1
|
Petersen M, Dubielecka P. Adaptor protein Abelson interactor 1 in homeostasis and disease. Cell Commun Signal 2024; 22:468. [PMID: 39354505 PMCID: PMC11446139 DOI: 10.1186/s12964-024-01738-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/04/2024] [Indexed: 10/03/2024] Open
Abstract
Dysregulation of Abelson interactor 1 (ABI1) is associated with various states of disease including developmental defects, pathogen infections, and cancer. ABI1 is an adaptor protein predominantly known to regulate actin cytoskeleton organization processes such as those involved in cell adhesion, migration, and shape determination. Linked to cytoskeleton via vasodilator-stimulated phosphoprotein (VASP), Wiskott-Aldrich syndrome protein family (WAVE), and neural-Wiskott-Aldrich syndrome protein (N-WASP)-associated protein complexes, ABI1 coordinates regulation of various cytoplasmic protein signaling complexes dysregulated in disease states. The roles of ABI1 beyond actin cytoskeleton regulation are much less understood. This comprehensive, protein-centric review describes molecular roles of ABI1 as an adaptor molecule in the context of its dysregulation and associated disease outcomes to better understand disease state-specific protein signaling and affected interconnected biological processes.
Collapse
Affiliation(s)
- Max Petersen
- Division of Hematology/Oncology, Department of Medicine, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
- Center for the Biology of Aging, Brown University, Providence, RI, USA
- Legoretta Cancer Center, Brown University, Providence, RI, USA
| | - Pat Dubielecka
- Division of Hematology/Oncology, Department of Medicine, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA.
- Center for the Biology of Aging, Brown University, Providence, RI, USA.
- Legoretta Cancer Center, Brown University, Providence, RI, USA.
| |
Collapse
|
2
|
Zhang Z, Wang Z, Liu T, Tang J, Liu Y, Gou T, Chen K, Wang L, Zhang J, Yang Y, Zhang H. Exploring the role of ITGB6: fibrosis, cancer, and other diseases. Apoptosis 2024; 29:570-585. [PMID: 38127283 DOI: 10.1007/s10495-023-01921-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 12/23/2023]
Abstract
Integrin β6 (ITGB6), a member of the integrin family of proteins, is only present in epithelial tissues and frequently associates with integrin subunit αv to form transmembrane heterodimers named integrin αvβ6. Importantly, ITGB6 determines αvβ6 expression and availability. In addition to being engaged in organ fibrosis, ITGB6 is also directly linked to the emergence of cancer, periodontitis, and several potential genetic diseases. Therefore, it is of great significance to study the molecular-biological mechanism of ITGB6, which could provide novel insights for future clinical diagnosis and therapy. This review introduces the structure, distribution, and biological function of ITGB6. This review also expounds on ITGB6-related diseases, detailing the known biological effects of ITGB6.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, 627 Wuluo Road, Wuhan, 430070, China
| | - Tong Liu
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Jiayou Tang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Yanqing Liu
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Tiantian Gou
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Kangli Chen
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Li Wang
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Juan Zhang
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Yang Yang
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| | - Huan Zhang
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
3
|
Zhou D, Guo S, Wang Y, Zhao J, Liu H, Zhou F, Huang Y, Gu Y, Jin G, Zhang Y. Functional characteristics of DNA N6-methyladenine modification based on long-read sequencing in pancreatic cancer. Brief Funct Genomics 2024; 23:150-162. [PMID: 37279592 DOI: 10.1093/bfgp/elad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/18/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023] Open
Abstract
Abnormalities of DNA modifications are closely related to the pathogenesis and prognosis of pancreatic cancer. The development of third-generation sequencing technology has brought opportunities for the study of new epigenetic modification in cancer. Here, we screened the N6-methyladenine (6mA) and 5-methylcytosine (5mC) modification in pancreatic cancer based on Oxford Nanopore Technologies sequencing. The 6mA levels were lower compared with 5mC and upregulated in pancreatic cancer. We developed a novel method to define differentially methylated deficient region (DMDR), which overlapped 1319 protein-coding genes in pancreatic cancer. Genes screened by DMDRs were more significantly enriched in the cancer genes compared with the traditional differential methylation method (P < 0.001 versus P = 0.21, hypergeometric test). We then identified a survival-related signature based on DMDRs (DMDRSig) that stratified patients into high- and low-risk groups. Functional enrichment analysis indicated that 891 genes were closely related to alternative splicing. Multi-omics data from the cancer genome atlas showed that these genes were frequently altered in cancer samples. Survival analysis indicated that seven genes with high expression (ADAM9, ADAM10, EPS8, FAM83A, FAM111B, LAMA3 and TES) were significantly associated with poor prognosis. In addition, the distinction for pancreatic cancer subtypes was determined using 46 subtype-specific genes and unsupervised clustering. Overall, our study is the first to explore the molecular characteristics of 6mA modifications in pancreatic cancer, indicating that 6mA has the potential to be a target for future clinical treatment.
Collapse
Affiliation(s)
- Dianshuang Zhou
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin 150006, China
| | - Shiwei Guo
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Yangyang Wang
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin 150006, China
| | - Jiyun Zhao
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin 150006, China
| | - Honghao Liu
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin 150006, China
| | - Feiyang Zhou
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin 150006, China
| | - Yan Huang
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin 150006, China
| | - Yue Gu
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin 150006, China
| | - Gang Jin
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Yan Zhang
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin 150006, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
- College of Pathology, Qiqihar Medical University, Qiqihar 161042, China
| |
Collapse
|
4
|
Lin T, Guo J, Peng Y, Li M, Liu Y, Yu X, Wu N, Yu W. Pan-cancer transcriptomic data of ABI1 transcript variants and molecular constitutive elements identifies novel cancer metastatic and prognostic biomarkers. Cancer Biomark 2024; 39:49-62. [PMID: 37545215 PMCID: PMC10977443 DOI: 10.3233/cbm-220348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/26/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Abelson interactor 1 (ABI1) is associated with the metastasis and prognosis of many malignancies. The association between ABI1 transcript spliced variants, their molecular constitutive exons and exon-exon junctions (EEJs) in 14 cancer types and clinical outcomes remains unsolved. OBJECTIVE To identify novel cancer metastatic and prognostic biomarkers from ABI1 total mRNA, TSVs, and molecular constitutive elements. METHODS Using data from TCGA and TSVdb database, the standard median of ABI1 total mRNA, TSV, exon, and EEJ expression was used as a cut-off value. Kaplan-Meier analysis, Chi-squared test (X2) and Kendall's tau statistic were used to identify novel metastatic and prognostic biomarkers, and Cox regression analysis was performed to screen and identify independent prognostic factors. RESULTS A total of 35 ABI1-related factors were found to be closely related to the prognosis of eight candidate cancer types. A total of 14 ABI1 TSVs and molecular constitutive elements were identified as novel metastatic and prognostic biomarkers in four cancer types. A total of 13 ABI1 molecular constitutive elements were identified as independent prognostic biomarkers in six cancer types. CONCLUSIONS In this study, we identified 14 ABI1-related novel metastatic and prognostic markers and 21 independent prognostic factors in total 8 candidate cancer types.
Collapse
Affiliation(s)
- Tingru Lin
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing, China
- Department of Gastroenterology, Peking University People’s Hospital, Beijing, China
| | - Jingzhu Guo
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing, China
- Department of Pediatrics, Peking University People’s Hospital, Beijing, China
| | - Yifan Peng
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing, China
- Gastrointestinal Cancer Center, Unit III, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Mei Li
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing, China
| | - Yulan Liu
- Department of Gastroenterology, Peking University People’s Hospital, Beijing, China
| | - Xin Yu
- Department of Hepatobiliary Surgery, Peking University People’s Hospital, Beijing, China
| | - Na Wu
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing, China
| | - Weidong Yu
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
5
|
Li S, Sampson C, Liu C, Piao HL, Liu HX. Integrin signaling in cancer: bidirectional mechanisms and therapeutic opportunities. Cell Commun Signal 2023; 21:266. [PMID: 37770930 PMCID: PMC10537162 DOI: 10.1186/s12964-023-01264-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/09/2023] [Indexed: 09/30/2023] Open
Abstract
Integrins are transmembrane receptors that possess distinct ligand-binding specificities in the extracellular domain and signaling properties in the cytoplasmic domain. While most integrins have a short cytoplasmic tail, integrin β4 has a long cytoplasmic tail that can indirectly interact with the actin cytoskeleton. Additionally, 'inside-out' signals can induce integrins to adopt a high-affinity extended conformation for their appropriate ligands. These properties enable integrins to transmit bidirectional cellular signals, making it a critical regulator of various biological processes.Integrin expression and function are tightly linked to various aspects of tumor progression, including initiation, angiogenesis, cell motility, invasion, and metastasis. Certain integrins have been shown to drive tumorigenesis or amplify oncogenic signals by interacting with corresponding receptors, while others have marginal or even suppressive effects. Additionally, different α/β subtypes of integrins can exhibit opposite effects. Integrin-mediated signaling pathways including Ras- and Rho-GTPase, TGFβ, Hippo, Wnt, Notch, and sonic hedgehog (Shh) are involved in various stages of tumorigenesis. Therefore, understanding the complex regulatory mechanisms and molecular specificities of integrins are crucial to delaying cancer progression and suppressing tumorigenesis. Furthermore, the development of integrin-based therapeutics for cancer are of great importance.This review provides an overview of integrin-dependent bidirectional signaling mechanisms in cancer that can either support or oppose tumorigenesis by interacting with various signaling pathways. Finally, we focus on the future opportunities for emergent therapeutics based on integrin agonists. Video Abstract.
Collapse
Affiliation(s)
- Siyi Li
- Department of Thoracic Surgery, Cancer Research Institute, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Chibuzo Sampson
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Changhao Liu
- Department of Thoracic Surgery, Cancer Research Institute, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China
| | - Hai-Long Piao
- Department of Thoracic Surgery, Cancer Research Institute, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China.
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang, 110122, China.
| | - Hong-Xu Liu
- Department of Thoracic Surgery, Cancer Research Institute, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China.
| |
Collapse
|
6
|
Qiu Y, Xu B, Feng J, Wang C, Chen Y, He Y, Xie X, Li Y. Loss of EPS8 sensitizes non-small-cell lung carcinoma to chemotherapy-induced DNA damage. Cancer Gene Ther 2023:10.1038/s41417-023-00606-1. [PMID: 36932195 DOI: 10.1038/s41417-023-00606-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/13/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023]
Abstract
Epidermal growth factor receptor pathway substrate number 8 (EPS8) has been reported to be critical in mediating tumor progression. However, the molecular and biological consequences of EPS8 overexpression remain unclear. Here we evaluated whether EPS8 increased DNA damage repair in non-small-cell lung carcinoma (NSCLC) cells and the mechanism of EPS8-mediated DNA damage repair which influenced chemosensitivity. Serial studies of functional experiments revealed that EPS8 knockdown inhibited cell growth, induced cell-cycle arrest and increased cisplatin therapeutic effects on NSCLC. EPS8 was found to induce DNA damage repair via upregulation of phosphorylated-ATM and downregulation of the tumor suppressor p53 and G1 cell kinase inhibitor p21. Moreover, in conjunction with cisplatin, decreasing EPS8 protein levels further increased p53 protein level and inhibited ATM signaling. Transplanted tumor studies were also performed to demonstrate that EPS8 knockdown inhibited tumor growth and sensitized tumors to cisplatin treatment. In conclusion, we have described a novel molecular mechanism through which EPS8 is likely to be involved in cancer progression and chemoresistance via DNA damage repair, indicating that EPS8 expression may influence the response to chemotherapy. Therefore, targeting EPS8 may be a potential therapeutic approach for patients with NSCLC.
Collapse
Affiliation(s)
- Yingqi Qiu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Dadao Zhong, Guangzhou, Guangdong, 510285, P. R. China
| | - Binyan Xu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Dadao Zhong, Guangzhou, Guangdong, 510285, P. R. China
| | - Jianhua Feng
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Dadao Zhong, Guangzhou, Guangdong, 510285, P. R. China
| | - Chunsheng Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Dadao Zhong, Guangzhou, Guangdong, 510285, P. R. China
| | - Yiran Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Dadao Zhong, Guangzhou, Guangdong, 510285, P. R. China
| | - Yanjie He
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Dadao Zhong, Guangzhou, Guangdong, 510285, P. R. China
| | - Xiaoling Xie
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Dadao Zhong, Guangzhou, Guangdong, 510285, P. R. China.
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Dadao Zhong, Guangzhou, Guangdong, 510285, P. R. China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, 510005, P. R. China.
| |
Collapse
|
7
|
Lian Y, Zeng S, Wen S, Zhao X, Fang C, Zeng N. Review and Application of Integrin Alpha v Beta 6 in the Diagnosis and Treatment of Cholangiocarcinoma and Pancreatic Ductal Adenocarcinoma. Technol Cancer Res Treat 2023; 22:15330338231189399. [PMID: 37525872 PMCID: PMC10395192 DOI: 10.1177/15330338231189399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/13/2023] [Accepted: 06/28/2023] [Indexed: 08/02/2023] Open
Abstract
Integrin Alpha v Beta 6 is expressed primarily in solid epithelial tumors, such as cholangiocarcinoma, pancreatic cancer, and colorectal cancer. It has been considered a potential and promising molecular marker for the early diagnosis and treatment of cancer. Cholangiocarcinoma and pancreatic ductal adenocarcinoma share genetic, histological, and pathophysiological similarities due to the shared embryonic origin of the bile duct and pancreas. These cancers share numerous clinicopathological characteristics, including growth pattern, poor response to conventional radiotherapy and chemotherapy, and poor prognosis. This review focuses on the role of integrin Alpha v Beta 6 in cancer progression. It addition, it reviews how the marker can be used in molecular imaging and therapeutic targets. We propose further research explorations and questions that need to be addressed. We conclude that integrin Alpha v Beta 6 may serve as a potential biomarker for cancer disease progression and prognosis.
Collapse
Affiliation(s)
- Yunyu Lian
- Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Silue Zeng
- First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical and Engineering Technology Center of Digital Medicine, Guangzhou, China
| | - Sai Wen
- First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical and Engineering Technology Center of Digital Medicine, Guangzhou, China
| | - Xingyang Zhao
- First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical and Engineering Technology Center of Digital Medicine, Guangzhou, China
| | - Chihua Fang
- Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical and Engineering Technology Center of Digital Medicine, Guangzhou, China
| | - Ning Zeng
- Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical and Engineering Technology Center of Digital Medicine, Guangzhou, China
| |
Collapse
|
8
|
Yoshioka Y, Shimomura M, Saito K, Ishii H, Doki Y, Eguchi H, Nakatsura T, Itoi T, Kuroda M, Mori M, Ochiya T. Circulating cancer-associated extracellular vesicles as early detection and recurrence biomarkers for pancreatic cancer. Cancer Sci 2022; 113:3498-3509. [PMID: 35848896 PMCID: PMC9530877 DOI: 10.1111/cas.15500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022] Open
Abstract
Early detection of pancreatic ductal adenocarcinoma (PDAC) is essential for improving patient survival rates, and non-invasive biomarkers are urgently required to identify patients who are eligible for curative surgery. Here, we examined extracellular vesicles (EVs) from the serum of PDAC patients to determine their ability to detect early-stage disease. EV-associated proteins purified by ultracentrifugation and affinity columns underwent proteomic analysis to identify novel PDAC markers G protein-coupled receptor class C group 5 member C (GPRC5C) and epidermal growth factor receptor pathway substrate 8 (EPS8). To verify the potency of GPRC5C- or EPS8-positive EVs as PDAC biomarkers, we analyzed EVs from PDAC patient blood samples using ultracentrifugation in two different cohorts (a total of 54 PDAC patients, 32 healthy donors, and 22 pancreatitis patients) by immunoblotting. The combination of EV-associated GPRC5C and EPS8 had high accuracy, with area under the curve (AUC) values of 0.922 and 0.946 for distinguishing early-stage PDAC patients from healthy controls in the two cohorts, respectively, and could detect PDAC patients who were negative for CA19-9. Moreover, we analyzed 30 samples taken at three time points from 10 PDAC patients who underwent surgery: before surgery, after surgery, and recurrence as an early-stage model. These proteins were detected in EVs derived from preoperative and recurrence samples. These results indicated that GPRC5C- or EPS8-positive EVs were biomarkers that have the potential to detect stage I early pancreatic cancer and small recurrent tumors detected by computed tomography.
Collapse
Affiliation(s)
- Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Manami Shimomura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Keigo Saito
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Hideshi Ishii
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Takao Itoi
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Masaki Mori
- Tokai University School of Medicine, Isehara, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
9
|
Bates EA, Davies JA, Váňová J, Nestić D, Meniel VS, Koushyar S, Cunliffe TG, Mundy RM, Moses E, Uusi-Kerttula HK, Baker AT, Cole DK, Majhen D, Rizkallah PJ, Phesse T, Chester JD, Parker AL. Development of a low-seroprevalence, αvβ6 integrin-selective virotherapy based on human adenovirus type 10. Mol Ther Oncolytics 2022; 25:43-56. [PMID: 35399606 PMCID: PMC8971729 DOI: 10.1016/j.omto.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/13/2022] [Indexed: 11/29/2022] Open
Abstract
Oncolytic virotherapies (OV) hold immense clinical potential. OV based on human adenoviruses (HAdV) derived from HAdV with naturally low rates of pre-existing immunity will be beneficial for future clinical translation. We generated a low-seroprevalence HAdV-D10 serotype vector incorporating an αvβ6 integrin-selective peptide, A20, to target αvβ6-positive tumor cell types. HAdV-D10 has limited natural tropism. Structural and biological studies of HAdV-D10 knob protein highlighted low-affinity engagement with native adenoviral receptors CAR and sialic acid. HAdV-D10 fails to engage blood coagulation factor X, potentially eliminating "off-target" hepatic sequestration in vivo. We engineered an A20 peptide that selectively binds αvβ6 integrin into the DG loop of HAdV-D10 fiber knob. Assays in αvβ6+ cancer cell lines demonstrated significantly increased transduction mediated by αvβ6-targeted variants compared with controls, confirmed microscopically. HAdV-D10.A20 resisted neutralization by neutralizing HAdV-C5 sera. Systemic delivery of HAdV-D10.A20 resulted in significantly increased GFP expression in BT20 tumors. Replication-competent HAdV-D10.A20 demonstrated αvβ6 integrin-selective cell killing in vitro and in vivo. HAdV-D10 possesses characteristics of a promising virotherapy, combining low seroprevalence, weak receptor interactions, and reduced off-target uptake. Incorporation of an αvβ6 integrin-selective peptide resulted in HAdV-D10.A20, with significant potential for clinical translation.
Collapse
Affiliation(s)
- Emily A. Bates
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - James A. Davies
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Jana Váňová
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Davor Nestić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Valerie S. Meniel
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff CF24 4HQ, UK
| | - Sarah Koushyar
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff CF24 4HQ, UK
| | - Tabitha G. Cunliffe
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Rosie M. Mundy
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Elise Moses
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Hanni K. Uusi-Kerttula
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Alexander T. Baker
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - David K. Cole
- Division of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Dragomira Majhen
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Pierre J. Rizkallah
- Division of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Toby Phesse
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff CF24 4HQ, UK
| | - John D. Chester
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
- Velindre Cancer Centre, Whitchurch, Cardiff CF14 2TL, UK
| | - Alan L. Parker
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
10
|
Maneshi P, Mason J, Dongre M, Öhlund D. Targeting Tumor-Stromal Interactions in Pancreatic Cancer: Impact of Collagens and Mechanical Traits. Front Cell Dev Biol 2021; 9:787485. [PMID: 34901028 PMCID: PMC8656238 DOI: 10.3389/fcell.2021.787485] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the worst outcomes among cancers with a 5-years survival rate of below 10%. This is a result of late diagnosis and the lack of effective treatments. The tumor is characterized by a highly fibrotic stroma containing distinct cellular components, embedded within an extracellular matrix (ECM). This ECM-abundant tumor microenvironment (TME) in PDAC plays a pivotal role in tumor progression and resistance to treatment. Cancer-associated fibroblasts (CAFs), being a dominant cell type of the stroma, are in fact functionally heterogeneous populations of cells within the TME. Certain subtypes of CAFs are the main producer of the ECM components of the stroma, with the most abundant one being the collagen family of proteins. Collagens are large macromolecules that upon deposition into the ECM form supramolecular fibrillar structures which provide a mechanical framework to the TME. They not only bring structure to the tissue by being the main structural proteins but also contain binding domains that interact with surface receptors on the cancer cells. These interactions can induce various responses in the cancer cells and activate signaling pathways leading to epithelial-to-mesenchymal transition (EMT) and ultimately metastasis. In addition, collagens are one of the main contributors to building up mechanical forces in the tumor. These forces influence the signaling pathways that are involved in cell motility and tumor progression and affect tumor microstructure and tissue stiffness by exerting solid stress and interstitial fluid pressure on the cells. Taken together, the TME is subjected to various types of mechanical forces and interactions that affect tumor progression, metastasis, and drug response. In this review article, we aim to summarize and contextualize the recent knowledge of components of the PDAC stroma, especially the role of different collagens and mechanical traits on tumor progression. We furthermore discuss different experimental models available for studying tumor-stromal interactions and finally discuss potential therapeutic targets within the stroma.
Collapse
Affiliation(s)
- Parniyan Maneshi
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - James Mason
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Mitesh Dongre
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Daniel Öhlund
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
11
|
Tan M, Meng J, Sun X, Fu X, Wang R. EPS8 supports pancreatic cancer growth by inhibiting BMI1 mediated proteasomal degradation of ALDH7A1. Exp Cell Res 2021; 407:112782. [PMID: 34391775 DOI: 10.1016/j.yexcr.2021.112782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/11/2021] [Accepted: 07/17/2021] [Indexed: 01/29/2023]
Abstract
Aldehyde dehydrogenase 7 family member A1 (ALDH7A1) is an enzyme catalyzing lipid peroxidation of fatty aldehydes. It plays a critical role in sustaining high oxygen consumption rate (OCR) and ATP production in pancreatic ductal adenocarcinoma (PADC). However, why PADC cells maintain a relatively high level of ALDH7A1 concentration is still not well understood. In the current study, we explored the interplay between epidermal growth factor receptor kinase substrate 8 (EPS8) and ALDH7A1 in PADC cells. PADC cell lines MIA PaCa-2 and AsPANC-1 were used for in vitro and in vivo studies. The co-IP assay showed mutual interactions between Flag-EPS8 and Myc-ALDH7A1 in both MIA PaCa-2 and AsPANC-1 cells. EPS8 knockdown resulted in decreased ALDH7A1 protein levels and increased poly-ubiquitination. An interaction was observed between ALDH7A1 and BMI1 but not between BMI1 and EPS8. BMI1 knockdown reduced ALDH7A1 poly-ubiquitination and degradation caused by EPS8 knockdown. Dual EPS8 and ALDH7A1 knockdown had a synergistic effect on suppressing PADC cell proliferation in vitro and in vivo. In conclusion, this study revealed that EPS8 supports PADC growth by interacting with ALDH7A1 and inhibiting BMI1 mediated proteasomal degradation of ALDH7A1.
Collapse
Affiliation(s)
- Mingzhu Tan
- Internal Medicine, Weifang People's Hospital Brain Hospital, Weifang, Shandong, 261000, China
| | - Jun Meng
- Occupational Medicine, Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Xiaojuan Sun
- Occupational Medicine, Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Xiaowei Fu
- Department of Neonatology, Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Ruihao Wang
- Internal Medicine, Weifang People's Hospital Brain Hospital, Weifang, Shandong, 261000, China.
| |
Collapse
|
12
|
Davies JA, Marlow G, Uusi-Kerttula HK, Seaton G, Piggott L, Badder LM, Clarkson RWE, Chester JD, Parker AL. Efficient Intravenous Tumor Targeting Using the αvβ6 Integrin-Selective Precision Virotherapy Ad5 NULL-A20. Viruses 2021; 13:864. [PMID: 34066836 PMCID: PMC8151668 DOI: 10.3390/v13050864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
We previously developed a refined, tumor-selective adenovirus, Ad5NULL-A20, harboring tropism ablating mutations in each major capsid protein, to ablate all native means of infection. We incorporated a 20-mer peptide (A20) in the fiber knob for selective infection via αvβ6 integrin, a marker of aggressive epithelial cancers. Methods: To ascertain the selectivity of Ad5NULL-A20 for αvβ6-positive tumor cell lines of pancreatic and breast cancer origin, we performed reporter gene and cell viability assays. Biodistribution of viral vectors in mice harboring xenografts with low, medium, and high αvβ6 levels was quantified by qPCR for viral genomes 48 h post intravenous administration. Results: Ad5NULL-A20 vector transduced cells in an αvβ6-selective manner, whilst cell killing mediated by oncolytic Ad5NULL-A20 was αvβ6-selective. Biodistribution analysis following intravenous administration into mice bearing breast cancer xenografts demonstrated that Ad5NULL-A20 resulted in significantly reduced liver accumulation coupled with increased tumor accumulation compared to Ad5 in all three models, with tumor-to-liver ratios improved as a function of αvβ6 expression. Conclusions: Ad5NULL-A20-based virotherapies efficiently target αvβ6-integrin-positive tumors following intravenous administration, validating the potential of Ad5NULL-A20 for systemic applications, enabling tumor-selective overexpression of virally encoded therapeutic transgenes.
Collapse
Affiliation(s)
- James A. Davies
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK; (J.A.D.); (G.M.); (H.K.U.-K.); (L.M.B.); (J.D.C.)
| | - Gareth Marlow
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK; (J.A.D.); (G.M.); (H.K.U.-K.); (L.M.B.); (J.D.C.)
| | - Hanni K. Uusi-Kerttula
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK; (J.A.D.); (G.M.); (H.K.U.-K.); (L.M.B.); (J.D.C.)
| | - Gillian Seaton
- School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK; (G.S.); (L.P.); (R.W.E.C.)
| | - Luke Piggott
- School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK; (G.S.); (L.P.); (R.W.E.C.)
| | - Luned M. Badder
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK; (J.A.D.); (G.M.); (H.K.U.-K.); (L.M.B.); (J.D.C.)
| | - Richard W. E. Clarkson
- School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK; (G.S.); (L.P.); (R.W.E.C.)
| | - John D. Chester
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK; (J.A.D.); (G.M.); (H.K.U.-K.); (L.M.B.); (J.D.C.)
- Velindre Cancer Centre, Cardiff CF14 2TL, UK
| | - Alan L. Parker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK; (J.A.D.); (G.M.); (H.K.U.-K.); (L.M.B.); (J.D.C.)
| |
Collapse
|
13
|
Luo K, Zhang L, Liao Y, Zhou H, Yang H, Luo M, Qing C. Effects and mechanisms of Eps8 on the biological behaviour of malignant tumours (Review). Oncol Rep 2021; 45:824-834. [PMID: 33432368 PMCID: PMC7859916 DOI: 10.3892/or.2021.7927] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/09/2020] [Indexed: 12/31/2022] Open
Abstract
Epidermal growth factor receptor pathway substrate 8 (Eps8) was initially identified as the substrate for the kinase activity of EGFR, improving the responsiveness of EGF, which is involved in cell mitosis, differentiation and other physiological functions. Numerous studies over the last decade have demonstrated that Eps8 is overexpressed in most ubiquitous malignant tumours and subsequently binds with its receptor to activate multiple signalling pathways. Eps8 not only participates in the regulation of malignant phenotypes, such as tumour proliferation, invasion, metastasis and drug resistance, but is also related to the clinicopathological characteristics and prognosis of patients. Therefore, Eps8 is a potential tumour diagnosis and prognostic biomarker and even a therapeutic target. This review aimed to describe the structural characteristics, role and related molecular mechanism of Eps8 in malignant tumours. In addition, the prospect of Eps8 as a target for cancer therapy is examined.
Collapse
Affiliation(s)
- Kaili Luo
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Lei Zhang
- Department of Gynecology, Yunnan Tumor Hospital and The Third Affiliated Hospital of Kunming Medical University; Kunming, Yunnan 650118, P.R. China
| | - Yuan Liao
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Hongyu Zhou
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Hongying Yang
- Department of Gynecology, Yunnan Tumor Hospital and The Third Affiliated Hospital of Kunming Medical University; Kunming, Yunnan 650118, P.R. China
| | - Min Luo
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Chen Qing
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
14
|
Li F, Shang Y, Shi F, Zhang L, Yan J, Sun Q, She J. Expression of Integrin β6 and HAX-1 Correlates with Aggressive Features and Poor Prognosis in Esophageal Squamous Cell Carcinoma. Cancer Manag Res 2020; 12:9599-9608. [PMID: 33061645 PMCID: PMC7537805 DOI: 10.2147/cmar.s274892] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose The development of esophageal squamous cell carcinoma (ESCC) is a complicated process in which cell adhesion and motility, mediated by integrins, are involved through connecting the cytoskeleton to extracellular matrix. Different mechanisms via which integrin β6 participates in cancer invasion and metastasis have been described by numerous studies; however, the expression and clinical significance of integrin β6 in ESCC remain unknown. Methods To investigate the differential expression of integrin β6 in ESCC, qPCR and immunohistochemistry assays were performed in 10 paired human samples. A total of 137 ESCC samples were further enrolled to evaluate the expression levels of integrin β6 and its endocytic trafficking regulator HS1-associated protein X-1 (HAX-1), followed by the evaluation of their correlation with clinicopathological parameters. The overall survival was analyzed using the Kaplan–Meier method, with significant variables further evaluated by multivariate Cox regression analyses. Results The expression of integrin β6 was markedly increased in ESCC compared with matched adjacent normal tissues. Among the ESCC samples, positive expression of integrin β6 was observed in 41.6% tumors, which was associated with histological differentiation, lymph node metastasis and TNM stage. High expression of HAX-1 was detected in 47.4% tumors, and there was a positive relationship between the expression levels of integrin β6 and HAX-1. Furthermore, the expression of integrin β6 and HAX-1 were independent unfavorable indicators for prognosis. Patients with positive integrin β6 and high HAX-1 expression demonstrated worst outcomes. Conclusion The present findings suggested the predictive value of integrin β6 and HAX-1 as independent indicators of poor prognosis for patients with ESCC, both of which may contribute to the tumor proliferation and metastasis, leading to ESCC progression. Therefore, combined targeting of integrin β6 and HAX-1 may provide a potential novel approach for the treatment of ESCC.
Collapse
Affiliation(s)
- Fanni Li
- Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Yukui Shang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | - Feiyu Shi
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Lei Zhang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Jun Yan
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Qi Sun
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Junjun She
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| |
Collapse
|
15
|
Chen B, Pan Y, Xu X, Wu F, Zheng X, Chen SY, Zhao YT, Huang Z, Cheng SH, Liu JX, Wang WH, Li YX. Inhibition of EPS8L3 suppresses liver cancer progression and enhances efficacy of sorafenib treatment. Biomed Pharmacother 2020; 128:110284. [PMID: 32480224 DOI: 10.1016/j.biopha.2020.110284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/10/2020] [Accepted: 05/16/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Liver cancer is a devastating disease that has second highest cancer mortality rate worldwide. Although surgical resection or liver transplantation sometimes cures early stage liver cancer, few therapeutic options are available for advanced-stage liver cancer, highlighting the importance of a better understanding of the disease to find novel therapeutic targets. METHODS Firstly, clinical features of EPS8L3 on liver cancer RNA-seq dataset of The Cancer Genome Atlas (TCGA) database was analyzed, including gene expression levels in tumor tissues in comparison with the normal tissues as well as the patients' OS. To confirm the candidate genes, we used short hairpin RNA (shRNA) to knock down the gene and quantify the cell proliferation, apoptosis, and migration. Then micro-array analysis was did to investigate the intracellular mechanisms of EPS8L3. Moreover, to gain further insights into the translational value of the findings, we treated the liver cancer cells with Sorafenib after knocking down the candidate gene, in order to interrogate the combinatorial inhibitory effects on cell metabolism. RESULTS As a result, by comparing gene expression profiles of normal liver and cancerous tissues, we find that epidermal growth factor receptor kinase substrate 8-like protein 3 (EPS8L3), a gene with unknown function, is upregulated in liver cancer, and is associated with poor prognosis. Further gene set analyses on liver cancer cells revealed that EPS8L3 is pertinent to cell division and proliferation. Indeed, knocking down EPS8L3 inhibits cell proliferation and migration, and triggers apoptosis in vitro. Additionally, when inoculated into mice, EPS8L3 knocked down cells exhibit slower growth rate. Moreover, EPS8L3 expression can substantially increase the efficacy of low dosage of Sorafenib treatment. Furthermore, the results of immunohistochemical staining of 90 paired liver cancer and adjacent normal samples demonstrated high expression of EPS8L3 yields poor prognosis in Chinese liver cancer patients. CONCLUSIONS Collectively, our results suggest that EPS8L3 has pivotal oncogenic functions in liver cancer and we propose that EPS8L3 could be a potential therapeutic target to treat liver cancer.
Collapse
Affiliation(s)
- Bo Chen
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, PR China
| | - Yan Pan
- Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Xin Xu
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, PR China
| | - Fan Wu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, PR China
| | - Xuan Zheng
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, PR China
| | - Si-Ye Chen
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, PR China
| | - Yu-Ting Zhao
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, PR China
| | - Zhou Huang
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, PR China
| | - Shu-Hui Cheng
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, PR China
| | - Jian-Xiang Liu
- Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Wei-Hu Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, PR China.
| | - Ye-Xiong Li
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, PR China.
| |
Collapse
|
16
|
Adhesion and growth factor receptor crosstalk mechanisms controlling cell migration. Essays Biochem 2020; 63:553-567. [PMID: 31551325 DOI: 10.1042/ebc20190025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 12/30/2022]
Abstract
Cell migration requires cells to sense and interpret an array of extracellular signals to precisely co-ordinate adhesion dynamics, local application of mechanical force, polarity signalling and cytoskeletal dynamics. Adhesion receptors and growth factor receptors (GFRs) exhibit functional and signalling characteristics that individually contribute to cell migration. Integrins transmit bidirectional mechanical forces and transduce long-range intracellular signals. GFRs are fast acting and highly sensitive signalling machines that initiate signalling cascades to co-ordinate global cellular processes. Syndecans are microenvironment sensors that regulate GTPases to control receptor trafficking, cytoskeletal remodelling and adhesion dynamics. However, an array of crosstalk mechanisms exists, which co-ordinate and integrate the functions of the different receptor families. Here we discuss the nature of adhesion receptor and GFR crosstalk mechanisms. The unifying theme is that efficient cell migration requires precise spatial and temporal co-ordination of receptor crosstalk. However, a higher order of complexity emerges; whereby multiple crosstalk mechanisms are integrated and subject to both positive and negative feedbacks. Exquisite and sensitive control of these mechanisms ensures that mechanical forces and pro-migratory signals are triggered in the right place and at the right time during cell migration. Finally, we discuss the challenges, and potential therapeutic benefits, associated with deciphering this complexity.
Collapse
|
17
|
Zhang J, Wang C, Yan S, Yang Y, Zhang X, Guo W. miR-345 inhibits migration and stem-like cell phenotype in gastric cancer via inactivation of Rac1 by targeting EPS8. Acta Biochim Biophys Sin (Shanghai) 2020; 52:259-267. [PMID: 32147678 DOI: 10.1093/abbs/gmz166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/18/2019] [Accepted: 12/27/2019] [Indexed: 01/02/2023] Open
Abstract
Tumor metastasis is the main cause of treatment failure and death in patients with late stage of gastric cancer (GC). Studies showed that microRNAs (miRNAs) are important regulators in the process of tumor metastasis. In this study, we used miRNA array analysis to search for metastasis-associated miRNAs in primary and matched metastasis tissues of patients with GC and found that miR-345-5p (miR-345) was significantly higher in primary sites. Decreased expression of miR-345 was observed in GC tissues and cell lines, which was correlated with aggressive stage and grade. Patients with a higher level of miR-345 had a better prognosis. miR-345 could inhibit the migration and spheroid formation abilities in GC cell lines in transwell assay and spheroid formation assay. RNA sequencing and bioinformatics analysis revealed that miR-345 downregulated the epidermal growth factor receptor pathway substrate 8 (EPS8) and its downstream Rac1 signaling. Mechanistically, we confirmed that miR-345 could target EPS8 by directly binding to its 3' untranslated region by luciferase reporter assay. Further rescue assay showed that the ability of miR-345 in inhibiting the migration, stem-like cell phenotype, and epithelial-mesenchymal transition (EMT) in GC was partly dependent on targeting EPS8. In conclusion, miR-345 plays an inhibitory role in GC metastasis through inhibiting cell migration, EMT, and cancer stem cell phenotype via inactivation of Rac1 signaling by targeting EPS8, which provides the potential therapeutic and predictive value of miR-345 in GC.
Collapse
Affiliation(s)
- Jieyun Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chenchen Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shican Yan
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yanan Yang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaowei Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Weijian Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
18
|
Parkin A, Man J, Timpson P, Pajic M. Targeting the complexity of Src signalling in the tumour microenvironment of pancreatic cancer: from mechanism to therapy. FEBS J 2019; 286:3510-3539. [PMID: 31330086 PMCID: PMC6771888 DOI: 10.1111/febs.15011] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/26/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer, a disease with extremely poor prognosis, has been notoriously resistant to virtually all forms of treatment. The dynamic crosstalk that occurs between tumour cells and the surrounding stroma, frequently mediated by intricate Src/FAK signalling, is increasingly recognised as a key player in pancreatic tumourigenesis, disease progression and therapeutic resistance. These important cues are fundamental for defining the invasive potential of pancreatic tumours, and several components of the Src and downstream effector signalling have been proposed as potent anticancer therapeutic targets. Consequently, numerous agents that block this complex network are being extensively investigated as potential antiinvasive and antimetastatic therapeutic agents for this disease. In this review, we will discuss the latest evidence of Src signalling in PDAC progression, fibrotic response and resistance to therapy. We will examine future opportunities for the development and implementation of more effective combination regimens, targeting key components of the oncogenic Src signalling axis, and in the context of a precision medicine-guided approach.
Collapse
Affiliation(s)
- Ashleigh Parkin
- The Kinghorn Cancer CentreThe Garvan Institute of Medical ResearchSydneyAustralia
| | - Jennifer Man
- The Kinghorn Cancer CentreThe Garvan Institute of Medical ResearchSydneyAustralia
| | - Paul Timpson
- The Kinghorn Cancer CentreThe Garvan Institute of Medical ResearchSydneyAustralia
- Faculty of MedicineSt Vincent's Clinical SchoolUniversity of NSWSydneyAustralia
| | - Marina Pajic
- The Kinghorn Cancer CentreThe Garvan Institute of Medical ResearchSydneyAustralia
- Faculty of MedicineSt Vincent's Clinical SchoolUniversity of NSWSydneyAustralia
| |
Collapse
|
19
|
Cooper J, Giancotti FG. Integrin Signaling in Cancer: Mechanotransduction, Stemness, Epithelial Plasticity, and Therapeutic Resistance. Cancer Cell 2019; 35:347-367. [PMID: 30889378 PMCID: PMC6684107 DOI: 10.1016/j.ccell.2019.01.007] [Citation(s) in RCA: 523] [Impact Index Per Article: 104.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 10/10/2018] [Accepted: 01/14/2019] [Indexed: 12/16/2022]
Abstract
Integrins mediate cell adhesion and transmit mechanical and chemical signals to the cell interior. Various mechanisms deregulate integrin signaling in cancer, empowering tumor cells with the ability to proliferate without restraint, to invade through tissue boundaries, and to survive in foreign microenvironments. Recent studies have revealed that integrin signaling drives multiple stem cell functions, including tumor initiation, epithelial plasticity, metastatic reactivation, and resistance to oncogene- and immune-targeted therapies. Here, we discuss the mechanisms leading to the deregulation of integrin signaling in cancer and its various consequences. We place emphasis on novel functions, determinants of context dependency, and mechanism-based therapeutic opportunities.
Collapse
Affiliation(s)
- Jonathan Cooper
- Department of Translational Oncology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Filippo G Giancotti
- Department of Cancer Biology and David H. Koch Center for Applied Research of Genitourinary Cancers, UT MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
20
|
Bone marrow-specific loss of ABI1 induces myeloproliferative neoplasm with features resembling human myelofibrosis. Blood 2018; 132:2053-2066. [PMID: 30213875 DOI: 10.1182/blood-2018-05-848408] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/01/2018] [Indexed: 12/23/2022] Open
Abstract
Although the pathogenesis of primary myelofibrosis (PMF) and other myeloproliferative neoplasms (MPNs) is linked to constitutive activation of the JAK-STAT pathway, JAK inhibitors have neither curative nor MPN-stem cell-eradicating potential, indicating that other targetable mechanisms are contributing to the pathophysiology of MPNs. We previously demonstrated that Abelson interactor 1 (Abi-1), a negative regulator of Abelson kinase 1, functions as a tumor suppressor. Here we present data showing that bone marrow-specific deletion of Abi1 in a novel mouse model leads to development of an MPN-like phenotype resembling human PMF. Abi1 loss resulted in a significant increase in the activity of the Src family kinases (SFKs), STAT3, and NF-κB signaling. We also observed impairment of hematopoietic stem cell self-renewal and fitness, as evidenced in noncompetitive and competitive bone marrow transplant experiments. CD34+ hematopoietic progenitors and granulocytes from patients with PMF showed decreased levels of ABI1 transcript as well as increased activity of SFKs, STAT3, and NF-κB. In aggregate, our data link the loss of Abi-1 function to hyperactive SFKs/STAT3/NF-κB signaling and suggest that this signaling axis may represent a regulatory module involved in the molecular pathophysiology of PMF.
Collapse
|
21
|
Alterations of 63 hub genes during lingual carcinogenesis in C57BL/6J mice. Sci Rep 2018; 8:12626. [PMID: 30135512 PMCID: PMC6105652 DOI: 10.1038/s41598-018-31103-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/08/2018] [Indexed: 12/18/2022] Open
Abstract
To identify potential biomarkers of lingual cancer, 75 female C57BL/6J mice were subjected to 16-week oral delivery of 4-nitroquinoline-1-oxide (4NQO; 50 mg/L), with 10 mice used as controls. Lingual mucosa samples representative of normal tissue (week 0) and early (week 12) and advanced (week 28) tumorigenesis were harvested for microarray and methylated DNA immunoprecipitation sequencing (MeDIP-Seq). Combined analysis with Short Time-series Expression Miner (STEM), the Cytoscape plugin cytoHubba, and screening of differentially expressed genes enabled identification of 63 hub genes predominantly altered in the early stage rather than the advanced stage. Validation of microarray results was carried out using qRT-PCR. Of 63 human orthologous genes, 35 correlated with human oral squamous cell carcinoma. KEGG analysis showed "pathways in cancer", involving 13 hub genes, as the leading KEGG term. Significant alterations in promoter methylation were confirmed at Tbp, Smad1, Smad4, Pdpk1, Camk2, Atxn3, and Cdh2. HDAC2, TBP, and EP300 scored ≥10 on Maximal Clique Centrality (MCC) in STEM profile 11 and were overexpressed in human tongue cancer samples. However, expression did not correlate with smoking status, tumor differentiation, or overall survival. These results highlight potentially useful candidate biomarkers for lingual cancer prevention, diagnosis, and treatment.
Collapse
|
22
|
Olof Olsson P, Gustafsson R, Salnikov AV, Göthe M, Zeller KS, Friman T, Baldetorp B, Koopman LA, Weinreb PH, Violette SM, Kalamajski S, Heldin NE, Rubin K. Inhibition of integrin α Vβ 6 changes fibril thickness of stromal collagen in experimental carcinomas. Cell Commun Signal 2018; 16:36. [PMID: 29966518 PMCID: PMC6027735 DOI: 10.1186/s12964-018-0249-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022] Open
Abstract
Background Chemotherapeutic efficacy can be improved by targeting the structure and function of the extracellular matrix (ECM) in the carcinomal stroma. This can be accomplished by e.g. inhibiting TGF-β1 and -β3 or treating with Imatinib, which results in scarcer collagen fibril structure in xenografted human KAT-4/HT29 (KAT-4) colon adenocarcinoma. Methods The potential role of αVβ6 integrin-mediated activation of latent TGF-β was studied in cultured KAT-4 and Capan-2 human ductal pancreatic carcinoma cells as well as in xenograft carcinoma generated by these cells. The monoclonal αVβ6 integrin-specific monoclonal antibody 3G9 was used to inhibit the αVβ6 integrin activity. Results Both KAT-4 and Capan-2 cells expressed the αVβ6 integrin but only KAT-4 cells could utilize this integrin to activate latent TGF-β in vitro. Only when Capan-2 cells were co-cultured with human F99 fibroblasts was the integrin activation mechanism triggered, suggesting a more complex, fibroblast-dependent, activation pathway. In nude mice, a 10-day treatment with 3G9 reduced collagen fibril thickness and interstitial fluid pressure in KAT-4 but not in the more desmoplastic Capan-2 tumors that, to achieve a similar effect, required a prolonged 3G9 treatment. In contrast, a 10-day direct inhibition of TGF-β1 and -β3 reduced collagen fibril thickness in both tumor models. Conclusion Our data demonstrate that the αVβ6-directed activation of latent TGF-β plays a pivotal role in modulating the stromal collagen network in carcinoma, but that the sensitivity to αVβ6 inhibition depends on the simultaneous presence of alternative paths for latent TGF-β activation and the extent of desmoplasia. Electronic supplementary material The online version of this article (10.1186/s12964-018-0249-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- P Olof Olsson
- Department of Experimental Medical Science, Medicon Village 406, SE-22381, Lund, Sweden
| | - Renata Gustafsson
- Department of Experimental Medical Science, Medicon Village 406, SE-22381, Lund, Sweden
| | - Alexei V Salnikov
- Oncology Clinic, Department of Clinical Sciences, University Hospital Lund, SE-221 85, Lund, Sweden
| | - Maria Göthe
- Science for Life Laboratories, Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-751 23, Uppsala, Sweden
| | - Kathrin S Zeller
- Science for Life Laboratories, Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-751 23, Uppsala, Sweden
| | - Tomas Friman
- Science for Life Laboratories, Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-751 23, Uppsala, Sweden
| | - Bo Baldetorp
- Oncology Clinic, Department of Clinical Sciences, University Hospital Lund, SE-221 85, Lund, Sweden
| | | | | | | | - Sebastian Kalamajski
- Science for Life Laboratories, Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-751 23, Uppsala, Sweden
| | - Nils-Erik Heldin
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Kristofer Rubin
- Science for Life Laboratories, Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-751 23, Uppsala, Sweden.
| |
Collapse
|
23
|
Hamada S, Masamune A. Elucidating the link between collagen and pancreatic cancer: what's next? Expert Rev Gastroenterol Hepatol 2018; 12:315-317. [PMID: 29495889 DOI: 10.1080/17474124.2018.1448268] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Shin Hamada
- a Division of Gastroenterology , Tohoku University Graduate School of Medicine , Sendai , Japan
| | - Atsushi Masamune
- a Division of Gastroenterology , Tohoku University Graduate School of Medicine , Sendai , Japan
| |
Collapse
|