1
|
Zhang Q, Zhang ZC, He XY, Liu ZM, Wei GH, Liu X. Maternal smoking during pregnancy and the risk of congenital urogenital malformations: A systematic review and meta-analysis. Front Pediatr 2022; 10:973016. [PMID: 36263151 PMCID: PMC9575702 DOI: 10.3389/fped.2022.973016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Investigations regarding the association between maternal smoking and specific urogenital teratogenesis exist. However, an integrated systematic review and meta-analysis studying the relationship by encompassing the whole urogenital system is essential. OBJECTIVE Even though many studies about inborn urogenital malformations have been conducted, its etiologic factors and exact pathogenesis are still unclear. Our aim is to assess the risk of congenital urogenital malformations in offspring of smoking pregnant women. RESULTS The meta-analysis, covering 41 case-control and 11 cohort studies, suggested that maternal smoking was associated with an increased risk of urogenital teratogenesis (odds ratio [OR] = 1.13, 95% confidence interval [CI]: 1.04-1.23, p = 0.005), cryptorchidism (OR = 1.18, 95%CI: 1.12-1.24, p = 0.0001), hypospadias (OR = 1.16, 95%CI: 1.01-1.33, p = 0.039), and kidney malformations (OR = 1.30, 95%CI: 1.14-1.48, p = 0.0001). Moreover, paternal smoking during the mother's pregnancy was also significantly associated (OR = 1.26, 95%CI: 1.03-1.55, p = 0.028). The association between smoking > 10 cigarettes/day was evident but was not significant (OR = 1.24, 95%CI:0.81-1.88, p = 0.323). CONCLUSION Our results showed that maternal smoking during pregnancy increased the risk of congenital urogenital malformations. In numerous epidemiological studies, maternal smoking during pregnancy has a significant role in fetal development. Therefore, quitting tobacco use may be an effective method for reducing the risk of congenital urogenital malformation in pregnant women.
Collapse
Affiliation(s)
- Qiang Zhang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China.,Program for Youth Innovation in Future Medicine, Chongqing Medical University, Chongqing, China
| | - Zhi-Cheng Zhang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China.,Program for Youth Innovation in Future Medicine, Chongqing Medical University, Chongqing, China
| | - Xue-Yu He
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China.,Program for Youth Innovation in Future Medicine, Chongqing Medical University, Chongqing, China
| | - Zhen-Min Liu
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China.,Program for Youth Innovation in Future Medicine, Chongqing Medical University, Chongqing, China
| | - Guang-Hui Wei
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China.,Program for Youth Innovation in Future Medicine, Chongqing Medical University, Chongqing, China
| | - Xing Liu
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China.,Program for Youth Innovation in Future Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Proximal Tubular Development Is Impaired with Downregulation of MAPK/ERK Signaling, HIF-1 α, and Catalase by Hyperoxia Exposure in Neonatal Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9219847. [PMID: 31558952 PMCID: PMC6735195 DOI: 10.1155/2019/9219847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/04/2019] [Indexed: 12/22/2022]
Abstract
Supplemental oxygen therapy (hyperoxia) is a widely used treatment for alveolar hypoxia in preterm infants. Despite being closely monitored, hyperoxia exposure is believed to undermine neonatal nephrogenesis and renal function caused by elevated oxidative stress. Previous studies have mostly focused on the hyperoxia-induced impairment of glomerular development, while the long-term impact of neonatal hyperoxia on tubular development and the regulatory component involved in this process remain to be clarified. Here, we examined tubular histology and apoptosis, along with the expression profile of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling, hypoxia-inducible factor 1α (HIF-1α), and catalase, following hyperoxia exposure in neonatal rats. Hematoxylin and eosin (H&E) staining revealed the early disappearance of the nephrogenic zone, as well as dilated lumens and reduced epithelial cells, of mature proximal tubules following neonatal hyperoxia. A robust increase in tubular cell apoptosis caused by neonatal hyperoxia was found using a TUNEL assay. Moreover, neonatal hyperoxia altered renal MAPK/ERK signaling activity and downregulated the expression of HIF-1α and catalase in the proximal tubules throughout nephrogenesis from S-shaped bodies to mature proximal tubules. Cell apoptosis in the proximal tubules was positively correlated with HIF-1α expression on the 14th postnatal day. Our data indicates that proximal tubular development is impaired by neonatal hyperoxia, which is accompanied by altered MAPK/ERK signaling as well as downregulated HIF-1α and catalase. Therapeutic management that targets MAPK/ERK signaling, HIF-1α, or catalase may serve as a protective agent against hyperoxia-induced oxidative damage to neonatal proximal tubules.
Collapse
|
3
|
Ferrè S, Igarashi P. New insights into the role of HNF-1β in kidney (patho)physiology. Pediatr Nephrol 2019; 34:1325-1335. [PMID: 29961928 PMCID: PMC6312759 DOI: 10.1007/s00467-018-3990-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 12/14/2022]
Abstract
Hepatocyte nuclear factor-1β (HNF-1β) is an essential transcription factor that regulates the development and function of epithelia in the kidney, liver, pancreas, and genitourinary tract. Humans who carry HNF1B mutations develop heterogeneous renal abnormalities, including multicystic dysplastic kidneys, glomerulocystic kidney disease, renal agenesis, renal hypoplasia, and renal interstitial fibrosis. In the embryonic kidney, HNF-1β is required for ureteric bud branching, initiation of nephrogenesis, and nephron segmentation. Ablation of mouse Hnf1b in nephron progenitors causes defective tubulogenesis, whereas later inactivation in elongating tubules leads to cyst formation due to downregulation of cystic disease genes, including Umod, Pkhd1, and Pkd2. In the adult kidney, HNF-1β controls the expression of genes required for intrarenal metabolism and solute transport by tubular epithelial cells. Tubular abnormalities observed in HNF-1β nephropathy include hyperuricemia with or without gout, hypokalemia, hypomagnesemia, and polyuria. Recent studies have identified novel post-transcriptional and post-translational regulatory mechanisms that control HNF-1β expression and activity, including the miRNA cluster miR17 ∼ 92 and the interacting proteins PCBD1 and zyxin. Further understanding of the molecular mechanisms upstream and downstream of HNF-1β may lead to the development of new therapeutic approaches in cystic kidney disease and other HNF1B-related renal diseases.
Collapse
Affiliation(s)
- Silvia Ferrè
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Texas, USA,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Peter Igarashi
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Department of Medicine, University of Minnesota Medical School, 420 Delaware St. SE, MMC 194, Minneapolis, MN, 55455, USA.
| |
Collapse
|
4
|
Phua YL, Chen KH, Hemker SL, Marrone AK, Bodnar AJ, Liu X, Clugston A, Kostka D, Butterworth MB, Ho J. Loss of miR-17~92 results in dysregulation of Cftr in nephron progenitors. Am J Physiol Renal Physiol 2019; 316:F993-F1005. [PMID: 30838872 DOI: 10.1152/ajprenal.00450.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We have previously demonstrated that loss of miR-17~92 in nephron progenitors in a mouse model results in renal hypodysplasia and chronic kidney disease. Clinically, decreased congenital nephron endowment because of renal hypodysplasia is associated with an increased risk of hypertension and chronic kidney disease, and this is at least partly dependent on the self-renewal of nephron progenitors. Here, we present evidence for a novel molecular mechanism regulating the self-renewal of nephron progenitors and congenital nephron endowment by the highly conserved miR-17~92 cluster. Whole transcriptome sequencing revealed that nephron progenitors lacking this cluster demonstrated increased Cftr expression. We showed that one member of the cluster, miR-19b, is sufficient to repress Cftr expression in vitro and that perturbation of Cftr activity in nephron progenitors results in impaired proliferation. Together, these data suggest that miR-19b regulates Cftr expression in nephron progenitors, with this interaction playing a role in appropriate nephron progenitor self-renewal during kidney development to generate normal nephron endowment.
Collapse
Affiliation(s)
- Yu Leng Phua
- Rangos Research Center, UPMC Children's Hospital of Pittsburgh , Pittsburgh, Pennsylvania.,Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Kevin Hong Chen
- Rangos Research Center, UPMC Children's Hospital of Pittsburgh , Pittsburgh, Pennsylvania.,Department of Biological Sciences, Carnegie Mellon University , Pittsburgh, Pennsylvania
| | - Shelby L Hemker
- Rangos Research Center, UPMC Children's Hospital of Pittsburgh , Pittsburgh, Pennsylvania.,Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - April K Marrone
- Rangos Research Center, UPMC Children's Hospital of Pittsburgh , Pittsburgh, Pennsylvania.,Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Andrew J Bodnar
- Rangos Research Center, UPMC Children's Hospital of Pittsburgh , Pittsburgh, Pennsylvania.,Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Xiaoning Liu
- Department of Cell Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Andrew Clugston
- Rangos Research Center, UPMC Children's Hospital of Pittsburgh , Pittsburgh, Pennsylvania.,Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,Department of Developmental Biology and Department of Computational and Systems Biology, Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Dennis Kostka
- Department of Developmental Biology and Department of Computational and Systems Biology, Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Michael B Butterworth
- Department of Cell Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Jacqueline Ho
- Rangos Research Center, UPMC Children's Hospital of Pittsburgh , Pittsburgh, Pennsylvania.,Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| |
Collapse
|
5
|
Walton SL, Singh RR, Little MH, Bowles J, Li J, Moritz KM. Prolonged prenatal hypoxia selectively disrupts collecting duct patterning and postnatal function in male mouse offspring. J Physiol 2018; 596:5873-5889. [PMID: 29676801 DOI: 10.1113/jp275918] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/13/2018] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS In the present study, we investigated whether hypoxia during late pregnancy impairs kidney development in mouse offspring, and also whether this has long-lasting consequences affecting kidney function in adulthood. Hypoxia disrupted growth of the kidney, particularly the collecting duct network, in juvenile male offspring. By mid-late adulthood, these mice developed early signs of kidney disease, notably a compromised response to water deprivation. Female offspring showed no obvious signs of impaired kidney development and did not develop kidney disease, suggesting an underlying protection mechanism from the hypoxia insult. These results help us better understand the long-lasting impact of gestational hypoxia on kidney development and the increased risk of chronic kidney disease. ABSTRACT Prenatal hypoxia is a common perturbation to arise during pregnancy, and can lead to adverse health outcomes in later life. The long-lasting impact of prenatal hypoxia on postnatal kidney development and maturation of the renal tubules, particularly the collecting duct system, is relatively unknown. In the present study, we used a model of moderate chronic maternal hypoxia throughout late gestation (12% O2 exposure from embryonic day 14.5 until birth). Histological analyses revealed marked changes in the tubular architecture of male hypoxia-exposed neonates as early as postnatal day 7, with disrupted medullary development and altered expression of Ctnnb1 and Crabp2 (encoding a retinoic acid binding protein). Kidneys of the RARElacZ line offspring exposed to hypoxia showed reduced β-galactosidase activity, indicating reduced retinoic acid-directed transcriptional activation. Wild-type male mice exposed to hypoxia had an early decline in urine concentrating capacity, evident at 4 months of age. At 12 months of age, hypoxia-exposed male mice displayed a compromised response to a water deprivation challenge, which was was correlated with an altered cellular composition of the collecting duct and diminished expression of aquaporin 2. There were no differences in the tubular structures or urine concentrating capacity between the control and hypoxia-exposed female offspring at any age. The findings of the present study suggest that prenatal hypoxia selectively disrupts collecting duct patterning through altered Wnt/β-catenin and retinoic acid signalling and this results in impaired function in male mouse offspring in later life.
Collapse
Affiliation(s)
- Sarah L Walton
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Reetu R Singh
- Department of Physiology, Monash University, Melbourne, VIC, Australia
| | - Melissa H Little
- Murdoch Childrens Research Institute, Parkville, VIC, Australia.,Department of Pediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Josephine Bowles
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Joan Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Karen M Moritz
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia.,Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Mukherjee E, Maringer K, Papke E, Bushnell D, Schaefer C, Kramann R, Ho J, Humphreys BD, Bates C, Sims-Lucas S. Endothelial marker-expressing stromal cells are critical for kidney formation. Am J Physiol Renal Physiol 2017; 313:F611-F620. [PMID: 28539333 PMCID: PMC6148306 DOI: 10.1152/ajprenal.00136.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/05/2017] [Accepted: 05/22/2017] [Indexed: 11/22/2022] Open
Abstract
Kidneys are highly vascularized and contain many distinct vascular beds. However, the origins of renal endothelial cells and roles of the developing endothelia in the formation of the kidney are unclear. We have shown that the Foxd1-positive renal stroma gives rise to endothelial marker-expressing progenitors that are incorporated within a subset of peritubular capillaries; however, the significance of these cells is unclear. The purpose of this study was to determine whether deletion of Flk1 in the Foxd1 stroma was important for renal development. To that end, we conditionally deleted Flk1 (critical for endothelial cell development) in the renal stroma by breeding-floxed Flk1 mice (Flk1fl/fl ) with Foxd1cre mice to generate Foxd1cre; Flk1fl/fl (Flk1ST-/- ) mice. We then performed FACsorting, histological, morphometric, and metabolic analyses of Flk1ST-/- vs. control mice. We confirmed decreased expression of endothelial markers in the renal stroma of Flk1ST-/- kidneys via flow sorting and immunostaining, and upon interrogation of embryonic and postnatal Flk1ST-/- mice, we found they had dilated peritubular capillaries. Three-dimensional reconstructions showed reduced ureteric branching and fewer nephrons in developing Flk1ST-/- kidneys vs. CONTROLS Juvenile Flk1ST-/- kidneys displayed renal papillary hypoplasia and a paucity of collecting ducts. Twenty-four-hour urine collections revealed that postnatal Flk1ST-/- mice had urinary-concentrating defects. Thus, while lineage-tracing revealed that the renal cortical stroma gave rise to a small subset of endothelial progenitors, these Flk1-expressing stromal cells are critical for patterning the peritubular capillaries. Also, loss of Flk1 in the renal stroma leads to nonautonomous-patterning defects in ureteric lineages.
Collapse
Affiliation(s)
- Elina Mukherjee
- Rangos Research Center, Children's Hospital of Pittsburgh of University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Katherine Maringer
- Rangos Research Center, Children's Hospital of Pittsburgh of University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Emily Papke
- Rangos Research Center, Children's Hospital of Pittsburgh of University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Daniel Bushnell
- Rangos Research Center, Children's Hospital of Pittsburgh of University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Caitlin Schaefer
- Rangos Research Center, Children's Hospital of Pittsburgh of University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Rafael Kramann
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule, Aachen University, Aachen, Germany
| | - Jacqueline Ho
- Rangos Research Center, Children's Hospital of Pittsburgh of University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Benjamin D Humphreys
- Renal Division, Washington University School of Medicine, St. Louis, Missouri; and
| | - Carlton Bates
- Rangos Research Center, Children's Hospital of Pittsburgh of University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sunder Sims-Lucas
- Rangos Research Center, Children's Hospital of Pittsburgh of University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania;
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
7
|
Short KM, Smyth IM. Imaging, Analysing and Interpreting Branching Morphogenesis in the Developing Kidney. Results Probl Cell Differ 2017; 60:233-256. [PMID: 28409348 DOI: 10.1007/978-3-319-51436-9_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The kidney develops as an outgrowth of the epithelial nephric duct known as the ureteric bud, in a position specified by a range of rostral and caudal factors which serve to ensure two kidneys form in the appropriate positions in the body. At its simplest level, kidney development can be viewed as the process by which this single bud then undergoes a process of arborisation to form a complex connected network of ducts which will serve to drain urine from the nephrons in the adult organ. The process of bud elaboration is dictated by factors expressed by both the bud itself and by surrounding cells of the metanephric mesenchyme which control cell division and bifurcation. These cells play two critical roles. Firstly, they potentiate the ongoing elaboration of the ureteric tree: remove them and branching ceases. Secondly, they harbour progenitor cells which are fated to undergo their own process of tubulogenesis to form the nephrons of the adult organ. In this chapter, we will discuss how the ureteric bud arises in the developing embryo, how it undergoes branching, how we can measure and study this process and finally the likely relevance that this process has for our understanding of congenital and acquired kidney disease.
Collapse
Affiliation(s)
- Kieran M Short
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Clayton, VIC, 3800, Australia
| | - Ian M Smyth
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Clayton, VIC, 3800, Australia.
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Clayton, VIC, 3800, Australia.
| |
Collapse
|