quality of life. The persistence of HAND is promoted by several factors, including longer life expectancies, the residual levels of virus in the central nervous system (CNS) and the continued presence of HIV-1 regulatory proteins such as the transactivator of transcription (Tat) in the brain. Tat is a secreted viral protein that crosses the blood–brain barrier into the CNS, where it has the ability to directly act on neurons and non-neuronal cells alike. These actions result in the release of soluble factors involved in inflammation, oxidative stress and excitotoxicity, ultimately resulting in neuronal damage. The percentage of methamphetamine (MA) abusers is high among the HIV-1-positive population compared to the general population. On the other hand, MA abuse is correlated with increased viral replication, enhanced Tat-mediated neurotoxicity and neurocognitive impairments. Although several strategies have been investigated to reduce HAND and MA use, no clinically approved treatment is currently available. Here, we review the latest findings of the effects of Tat and MA in HAND and discuss a few promising potential therapeutic developments.
Collapse
Affiliation(s)
- Sonia Mediouni
- Department of Infectious Diseases, The Scripps Research Institute , Jupiter, FL, USA
| | | | - Courtney Miller
- Department of Metabolism and Aging, The Scripps Research Institute , Jupiter, FL, USA ; Department of Neuroscience, The Scripps Research Institute , Jupiter, FL, USA
| | - Jay P McLaughlin
- Department of Pharmacodynamics, University of Florida , Gainesville, FL, USA
| | - Susana T Valente
- Department of Infectious Diseases, The Scripps Research Institute , Jupiter, FL, USA
| |
Collapse
|
17
|
Qian H, Xu X, Niklason LE. Bmk-1 regulates lifespan in Caenorhabditis elegans by activating hsp-16. Oncotarget 2015; 6:18790-9. [PMID: 26299918 PMCID: PMC4662456 DOI: 10.18632/oncotarget.4618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 07/20/2015] [Indexed: 12/23/2022] Open
Abstract
The genetics of aging is typically concerned with lifespan determination that is associated with alterations in expression levels or mutations of particular genes. Previous reports in C. elegans have shown that the bmk-1 gene has important functions in chromosome segregation, and this has been confirmed with its mammalian homolog, KIF11. However, this gene has never been implicated in aging or lifespan regulation. Here we show that the bmk-1 gene is an important lifespan regulator in worms. We show that reducing bmk-1 expression using RNAi shortens worm lifespan by 32%, while over-expression of bmk-1 extends worm lifespan by 25%, and enhances heat-shock stress resistance. Moreover, bmk-1 over-expression increases the level of hsp-16 and decreases ced-3 in C. elegans. Genetic epistasis analysis reveals that hsp-16 is essential for the lifespan extension by bmk-1. These findings suggest that bmk-1 may act through enhanced hsp-16 function to protect cells from stress and inhibit the apoptosis pathway, thereby conferring worm longevity. Though it remains unclear whether this is a distinct function from chromosomal segregation, bmk-1 is a potential new target for extension of lifespan and enhancement of healthspan.
Collapse
Affiliation(s)
- Hong Qian
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xiangru Xu
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06520, USA.,Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany
| | - Laura E Niklason
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
18
|
He X, Liu Z, He Q, Qin J, Liu N, Zhang L, Li D, Zhou J, Shui W, Liu M. Identification of novel microtubule-binding proteins by taxol-mediated microtubule stabilization and mass spectrometry analysis. Thorac Cancer 2015; 6:649-54. [PMID: 26445615 PMCID: PMC4567012 DOI: 10.1111/1759-7714.12284] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/11/2015] [Indexed: 12/16/2022] Open
Abstract
Microtubule-binding proteins (MBPs) are structurally and functionally diverse regulators of microtubule-mediated cellular processes. Alteration of MBPs has been implicated in the pathogenesis of human diseases, including cancer. MBPs can stabilize or destabilize microtubules or move along microtubules to transport various cargoes. In addition, MBPs can control microtubule dynamics through direct interaction with microtubules or coordination with other proteins. To better understand microtubule structure and function, it is necessary to identify additional MBPs. In this study, we isolated microtubules and MBPs from mammalian cells by a taxol-based method and then profiled a panel of MBPs by mass spectrometry. We discovered a number of previously uncharacterized MBPs, including several membrane-associated proteins and proteins involved in post-translational modifications, in addition to several structural components. These results support the notion that microtubules have a wide range of functions and may undergo more exquisite regulation than previously recognized.
Collapse
Affiliation(s)
- Xianfei He
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University Tianjin, China
| | - Zhu Liu
- Department of Biochemistry, School of Basic Medical Sciences, Tianjin Medical University Tianjin, China
| | - Qianqian He
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University Tianjin, China
| | - Juan Qin
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University Tianjin, China
| | - Ningning Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University Tianjin, China
| | - Linlin Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University Tianjin, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University Tianjin, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University Tianjin, China
| | - Wenqing Shui
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University Tianjin, China ; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin, China
| | - Min Liu
- Department of Biochemistry, School of Basic Medical Sciences, Tianjin Medical University Tianjin, China
| |
Collapse
|
19
|
Yan B, Xie S, Liu Z, Luo Y, Zhou J, Li D, Liu M. STAT3 association with microtubules and its activation are independent of HDAC6 activity. DNA Cell Biol 2015; 34:290-5. [PMID: 25621430 DOI: 10.1089/dna.2014.2713] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is an important oncogenic transcription factor residing in the cytoplasm in the resting cells. Upon stimulation, STAT3 is activated and translocated to the nucleus to regulate target genes. Although the canonical transcriptional function of STAT3 has been intensively studied, less is known about its cytoplasmic localization. In this study, by immunoprecipitation, microtubule cosedimentation, and immunofluorescence assays, we present the first evidence that cytoplasmic STAT3 interacts with both tubulin and microtubules. By using small-molecule inhibitor approaches, we further demonstrate that the localization of STAT3 on microtubules and its activation are independent of histone deacetylase 6 (HDAC6) activity. In addition, disruption of microtubule dynamics does not alter the activation and nuclear translocation of STAT3 in response to interleukin-6 treatment. These findings reveal that cytoplasmic STAT3 is physically associated with microtubules, whereas its activation and nuclear translocation are independent of microtubule dynamics, implicating that the association of STAT3 with microtubules might be involved in the regulation of noncanonical functions of STAT3 in the cytoplasm.
Collapse
Affiliation(s)
- Bing Yan
- 1 State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University , Tianjin, China
| | | | | | | | | | | | | |
Collapse
|
20
|
HDAC6 deacetylase activity is critical for lipopolysaccharide-induced activation of macrophages. PLoS One 2014; 9:e110718. [PMID: 25330030 PMCID: PMC4199742 DOI: 10.1371/journal.pone.0110718] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 09/15/2014] [Indexed: 01/01/2023] Open
Abstract
Activated macrophages play an important role in both innate and adaptive immune responses, and aberrant activation of macrophages often leads to inflammatory and immune disorders. However, the molecular mechanisms of how macrophages are activated are not fully understood. In this study, we identify a novel role for histone deacetylse 6 (HDAC6) in lipopolysaccharide (LPS)-induced macrophage activation. Our data show that suppression of HDAC6 activity significantly restrains LPS-induced activation of macrophages and production of pro-inflammatory cytokines. Further study reveals that the regulation of macrophage activation by HDAC6 is independent of F-actin polymerization and filopodium formation; instead, it is mediated by the effects of HDAC6 on cell adhesion and microtubule acetylation. These data thus suggest that HDAC6 is an important regulator of LPS-induced macrophage activation and might be a potential target for the management of inflammatory disorders.
Collapse
|