1
|
Kaur I, Tiwari R, Naidu VGM, Ramakrishna S, Tripathi DM, Kaur S. Bile Acids as Metabolic Inducers of Hepatocyte Proliferation and Liver Regeneration. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00221-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
2
|
Bellanti F, di Bello G, Iannelli G, Pannone G, Pedicillo MC, Boulter L, Lu WY, Tamborra R, Villani R, Vendemiale G, Forbes SJ, Serviddio G. Inhibition of nuclear factor (erythroid-derived 2)-like 2 promotes hepatic progenitor cell activation and differentiation. NPJ Regen Med 2021; 6:28. [PMID: 34039998 PMCID: PMC8155039 DOI: 10.1038/s41536-021-00137-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 04/28/2021] [Indexed: 02/08/2023] Open
Abstract
The stem cell ability to self-renew and lead regeneration relies on the balance of complex signals in their microenvironment. The identification of modulators of hepatic progenitor cell (HPC) activation is determinant for liver regeneration and may improve cell transplantation for end-stage liver disease. This investigation used different models to point out the Nuclear factor (erythroid-derived 2)-like 2 (NRF2) as a key regulator of the HPC fate. We initially proved that in vivo models of biliary epithelial cells (BECs)/HPC activation show hepatic oxidative stress, which activates primary BECs/HPCs in vitro. NRF2 downregulation and silencing were associated with morphological, phenotypic, and functional modifications distinctive of differentiated cells. Furthermore, NRF2 activation in the biliary tract repressed the ductular reaction in injured liver. To definitely assess the importance of NRF2 in HPC biology, we applied a xenograft model by inhibiting NRF2 in the human derived HepaRG cell line and transplanting into SCID/beige mice administered with anti-Fas antibody to induce hepatocellular apoptosis; this resulted in effective human hepatocyte repopulation with reduced liver injury. To conclude, NRF2 inhibition leads to the activation and differentiation of liver progenitors. This redox-dependent transcription factor represents a potential target to regulate the commitment of undifferentiated hepatic progenitors into specific lineages.
Collapse
Affiliation(s)
- Francesco Bellanti
- Centre for Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| | - Giorgia di Bello
- Centre for Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Giuseppina Iannelli
- Centre for Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Giuseppe Pannone
- Anatomical Pathology Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Maria Carmela Pedicillo
- Anatomical Pathology Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Wei-Yu Lu
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston Birmingham, UK
| | - Rosanna Tamborra
- Centre for Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Rosanna Villani
- Centre for Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Gianluigi Vendemiale
- Centre for Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Stuart J Forbes
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Gaetano Serviddio
- Centre for Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
3
|
Kiseleva YV, Antonyan SZ, Zharikova TS, Tupikin KA, Kalinin DV, Zharikov YO. Molecular pathways of liver regeneration: A comprehensive review. World J Hepatol 2021; 13:270-290. [PMID: 33815672 PMCID: PMC8006075 DOI: 10.4254/wjh.v13.i3.270] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/20/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
The liver is a unique parenchymal organ with a regenerative capacity allowing it to restore up to 70% of its volume. Although knowledge of this phenomenon dates back to Greek mythology (the story of Prometheus), many aspects of liver regeneration are still not understood. A variety of different factors, including inflammatory cytokines, growth factors, and bile acids, promote liver regeneration and control the final size of the organ during typical regeneration, which is performed by mature hepatocytes, and during alternative regeneration, which is performed by recently identified resident stem cells called “hepatic progenitor cells”. Hepatic progenitor cells drive liver regeneration when hepatocytes are unable to restore the liver mass, such as in cases of chronic injury or excessive acute injury. In liver maintenance, the body mass ratio is essential for homeostasis because the liver has numerous functions; therefore, a greater understanding of this process will lead to better control of liver injuries, improved transplantation of small grafts and the discovery of new methods for the treatment of liver diseases. The current review sheds light on the key molecular pathways and cells involved in typical and progenitor-dependent liver mass regeneration after various acute or chronic injuries. Subsequent studies and a better understanding of liver regeneration will lead to the development of new therapeutic methods for liver diseases.
Collapse
Affiliation(s)
- Yana V Kiseleva
- International School “Medicine of the Future”, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
| | - Sevak Z Antonyan
- Department of Emergency Surgical Gastroenterology, N. V. Sklifosovsky Research Institute for Emergency Medicine, Moscow 129010, Russia
| | - Tatyana S Zharikova
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia
| | - Kirill A Tupikin
- Laboratory of Minimally Invasive Surgery, A.I. Evdokimov Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| | - Dmitry V Kalinin
- Pathology Department, A.V. Vishnevsky National Medical Research Center of Surgery of the Russian Ministry of Healthcare, Moscow 117997, Russia
| | - Yuri O Zharikov
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia
| |
Collapse
|
4
|
Stöß C, Laschinger M, Wang B, Lu M, Altmayr F, Hartmann D, Hüser N, Holzmann B. TLR3 promotes hepatocyte proliferation after partial hepatectomy by stimulating uPA expression and the release of tissue-bound HGF. FASEB J 2020; 34:10387-10397. [PMID: 32539223 DOI: 10.1096/fj.202000904r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022]
Abstract
TLR3 is implicated in anti-viral immune responses, but may also act as a sensor of tissue damage in the absence of infection. Here, we provide evidence for an essential role of TLR3 in liver regeneration after an acute loss of tissue due to partial hepatectomy. Mice lacking TLR3 had a severe and sustained defect in the restoration of liver tissue with reduced liver-to-body weight ratios even after an extended recovery period of 2 weeks. Hepatocyte cell cycle progression into S phase was impaired in TLR3-deficient mice. Mechanistic analyses revealed that TLR3-deficient mice had markedly reduced systemic levels of active HGF, but had increased amounts of inactive tissue-bound HGF. Importantly, expression of uPA, which orchestrates the processing and release of HGF from the hepatic extracellular matrix, was reduced in regenerating livers of TLR3-deficient mice. In addition, expression of the HGF maturation factor HGFAC was transiently diminished in TLR3-deficient mice. In vitro, engagement of TLR3 directly stimulated expression of uPA by hepatic stellate cells. Thus, TLR3 supports liver regeneration through upregulation of uPA, which promotes the release of preformed HGF from extracellular matrix stores.
Collapse
Affiliation(s)
- Christian Stöß
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Melanie Laschinger
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Baocai Wang
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Miao Lu
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Felicitas Altmayr
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Daniel Hartmann
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Norbert Hüser
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Bernhard Holzmann
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
5
|
Laschinger M, Wang Y, Holzmann G, Wang B, Stöß C, Lu M, Brugger M, Schneider A, Knolle P, Wohlleber D, Schulze S, Steiger K, Tsujikawa K, Altmayr F, Friess H, Hartmann D, Hüser N, Holzmann B. The CGRP receptor component RAMP1 links sensory innervation with YAP activity in the regenerating liver. FASEB J 2020; 34:8125-8138. [PMID: 32329113 DOI: 10.1096/fj.201903200r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/26/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
The effectiveness of liver regeneration limits surgical therapies of hepatic disorders and determines patient outcome. Here, we investigated the role of the neuropeptide calcitonin gene-related peptide (CGRP) for liver regeneration after acute or chronic injury. Mice deficient for the CGRP receptor component receptor activity-modifying protein 1 (RAMP1) were subjected to a 70% partial hepatectomy or repeated intraperitoneal injections of carbon tetrachloride. RAMP1 deficiency severely impaired recovery of organ mass and hepatocyte proliferation after both acute and chronic liver injury. Mechanistically, protein expression of the transcriptional coactivators Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) was decreased in regenerating livers of RAMP1-deficient mice. Lack of RAMP1 was associated with hyperphosphorylation of YAP on Ser127 and Ser397, which regulates YAP functional activity and protein levels. Consequently, expression of various YAP-controlled cell cycle regulators and hepatocyte proliferation were severely reduced in the absence of RAMP1. In vitro, CGRP treatment caused increased YAP protein expression and a concomitant decline of YAP phosphorylation in liver tissue slice cultures of mouse and human origin and in primary human hepatocytes. Thus, our results indicate that sensory nerves represent a crucial control element of liver regeneration after acute and chronic injury acting through the CGRP-RAMP1 pathway, which stimulates YAP/TAZ expression and activity.
Collapse
Affiliation(s)
- Melanie Laschinger
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Yang Wang
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Gabriela Holzmann
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Baocai Wang
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christian Stöß
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Miao Lu
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Marcus Brugger
- School of Medicine, Institute of Molecular Immunology & Experimental Oncology, Technical University of Munich, Munich, Germany
| | - Annika Schneider
- School of Medicine, Institute of Molecular Immunology & Experimental Oncology, Technical University of Munich, Munich, Germany
| | - Percy Knolle
- School of Medicine, Institute of Molecular Immunology & Experimental Oncology, Technical University of Munich, Munich, Germany
| | - Dirk Wohlleber
- School of Medicine, Institute of Molecular Immunology & Experimental Oncology, Technical University of Munich, Munich, Germany
| | - Sarah Schulze
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Katja Steiger
- School of Medicine, Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Felicitas Altmayr
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Helmut Friess
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Daniel Hartmann
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Norbert Hüser
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Bernhard Holzmann
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
6
|
Valtolina C, Robben JH, Favier RP, Rothuizen J, Grinwis GCM, Schotanus BA, Penning LC. Immunohistochemical characterisation of the hepatic stem cell niche in feline hepatic lipidosis: a preliminary morphological study. J Feline Med Surg 2019; 21:165-172. [PMID: 29741464 PMCID: PMC6357173 DOI: 10.1177/1098612x18765922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVES The aim of this study was to describe the cellular and stromal components of the hepatic progenitor cell niche in feline hepatic lipidosis (FHL). METHODS Immunohistochemical staining for the progenitor/bile duct marker (K19), activated Kupffer cells (MAC387), myofibroblasts (alpha-smooth muscle actin [α-SMA]) and the extracellular matrix component laminin were used on seven liver biopsies of cats with FHL and three healthy cats. Double immunofluorescence stainings were performed to investigate co-localisation of different cell types in the hepatic progenitor cell (HPC) niche. RESULTS HPCs, Kupffer cells, myofibroblasts and laminin deposition were observed in the liver samples of FHL, although with variability in the expression and positivity of the different immunostainings between different samples. When compared with the unaffected cats where K19 positivity and minimal α-SMA and laminin positivity were seen mainly in the portal area, in the majority of FHL samples K19 and α-SMA-positive cells and laminin positivity were seen also in the periportal and parenchymatous area. MAC387-positive cells were present throughout the parenchyma. CONCLUSIONS AND RELEVANCE This is a preliminary morphological study to describe the activation and co-localisation of components of the HPC niche in FHL. Although the HPC niche in FHL resembles that described in hepatopathies in dogs and in feline lymphocytic cholangitis, the expression of K19, α-SMA, MAC387 and lamin is more variable in FHL, and a common pattern of activation could not be established. Nevertheless, when HPCs were activated, a spatial association between HPCs and their niche could be demonstrated.
Collapse
Affiliation(s)
- Chiara Valtolina
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Joris H Robben
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Robert P Favier
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Evidensia Dierenziekenhuis Nunspeet, Nunspeet, The Netherlands
| | - Jan Rothuizen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Guy CM Grinwis
- Department of Pathobiology, Faculty of Veterinary Medicine and Veterinary Pathology Diagnostic Centre, Utrecht University, Utrecht, The Netherlands
| | - Baukje A Schotanus
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Intercept Pharmaceuticals, Gouda, The Netherlands
| | - Louis C Penning
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
7
|
Kook PH, Baumstark M, Ruetten M. Clinical and histologic outcome in a dog surviving massive hepatic necrosis. J Vet Intern Med 2018; 33:879-884. [PMID: 30575127 PMCID: PMC6430912 DOI: 10.1111/jvim.15391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/16/2018] [Indexed: 12/30/2022] Open
Abstract
This report describes the clinical and histologic recovery of a 2‐year‐old mixed‐breed dog presented with hypovolemic shock, markedly increased serum alanine amino transferase activity, and hemoabdomen. Emergency exploratory surgery revealed a friable liver with multiple capsule hemorrhages necessitating removal of the left lateral lobe. Histologic evaluation showed acute massive hepatic necrosis with centrilobular and midzonal distribution. The dog survived, and all monitored laboratory values normalized within 7 weeks. A liver biopsy taken 8 weeks after presentation revealed normal hepatic architecture with a few, randomly distributed neutrophilic foci. Follow‐up included intermittent determination of liver variables including liver function tests for a period of 7 years. The dog's health status, and all test results remained normal during this time. Complete recovery and good long‐term quality of life after life‐threatening acute liver failure secondary to massive hepatic necrosis is possible in dogs.
Collapse
Affiliation(s)
- Peter H Kook
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Miriam Baumstark
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Maja Ruetten
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Schulze S, Stöß C, Lu M, Wang B, Laschinger M, Steiger K, Altmayr F, Friess H, Hartmann D, Holzmann B, Hüser N. Cytosolic nucleic acid sensors of the innate immune system promote liver regeneration after partial hepatectomy. Sci Rep 2018; 8:12271. [PMID: 30115978 PMCID: PMC6095902 DOI: 10.1038/s41598-018-29924-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 07/20/2018] [Indexed: 12/19/2022] Open
Abstract
Stimulation of cytosolic nucleic acid sensors of innate immunity by pathogen-derived nucleic acids is important for antimicrobial defence, but stimulation through self-derived nucleic acids may contribute to autoinflammation and cancer. DNA sensing in the cytosol requires the stimulator of interferon genes (STING), while cytosolic RNA sensors use mitochondrial antiviral-signalling protein (MAVS). In a murine model of two-thirds hepatectomy, combined deficiency of MAVS and STING resulted in strongly impaired hepatocyte proliferation and delayed recovery of liver mass. Whereas lack of MAVS and STING did not influence upregulation of the G1-phase cyclins D1 and E1, it substantially reduced the hyperphosphorylation of retinoblastoma protein, attenuated the activation of cyclin-dependent kinase (CDK)-2, delayed upregulation of CDK1 and cyclins A2 and B1, and impaired S-phase entry of hepatocytes. Mechanistically, lack of cytosolic nucleic acid sensors strongly upregulated the anti-proliferative mediators TGF-β2 and activin A, which was associated with an increased expression of the cell cycle inhibitors p15 and p21. Partial hepatectomy was followed by the release of exosomes with abundant nucleic acid cargo, which may provide ligands for the MAVS and STING pathways. Together, these findings identify a previously unrecognised function of cytosolic nucleic acid sensors of innate immunity for promoting liver regeneration.
Collapse
Affiliation(s)
- Sarah Schulze
- Technical University of Munich, School of Medicine, Department of Surgery, Ismaninger Str. 22, 81675, Munich, Germany
| | - Christian Stöß
- Technical University of Munich, School of Medicine, Department of Surgery, Ismaninger Str. 22, 81675, Munich, Germany
| | - Miao Lu
- Technical University of Munich, School of Medicine, Department of Surgery, Ismaninger Str. 22, 81675, Munich, Germany
| | - Baocai Wang
- Technical University of Munich, School of Medicine, Department of Surgery, Ismaninger Str. 22, 81675, Munich, Germany
| | - Melanie Laschinger
- Technical University of Munich, School of Medicine, Department of Surgery, Ismaninger Str. 22, 81675, Munich, Germany
| | - Katja Steiger
- Technical University of Munich, School of Medicine, Comparative Experimental Pathology, Institute of Pathology, Trogerstr. 18, 81675, Munich, Germany
| | - Felicitas Altmayr
- Technical University of Munich, School of Medicine, Department of Surgery, Ismaninger Str. 22, 81675, Munich, Germany
| | - Helmut Friess
- Technical University of Munich, School of Medicine, Department of Surgery, Ismaninger Str. 22, 81675, Munich, Germany
| | - Daniel Hartmann
- Technical University of Munich, School of Medicine, Department of Surgery, Ismaninger Str. 22, 81675, Munich, Germany
| | - Bernhard Holzmann
- Technical University of Munich, School of Medicine, Department of Surgery, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Norbert Hüser
- Technical University of Munich, School of Medicine, Department of Surgery, Ismaninger Str. 22, 81675, Munich, Germany
| |
Collapse
|
9
|
Krstic J, Galhuber M, Schulz TJ, Schupp M, Prokesch A. p53 as a Dichotomous Regulator of Liver Disease: The Dose Makes the Medicine. Int J Mol Sci 2018; 19:E921. [PMID: 29558460 PMCID: PMC5877782 DOI: 10.3390/ijms19030921] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 02/07/2023] Open
Abstract
Lifestyle-related disorders, such as the metabolic syndrome, have become a primary risk factor for the development of liver pathologies that can progress from hepatic steatosis, hepatic insulin resistance, steatohepatitis, fibrosis and cirrhosis, to the most severe condition of hepatocellular carcinoma (HCC). While the prevalence of liver pathologies is steadily increasing in modern societies, there are currently no approved drugs other than chemotherapeutic intervention in late stage HCC. Hence, there is a pressing need to identify and investigate causative molecular pathways that can yield new therapeutic avenues. The transcription factor p53 is well established as a tumor suppressor and has recently been described as a central metabolic player both in physiological and pathological settings. Given that liver is a dynamic tissue with direct exposition to ingested nutrients, hepatic p53, by integrating cellular stress response, metabolism and cell cycle regulation, has emerged as an important regulator of liver homeostasis and dysfunction. The underlying evidence is reviewed herein, with a focus on clinical data and animal studies that highlight a direct influence of p53 activity on different stages of liver diseases. Based on current literature showing that activation of p53 signaling can either attenuate or fuel liver disease, we herein discuss the hypothesis that, while hyper-activation or loss of function can cause disease, moderate induction of hepatic p53 within physiological margins could be beneficial in the prevention and treatment of liver pathologies. Hence, stimuli that lead to a moderate and temporary p53 activation could present new therapeutic approaches through several entry points in the cascade from hepatic steatosis to HCC.
Collapse
Affiliation(s)
- Jelena Krstic
- Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, 8010 Graz, Austria.
| | - Markus Galhuber
- Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, 8010 Graz, Austria.
| | - Tim J Schulz
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition, Potsdam-Rehhbrücke, 14558 Nuthetal, Germany.
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany.
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany.
| | - Michael Schupp
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pharmacology, Center for Cardiovascular Research, 10117 Berlin, Germany.
| | - Andreas Prokesch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, 8010 Graz, Austria.
- BioTechMed-Graz, 8010 Graz, Austria.
| |
Collapse
|
10
|
Ibis C, Asenov Y, Akin M, Azamat IF, Sivrikoz N, Gurtekin B. Factors Affecting Liver Regeneration in Living Donors After Hepatectomy. Med Sci Monit 2017; 23:5986-5993. [PMID: 29249797 PMCID: PMC5742996 DOI: 10.12659/msm.908136] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background The safety of living liver donors is the paramount priority of liver transplantation surgeons. The liver has an effective regeneration capacity. The regeneration rate of the liver remnant in living liver donors provides much information useful in liver surgery. The outcome of the remnant liver after hepatectomy can be affected by many different perioperative factors. Material/Methods A total of 46 patients were enrolled in the study. Retrospective clinical data, including preoperative and postoperative early and late computed tomography liver volumetry measurements, estimated resection volumes, resected liver weights, and postoperative laboratory values, were statistically evaluated according to the liver resection type. Results No significant difference was detected in age, sex, calculated and computed tomography estimated total liver volume, intraoperative Hb decrease, postoperative complications, or postoperative portal vein flow rate. Postoperative liver enlargement rates were significant higher in the right hemihepatectomy (RHH) group than in the left lateral sectionectomy (LLS) group. The size of the liver remnant or graft has a major effect on regeneration rate. Postoperative biliary leakage did not have any significant effect on liver regeneration. No post-hepatectomy liver failure was detected among the liver donors. Conclusions Liver hypertrophy depends on the extent of liver resection. The cause of volume decrease in the LLS group after hepatectomy in our series appears to be the gradual atrophy of liver segment 4. RHH and LLS surgeries differ from each other in terms of resected liver volume, as well as inflammatory activity, and the latter appears to affect liver regeneration.
Collapse
Affiliation(s)
- Cem Ibis
- Department of General Surgery, Division of HPB Surgery and Liver Transplantation, Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Yavor Asenov
- Department of Surgery, Hospital of Tsaritsa Joanna, Clinical Center of Gastroenterology, Medical University, Sofia, Bulgaria
| | - Melih Akin
- Department of Pediatric Surgery, Hamidiye Sisli Etfal Hospital, Health Sciences University, Istanbul, Turkey
| | - Ibrahim F Azamat
- Department of General Surgery, Division of HPB Surgery and Liver Transplantation, Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Nukhet Sivrikoz
- Department of Anesthesiology, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Basak Gurtekin
- Department of Biostatistics, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
11
|
Expressions Profiles of the Proteins Associated with Carbohydrate Metabolism in Rat Liver Regeneration. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8428926. [PMID: 28752099 PMCID: PMC5511655 DOI: 10.1155/2017/8428926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/11/2017] [Accepted: 05/28/2017] [Indexed: 01/20/2023]
Abstract
Liver has a very amazing ability to regenerate from the remnant liver after injury or partial hepatectomy (PH). Carbohydrate metabolism plays a critical role in regeneration. Many signaling pathways are involved in the metabolism process. We analyzed the changes of proteins at 0–36 h after PH in rats using isobaric tags for relative and absolute quantitation (iTRAQ) coupled with LC-MS/MS-based quantitative proteomics strategy. The results showed that 110 proteins and 5 signaling pathways related to carbohydrate metabolism in rat LR changed significantly. Based on a motif discovery method performed by iRegulon, we identified for the first time that the transcription factor SPIB whose motif was enriched among the differentiated genes associated with carbohydrate metabolism may play an important role in liver regeneration for the first time. The findings of this research provide a molecular basis for further unrevealing the mechanism of regeneration at priming stage (0–6 h) and proliferation stage (6–36 h) of LR in rats. At the same time, our studies provide more novel evidence for the signaling pathways which regulate carbohydrate metabolism from proteomics level. This study can provide some new thinking of liver regeneration and treatment of diseases associated with glucose metabolism.
Collapse
|
12
|
Pham DH, Zhang C, Yin C. Using zebrafish to model liver diseases-Where do we stand? CURRENT PATHOBIOLOGY REPORTS 2017; 5:207-221. [PMID: 29098121 DOI: 10.1007/s40139-017-0141-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Purpose of Review The liver is the largest internal organ and performs both exocrine and endocrine function that is necessary for survival. Liver failure is among the leading causes of death and represents a major global health burden. Liver transplantation is the only effective treatment for end-stage liver diseases. Animal models advance our understanding of liver disease etiology and hold promise for the development of alternative therapies. Zebrafish has become an increasingly popular system for modeling liver diseases and complements the rodent models. Recent Findings The zebrafish liver contains main cell types that are found in mammalian liver and exhibits similar pathogenic responses to environmental insults and genetic mutations. Zebrafish have been used to model neonatal cholestasis, cholangiopathies, such as polycystic liver disease, alcoholic liver disease, and non-alcoholic fatty liver disease. It also provides a unique opportunity to study the plasticity of liver parenchymal cells during regeneration. Summary In this review, we summarize the recent work of building zebrafish models of liver diseases. We highlight how these studies have brought new knowledge of disease mechanisms. We also discuss the advantages and challenges of using zebrafish to model liver diseases.
Collapse
Affiliation(s)
- Duc-Hung Pham
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Changwen Zhang
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Chunyue Yin
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| |
Collapse
|
13
|
Bile acids and their receptors during liver regeneration: "Dangerous protectors". Mol Aspects Med 2017; 56:25-33. [PMID: 28302491 DOI: 10.1016/j.mam.2017.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/07/2017] [Accepted: 03/10/2017] [Indexed: 02/07/2023]
Abstract
Tissue repair is orchestrated by a finely tuned interplay between processes of regeneration, inflammation and cell protection, allowing organisms to restore their integrity after partial loss of cells or organs. An important, although largely unexplored feature is that after injury and during liver repair, liver functions have to be maintained to fulfill the peripheral demand. This is particularly critical for bile secretion, which has to be finely modulated in order to preserve liver parenchyma from bile-induced injury. However, mechanisms allowing the liver to maintain biliary homeostasis during repair after injury are not completely understood. Besides cytokines and growth factors, bile acids (BA) and their receptors constitute an insufficiently explored signaling network during liver regeneration and repair. BA signal through both nuclear (mainly Farnesoid X Receptor, FXR) and membrane (mainly G Protein-coupled BA Receptor 1, GPBAR-1 or TGR5) receptors which distributions are large in the organism, and which activation elicits a wide array of biological responses. While a number of studies have been dedicated to FXR signaling in liver repair processes, TGR5 remains poorly explored in this context. Because of the massive and potentially harmful BA overload that faces the remnant liver after partial ablation or destruction, both BA-induced adaptive and proliferative responses may stand in a central position to contribute to the regenerative response. Based on the available literature, both BA receptors may act in synergy during the regeneration process, in order to protect the remnant liver and maintain biliary homeostasis, otherwise potentially toxic BA overload would result in parenchymal insult and compromise optimal restoration of a functional liver mass.
Collapse
|
14
|
Yin C. Molecular mechanisms of Sox transcription factors during the development of liver, bile duct, and pancreas. Semin Cell Dev Biol 2016; 63:68-78. [PMID: 27552918 DOI: 10.1016/j.semcdb.2016.08.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/13/2016] [Accepted: 08/18/2016] [Indexed: 12/15/2022]
Abstract
The liver and pancreas are the prime digestive and metabolic organs in the body. After emerging from the neighboring domains of the foregut endoderm, they turn on distinct differentiation and morphogenesis programs that are regulated by hierarchies of transcription factors. Members of SOX family of transcription factors are expressed in the liver and pancreas throughout development and act upstream of other organ-specific transcription factors. They play key roles in maintaining stem cells and progenitors. They are also master regulators of cell fate determination and tissue morphogenesis. In this review, we summarize the current understanding of SOX transcription factors in mediating liver and pancreas development. We discuss their contribution to adult organ function, homeostasis and injury responses. We also speculate how the knowledge of SOX transcription factors can be applied to improve therapies for liver diseases and diabetes.
Collapse
Affiliation(s)
- Chunyue Yin
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|